Defining parameters
| Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 729.c (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(162\) | ||
| Trace bound: | \(4\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(729, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 198 | 84 | 114 |
| Cusp forms | 126 | 60 | 66 |
| Eisenstein series | 72 | 24 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(729, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 729.2.c.a | $12$ | $5.821$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(-3\) | \(0\) | \(3\) | \(-6\) | \(q+(-\beta _{1}+\beta _{2}-\beta _{3}-\beta _{6})q^{2}+(-1+\cdots)q^{4}+\cdots\) |
| 729.2.c.b | $12$ | $5.821$ | 12.0.\(\cdots\).1 | None | \(-3\) | \(0\) | \(-6\) | \(0\) | \(q+(\beta _{6}+\beta _{8}-\beta _{10})q^{2}+(-1+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\) |
| 729.2.c.c | $12$ | $5.821$ | \(\Q(\zeta_{36})\) | None | \(0\) | \(0\) | \(0\) | \(12\) | \(q+(\beta_{10}-\beta_{8}-\beta_{7})q^{2}-\beta_{11} q^{4}+(\beta_{10}+\beta_{5}-\beta_{2})q^{5}+\cdots\) |
| 729.2.c.d | $12$ | $5.821$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(3\) | \(0\) | \(-3\) | \(-6\) | \(q+(\beta _{2}-\beta _{3}+\beta _{5}-\beta _{6}+\beta _{9})q^{2}+(-1+\cdots)q^{4}+\cdots\) |
| 729.2.c.e | $12$ | $5.821$ | 12.0.\(\cdots\).1 | None | \(3\) | \(0\) | \(6\) | \(0\) | \(q+(-\beta _{6}-\beta _{8}+\beta _{10})q^{2}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(729, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(729, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 2}\)