Newspace parameters
Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 729.c (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.82109430735\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\Q(\zeta_{36})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} - x^{6} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 3^{3} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( \zeta_{36}^{6} \)
|
\(\beta_{2}\) | \(=\) |
\( \zeta_{36}^{9} + \zeta_{36}^{3} \)
|
\(\beta_{3}\) | \(=\) |
\( \zeta_{36}^{10} + \zeta_{36}^{2} \)
|
\(\beta_{4}\) | \(=\) |
\( \zeta_{36}^{11} + \zeta_{36} \)
|
\(\beta_{5}\) | \(=\) |
\( -\zeta_{36}^{9} + 2\zeta_{36}^{3} \)
|
\(\beta_{6}\) | \(=\) |
\( -\zeta_{36}^{8} + \zeta_{36}^{4} + \zeta_{36}^{2} \)
|
\(\beta_{7}\) | \(=\) |
\( -\zeta_{36}^{7} + \zeta_{36}^{5} + \zeta_{36} \)
|
\(\beta_{8}\) | \(=\) |
\( -\zeta_{36}^{11} + \zeta_{36}^{7} \)
|
\(\beta_{9}\) | \(=\) |
\( -\zeta_{36}^{10} + \zeta_{36}^{8} \)
|
\(\beta_{10}\) | \(=\) |
\( -\zeta_{36}^{11} - \zeta_{36}^{7} + \zeta_{36} \)
|
\(\beta_{11}\) | \(=\) |
\( -\zeta_{36}^{10} - \zeta_{36}^{8} + \zeta_{36}^{2} \)
|
\(\zeta_{36}\) | \(=\) |
\( ( \beta_{10} + \beta_{8} + 2\beta_{4} ) / 3 \)
|
\(\zeta_{36}^{2}\) | \(=\) |
\( ( \beta_{11} + \beta_{9} + 2\beta_{3} ) / 3 \)
|
\(\zeta_{36}^{3}\) | \(=\) |
\( ( \beta_{5} + \beta_{2} ) / 3 \)
|
\(\zeta_{36}^{4}\) | \(=\) |
\( ( -2\beta_{11} + \beta_{9} + 3\beta_{6} - \beta_{3} ) / 3 \)
|
\(\zeta_{36}^{5}\) | \(=\) |
\( ( -2\beta_{10} + \beta_{8} + 3\beta_{7} - \beta_{4} ) / 3 \)
|
\(\zeta_{36}^{6}\) | \(=\) |
\( \beta_1 \)
|
\(\zeta_{36}^{7}\) | \(=\) |
\( ( -\beta_{10} + 2\beta_{8} + \beta_{4} ) / 3 \)
|
\(\zeta_{36}^{8}\) | \(=\) |
\( ( -\beta_{11} + 2\beta_{9} + \beta_{3} ) / 3 \)
|
\(\zeta_{36}^{9}\) | \(=\) |
\( ( -\beta_{5} + 2\beta_{2} ) / 3 \)
|
\(\zeta_{36}^{10}\) | \(=\) |
\( ( -\beta_{11} - \beta_{9} + \beta_{3} ) / 3 \)
|
\(\zeta_{36}^{11}\) | \(=\) |
\( ( -\beta_{10} - \beta_{8} + \beta_{4} ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(-1 + \beta_{1}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
244.1 |
|
−0.984808 | − | 1.70574i | 0 | −0.939693 | + | 1.62760i | 1.85083 | − | 3.20574i | 0 | 1.17365 | + | 2.03282i | −0.237565 | 0 | −7.29086 | ||||||||||||||||||||||||||||||||||||||||||||||
244.2 | −0.642788 | − | 1.11334i | 0 | 0.173648 | − | 0.300767i | −0.223238 | + | 0.386659i | 0 | 1.76604 | + | 3.05888i | −3.01763 | 0 | 0.573978 | |||||||||||||||||||||||||||||||||||||||||||||||
244.3 | −0.342020 | − | 0.592396i | 0 | 0.766044 | − | 1.32683i | −0.524005 | + | 0.907604i | 0 | 0.0603074 | + | 0.104455i | −2.41609 | 0 | 0.716881 | |||||||||||||||||||||||||||||||||||||||||||||||
244.4 | 0.342020 | + | 0.592396i | 0 | 0.766044 | − | 1.32683i | 0.524005 | − | 0.907604i | 0 | 0.0603074 | + | 0.104455i | 2.41609 | 0 | 0.716881 | |||||||||||||||||||||||||||||||||||||||||||||||
244.5 | 0.642788 | + | 1.11334i | 0 | 0.173648 | − | 0.300767i | 0.223238 | − | 0.386659i | 0 | 1.76604 | + | 3.05888i | 3.01763 | 0 | 0.573978 | |||||||||||||||||||||||||||||||||||||||||||||||
244.6 | 0.984808 | + | 1.70574i | 0 | −0.939693 | + | 1.62760i | −1.85083 | + | 3.20574i | 0 | 1.17365 | + | 2.03282i | 0.237565 | 0 | −7.29086 | |||||||||||||||||||||||||||||||||||||||||||||||
487.1 | −0.984808 | + | 1.70574i | 0 | −0.939693 | − | 1.62760i | 1.85083 | + | 3.20574i | 0 | 1.17365 | − | 2.03282i | −0.237565 | 0 | −7.29086 | |||||||||||||||||||||||||||||||||||||||||||||||
487.2 | −0.642788 | + | 1.11334i | 0 | 0.173648 | + | 0.300767i | −0.223238 | − | 0.386659i | 0 | 1.76604 | − | 3.05888i | −3.01763 | 0 | 0.573978 | |||||||||||||||||||||||||||||||||||||||||||||||
487.3 | −0.342020 | + | 0.592396i | 0 | 0.766044 | + | 1.32683i | −0.524005 | − | 0.907604i | 0 | 0.0603074 | − | 0.104455i | −2.41609 | 0 | 0.716881 | |||||||||||||||||||||||||||||||||||||||||||||||
487.4 | 0.342020 | − | 0.592396i | 0 | 0.766044 | + | 1.32683i | 0.524005 | + | 0.907604i | 0 | 0.0603074 | − | 0.104455i | 2.41609 | 0 | 0.716881 | |||||||||||||||||||||||||||||||||||||||||||||||
487.5 | 0.642788 | − | 1.11334i | 0 | 0.173648 | + | 0.300767i | 0.223238 | + | 0.386659i | 0 | 1.76604 | − | 3.05888i | 3.01763 | 0 | 0.573978 | |||||||||||||||||||||||||||||||||||||||||||||||
487.6 | 0.984808 | − | 1.70574i | 0 | −0.939693 | − | 1.62760i | −1.85083 | − | 3.20574i | 0 | 1.17365 | − | 2.03282i | 0.237565 | 0 | −7.29086 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 729.2.c.c | 12 | |
3.b | odd | 2 | 1 | inner | 729.2.c.c | 12 | |
9.c | even | 3 | 1 | 729.2.a.c | ✓ | 6 | |
9.c | even | 3 | 1 | inner | 729.2.c.c | 12 | |
9.d | odd | 6 | 1 | 729.2.a.c | ✓ | 6 | |
9.d | odd | 6 | 1 | inner | 729.2.c.c | 12 | |
27.e | even | 9 | 2 | 729.2.e.m | 12 | ||
27.e | even | 9 | 2 | 729.2.e.q | 12 | ||
27.e | even | 9 | 2 | 729.2.e.r | 12 | ||
27.f | odd | 18 | 2 | 729.2.e.m | 12 | ||
27.f | odd | 18 | 2 | 729.2.e.q | 12 | ||
27.f | odd | 18 | 2 | 729.2.e.r | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
729.2.a.c | ✓ | 6 | 9.c | even | 3 | 1 | |
729.2.a.c | ✓ | 6 | 9.d | odd | 6 | 1 | |
729.2.c.c | 12 | 1.a | even | 1 | 1 | trivial | |
729.2.c.c | 12 | 3.b | odd | 2 | 1 | inner | |
729.2.c.c | 12 | 9.c | even | 3 | 1 | inner | |
729.2.c.c | 12 | 9.d | odd | 6 | 1 | inner | |
729.2.e.m | 12 | 27.e | even | 9 | 2 | ||
729.2.e.m | 12 | 27.f | odd | 18 | 2 | ||
729.2.e.q | 12 | 27.e | even | 9 | 2 | ||
729.2.e.q | 12 | 27.f | odd | 18 | 2 | ||
729.2.e.r | 12 | 27.e | even | 9 | 2 | ||
729.2.e.r | 12 | 27.f | odd | 18 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 6T_{2}^{10} + 27T_{2}^{8} + 48T_{2}^{6} + 63T_{2}^{4} + 27T_{2}^{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(729, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 6 T^{10} + 27 T^{8} + 48 T^{6} + \cdots + 9 \)
$3$
\( T^{12} \)
$5$
\( T^{12} + 15 T^{10} + 207 T^{8} + 264 T^{6} + \cdots + 9 \)
$7$
\( (T^{6} - 6 T^{5} + 27 T^{4} - 52 T^{3} + \cdots + 1)^{2} \)
$11$
\( T^{12} + 42 T^{10} + 1359 T^{8} + \cdots + 1172889 \)
$13$
\( (T^{6} - 6 T^{5} + 45 T^{4} - 88 T^{3} + \cdots + 5041)^{2} \)
$17$
\( (T^{6} - 81 T^{4} + 1755 T^{2} + \cdots - 9747)^{2} \)
$19$
\( (T^{3} + 12 T^{2} + 39 T + 19)^{4} \)
$23$
\( T^{12} + 114 T^{10} + 9747 T^{8} + \cdots + 751689 \)
$29$
\( T^{12} + 51 T^{10} + 1791 T^{8} + \cdots + 16867449 \)
$31$
\( (T^{6} - 15 T^{5} + 162 T^{4} - 799 T^{3} + \cdots + 5329)^{2} \)
$37$
\( (T^{3} + 3 T^{2} - 6 T - 17)^{4} \)
$41$
\( T^{12} + 87 T^{10} + 5715 T^{8} + \cdots + 71014329 \)
$43$
\( (T^{6} - 6 T^{5} + 36 T^{4} - 16 T^{3} + \cdots + 64)^{2} \)
$47$
\( T^{12} + 15 T^{10} + 171 T^{8} + 804 T^{6} + \cdots + 9 \)
$53$
\( (T^{6} - 108 T^{4} + 2592 T^{2} + \cdots - 15552)^{2} \)
$59$
\( T^{12} + 186 T^{10} + 33039 T^{8} + \cdots + 9 \)
$61$
\( (T^{6} - 6 T^{5} + 108 T^{4} - 160 T^{3} + \cdots + 87616)^{2} \)
$67$
\( (T^{6} + 3 T^{5} + 153 T^{4} - 934 T^{3} + \cdots + 63001)^{2} \)
$71$
\( (T^{6} - 72 T^{4} + 1296 T^{2} + \cdots - 1728)^{2} \)
$73$
\( (T^{3} - 6 T^{2} - 69 T - 89)^{4} \)
$79$
\( (T^{6} - 24 T^{5} + 441 T^{4} + \cdots + 11449)^{2} \)
$83$
\( T^{12} + 438 T^{10} + \cdots + 2405238079689 \)
$89$
\( (T^{6} - 387 T^{4} + 16146 T^{2} + \cdots - 7803)^{2} \)
$97$
\( (T^{6} - 6 T^{5} + 135 T^{4} + \cdots + 418609)^{2} \)
show more
show less