Properties

Label 729.2.c
Level $729$
Weight $2$
Character orbit 729.c
Rep. character $\chi_{729}(244,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $60$
Newform subspaces $5$
Sturm bound $162$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(162\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(729, [\chi])\).

Total New Old
Modular forms 198 84 114
Cusp forms 126 60 66
Eisenstein series 72 24 48

Trace form

\( 60 q - 24 q^{4} + O(q^{10}) \) \( 60 q - 24 q^{4} + 12 q^{10} - 12 q^{16} + 12 q^{19} - 12 q^{22} - 6 q^{25} - 24 q^{28} + 12 q^{37} - 12 q^{40} + 12 q^{46} + 6 q^{49} - 24 q^{52} - 24 q^{55} + 24 q^{58} - 18 q^{61} - 12 q^{64} - 18 q^{67} - 30 q^{70} + 48 q^{73} - 12 q^{76} - 132 q^{82} + 54 q^{85} - 24 q^{88} + 48 q^{91} - 12 q^{94} + 54 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(729, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
729.2.c.a 729.c 9.c $12$ $5.821$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 729.2.a.b \(-3\) \(0\) \(3\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{2}-\beta _{3}-\beta _{6})q^{2}+(-1+\cdots)q^{4}+\cdots\)
729.2.c.b 729.c 9.c $12$ $5.821$ 12.0.\(\cdots\).1 None 27.2.e.a \(-3\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{6}+\beta _{8}-\beta _{10})q^{2}+(-1+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
729.2.c.c 729.c 9.c $12$ $5.821$ \(\Q(\zeta_{36})\) None 729.2.a.c \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\zeta_{36}^{7}-\zeta_{36}^{8}+\zeta_{36}^{10})q^{2}-\zeta_{36}^{11}q^{4}+\cdots\)
729.2.c.d 729.c 9.c $12$ $5.821$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 729.2.a.b \(3\) \(0\) \(-3\) \(-6\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{2}-\beta _{3}+\beta _{5}-\beta _{6}+\beta _{9})q^{2}+(-1+\cdots)q^{4}+\cdots\)
729.2.c.e 729.c 9.c $12$ $5.821$ 12.0.\(\cdots\).1 None 27.2.e.a \(3\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{6}-\beta _{8}+\beta _{10})q^{2}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(729, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(729, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(243, [\chi])\)\(^{\oplus 2}\)