Newspace parameters
Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 729.c (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.82109430735\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 12.0.1952986685049.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} - 258 x^{3} + 108 x^{2} - 27 x + 3 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 3^{3} \) |
Twist minimal: | no (minimal twist has level 27) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} - 258 x^{3} + 108 x^{2} - 27 x + 3 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu^{2} - \nu + 2 \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{8} - 4\nu^{7} + 16\nu^{6} - 34\nu^{5} + 62\nu^{4} - 72\nu^{3} + 64\nu^{2} - 33\nu + 8 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{10} - 5 \nu^{9} + 22 \nu^{8} - 58 \nu^{7} + 127 \nu^{6} - 199 \nu^{5} + 249 \nu^{4} - 224 \nu^{3} + 145 \nu^{2} - 58 \nu + 9 \)
|
\(\beta_{4}\) | \(=\) |
\( - 2 \nu^{10} + 10 \nu^{9} - 43 \nu^{8} + 112 \nu^{7} - 239 \nu^{6} + 367 \nu^{5} - 448 \nu^{4} + 395 \nu^{3} - 256 \nu^{2} + 104 \nu - 20 \)
|
\(\beta_{5}\) | \(=\) |
\( - 2 \nu^{10} + 10 \nu^{9} - 44 \nu^{8} + 116 \nu^{7} - 255 \nu^{6} + 401 \nu^{5} - 509 \nu^{4} + 465 \nu^{3} - 314 \nu^{2} + 132 \nu - 25 \)
|
\(\beta_{6}\) | \(=\) |
\( 11 \nu^{11} - 61 \nu^{10} + 270 \nu^{9} - 761 \nu^{8} + 1715 \nu^{7} - 2888 \nu^{6} + 3852 \nu^{5} - 3892 \nu^{4} + 2948 \nu^{3} - 1562 \nu^{2} + 500 \nu - 71 \)
|
\(\beta_{7}\) | \(=\) |
\( - 14 \nu^{11} + 78 \nu^{10} - 344 \nu^{9} + 970 \nu^{8} - 2177 \nu^{7} + 3659 \nu^{6} - 4853 \nu^{5} + 4884 \nu^{4} - 3671 \nu^{3} + 1934 \nu^{2} - 613 \nu + 85 \)
|
\(\beta_{8}\) | \(=\) |
\( - 20 \nu^{11} + 111 \nu^{10} - 490 \nu^{9} + 1379 \nu^{8} - 3097 \nu^{7} + 5198 \nu^{6} - 6900 \nu^{5} + 6936 \nu^{4} - 5222 \nu^{3} + 2750 \nu^{2} - 876 \nu + 124 \)
|
\(\beta_{9}\) | \(=\) |
\( 42 \nu^{11} - 231 \nu^{10} + 1019 \nu^{9} - 2853 \nu^{8} + 6396 \nu^{7} - 10689 \nu^{6} + 14157 \nu^{5} - 14172 \nu^{4} + 10648 \nu^{3} - 5589 \nu^{2} + 1785 \nu - 257 \)
|
\(\beta_{10}\) | \(=\) |
\( 68 \nu^{11} - 374 \nu^{10} + 1649 \nu^{9} - 4616 \nu^{8} + 10342 \nu^{7} - 17277 \nu^{6} + 22863 \nu^{5} - 22873 \nu^{4} + 17165 \nu^{3} - 9002 \nu^{2} + 2871 \nu - 412 \)
|
\(\beta_{11}\) | \(=\) |
\( - 98 \nu^{11} + 540 \nu^{10} - 2381 \nu^{9} + 6671 \nu^{8} - 14949 \nu^{7} + 24987 \nu^{6} - 33072 \nu^{5} + 33097 \nu^{4} - 24840 \nu^{3} + 13028 \nu^{2} - 4153 \nu + 595 \)
|
\(\nu\) | \(=\) |
\( ( 2\beta_{11} + 2\beta_{10} + \beta_{9} - 2\beta_{8} - 2\beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + 1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{11} + 2\beta_{10} + \beta_{9} - 2\beta_{8} - 2\beta_{6} - \beta_{5} + \beta_{4} - \beta_{3} + 3\beta _1 - 5 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( - 4 \beta_{11} - 5 \beta_{10} + \beta_{9} + 9 \beta_{8} - 3 \beta_{7} + 4 \beta_{6} + 3 \beta_{5} - 2 \beta_{4} + 2 \beta_{3} + 2 \beta_{2} + 3 \beta _1 - 5 ) / 3 \)
|
\(\nu^{4}\) | \(=\) |
\( ( - 10 \beta_{11} - 12 \beta_{10} + \beta_{9} + 20 \beta_{8} - 6 \beta_{7} + 10 \beta_{6} + 10 \beta_{5} - 8 \beta_{4} + 5 \beta_{3} + 7 \beta_{2} - 12 \beta _1 + 16 ) / 3 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 7 \beta_{11} + 14 \beta_{10} - 12 \beta_{9} - 25 \beta_{8} + 14 \beta_{7} - 6 \beta_{6} + 2 \beta_{5} - 4 \beta_{4} - 3 \beta_{3} + 2 \beta_{2} - 23 \beta _1 + 30 ) / 3 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 47 \beta_{11} + 73 \beta_{10} - 38 \beta_{9} - 126 \beta_{8} + 57 \beta_{7} - 44 \beta_{6} - 48 \beta_{5} + 34 \beta_{4} - 28 \beta_{3} - 37 \beta_{2} + 42 \beta _1 - 56 ) / 3 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 8 \beta_{11} - 6 \beta_{10} + 28 \beta_{9} + 2 \beta_{8} - 15 \beta_{7} - 14 \beta_{6} - 80 \beta_{5} + 67 \beta_{4} - 28 \beta_{3} - 65 \beta_{2} + 150 \beta _1 - 191 ) / 3 \)
|
\(\nu^{8}\) | \(=\) |
\( ( - 212 \beta_{11} - 394 \beta_{10} + 291 \beta_{9} + 644 \beta_{8} - 340 \beta_{7} + 174 \beta_{6} + 143 \beta_{5} - 91 \beta_{4} + 99 \beta_{3} + 113 \beta_{2} - 86 \beta _1 + 129 ) / 3 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 226 \beta_{11} - 359 \beta_{10} + 199 \beta_{9} + 624 \beta_{8} - 288 \beta_{7} + 214 \beta_{6} + 600 \beta_{5} - 455 \beta_{4} + 287 \beta_{3} + 488 \beta_{2} - 846 \beta _1 + 1108 ) / 3 \)
|
\(\nu^{10}\) | \(=\) |
\( ( 842 \beta_{11} + 1734 \beta_{10} - 1457 \beta_{9} - 2695 \beta_{8} + 1539 \beta_{7} - 596 \beta_{6} - 23 \beta_{5} - 44 \beta_{4} - 115 \beta_{3} - 14 \beta_{2} - 324 \beta _1 + 358 ) / 3 \)
|
\(\nu^{11}\) | \(=\) |
\( ( 1918 \beta_{11} + 3656 \beta_{10} - 2790 \beta_{9} - 5875 \beta_{8} + 3164 \beta_{7} - 1515 \beta_{6} - 3154 \beta_{5} + 2312 \beta_{4} - 1632 \beta_{3} - 2578 \beta_{2} + 4090 \beta _1 - 5451 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(-1 - \beta_{9}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
244.1 |
|
−0.840456 | − | 1.45571i | 0 | −0.412733 | + | 0.714874i | 0.564772 | − | 0.978214i | 0 | 1.95446 | + | 3.38523i | −1.97429 | 0 | −1.89866 | ||||||||||||||||||||||||||||||||||||||||||||||
244.2 | −0.527162 | − | 0.913072i | 0 | 0.444200 | − | 0.769376i | 0.872894 | − | 1.51190i | 0 | −1.22962 | − | 2.12977i | −3.04531 | 0 | −1.84063 | |||||||||||||||||||||||||||||||||||||||||||||||
244.3 | 0.207733 | + | 0.359804i | 0 | 0.913694 | − | 1.58256i | −1.10759 | + | 1.91841i | 0 | 0.659815 | + | 1.14283i | 1.59015 | 0 | −0.920335 | |||||||||||||||||||||||||||||||||||||||||||||||
244.4 | 0.400763 | + | 0.694143i | 0 | 0.678777 | − | 1.17568i | 1.37492 | − | 2.38143i | 0 | −1.18842 | − | 2.05840i | 2.69117 | 0 | 2.20407 | |||||||||||||||||||||||||||||||||||||||||||||||
244.5 | 1.05831 | + | 1.83305i | 0 | −1.24005 | + | 2.14782i | 1.34155 | − | 2.32363i | 0 | −0.486166 | − | 0.842065i | −1.01617 | 0 | 5.67911 | |||||||||||||||||||||||||||||||||||||||||||||||
244.6 | 1.20081 | + | 2.07986i | 0 | −1.88389 | + | 3.26300i | −0.0465417 | + | 0.0806126i | 0 | 0.289931 | + | 0.502175i | −4.24555 | 0 | −0.223551 | |||||||||||||||||||||||||||||||||||||||||||||||
487.1 | −0.840456 | + | 1.45571i | 0 | −0.412733 | − | 0.714874i | 0.564772 | + | 0.978214i | 0 | 1.95446 | − | 3.38523i | −1.97429 | 0 | −1.89866 | |||||||||||||||||||||||||||||||||||||||||||||||
487.2 | −0.527162 | + | 0.913072i | 0 | 0.444200 | + | 0.769376i | 0.872894 | + | 1.51190i | 0 | −1.22962 | + | 2.12977i | −3.04531 | 0 | −1.84063 | |||||||||||||||||||||||||||||||||||||||||||||||
487.3 | 0.207733 | − | 0.359804i | 0 | 0.913694 | + | 1.58256i | −1.10759 | − | 1.91841i | 0 | 0.659815 | − | 1.14283i | 1.59015 | 0 | −0.920335 | |||||||||||||||||||||||||||||||||||||||||||||||
487.4 | 0.400763 | − | 0.694143i | 0 | 0.678777 | + | 1.17568i | 1.37492 | + | 2.38143i | 0 | −1.18842 | + | 2.05840i | 2.69117 | 0 | 2.20407 | |||||||||||||||||||||||||||||||||||||||||||||||
487.5 | 1.05831 | − | 1.83305i | 0 | −1.24005 | − | 2.14782i | 1.34155 | + | 2.32363i | 0 | −0.486166 | + | 0.842065i | −1.01617 | 0 | 5.67911 | |||||||||||||||||||||||||||||||||||||||||||||||
487.6 | 1.20081 | − | 2.07986i | 0 | −1.88389 | − | 3.26300i | −0.0465417 | − | 0.0806126i | 0 | 0.289931 | − | 0.502175i | −4.24555 | 0 | −0.223551 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 729.2.c.e | 12 | |
3.b | odd | 2 | 1 | 729.2.c.b | 12 | ||
9.c | even | 3 | 1 | 729.2.a.a | 6 | ||
9.c | even | 3 | 1 | inner | 729.2.c.e | 12 | |
9.d | odd | 6 | 1 | 729.2.a.d | 6 | ||
9.d | odd | 6 | 1 | 729.2.c.b | 12 | ||
27.e | even | 9 | 2 | 27.2.e.a | ✓ | 12 | |
27.e | even | 9 | 2 | 243.2.e.c | 12 | ||
27.e | even | 9 | 2 | 243.2.e.d | 12 | ||
27.f | odd | 18 | 2 | 81.2.e.a | 12 | ||
27.f | odd | 18 | 2 | 243.2.e.a | 12 | ||
27.f | odd | 18 | 2 | 243.2.e.b | 12 | ||
108.j | odd | 18 | 2 | 432.2.u.c | 12 | ||
135.p | even | 18 | 2 | 675.2.l.c | 12 | ||
135.r | odd | 36 | 4 | 675.2.u.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.2.e.a | ✓ | 12 | 27.e | even | 9 | 2 | |
81.2.e.a | 12 | 27.f | odd | 18 | 2 | ||
243.2.e.a | 12 | 27.f | odd | 18 | 2 | ||
243.2.e.b | 12 | 27.f | odd | 18 | 2 | ||
243.2.e.c | 12 | 27.e | even | 9 | 2 | ||
243.2.e.d | 12 | 27.e | even | 9 | 2 | ||
432.2.u.c | 12 | 108.j | odd | 18 | 2 | ||
675.2.l.c | 12 | 135.p | even | 18 | 2 | ||
675.2.u.b | 24 | 135.r | odd | 36 | 4 | ||
729.2.a.a | 6 | 9.c | even | 3 | 1 | ||
729.2.a.d | 6 | 9.d | odd | 6 | 1 | ||
729.2.c.b | 12 | 3.b | odd | 2 | 1 | ||
729.2.c.b | 12 | 9.d | odd | 6 | 1 | ||
729.2.c.e | 12 | 1.a | even | 1 | 1 | trivial | |
729.2.c.e | 12 | 9.c | even | 3 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} - 3 T_{2}^{11} + 12 T_{2}^{10} - 15 T_{2}^{9} + 45 T_{2}^{8} - 45 T_{2}^{7} + 123 T_{2}^{6} - 63 T_{2}^{5} + 117 T_{2}^{4} - 72 T_{2}^{3} + 81 T_{2}^{2} - 27 T_{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(729, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} - 3 T^{11} + 12 T^{10} - 15 T^{9} + \cdots + 9 \)
$3$
\( T^{12} \)
$5$
\( T^{12} - 6 T^{11} + 30 T^{10} - 84 T^{9} + \cdots + 9 \)
$7$
\( T^{12} + 15 T^{10} + 22 T^{9} + \cdots + 289 \)
$11$
\( T^{12} - 12 T^{11} + 93 T^{10} - 420 T^{9} + \cdots + 9 \)
$13$
\( T^{12} + 24 T^{10} + 4 T^{9} + 486 T^{8} + \cdots + 1 \)
$17$
\( (T^{6} + 9 T^{5} + 9 T^{4} - 54 T^{3} + \cdots + 27)^{2} \)
$19$
\( (T^{6} - 3 T^{5} - 30 T^{4} + 38 T^{3} + \cdots + 19)^{2} \)
$23$
\( T^{12} - 15 T^{11} + 165 T^{10} + \cdots + 106929 \)
$29$
\( T^{12} - 12 T^{11} + 147 T^{10} + \cdots + 45369 \)
$31$
\( T^{12} + 51 T^{10} + 382 T^{9} + \cdots + 26569 \)
$37$
\( (T^{6} - 3 T^{5} - 57 T^{4} + 254 T^{3} + \cdots + 4933)^{2} \)
$41$
\( T^{12} - 15 T^{11} + 219 T^{10} + \cdots + 11229201 \)
$43$
\( T^{12} + 96 T^{10} + 346 T^{9} + \cdots + 3308761 \)
$47$
\( T^{12} - 21 T^{11} + 336 T^{10} + \cdots + 42732369 \)
$53$
\( (T^{6} + 9 T^{5} - 108 T^{4} - 513 T^{3} + \cdots - 12393)^{2} \)
$59$
\( T^{12} - 24 T^{11} + \cdots + 176384961 \)
$61$
\( T^{12} - 9 T^{11} + 240 T^{10} + \cdots + 273670849 \)
$67$
\( T^{12} - 9 T^{11} + 195 T^{10} + \cdots + 8288641 \)
$71$
\( (T^{6} + 27 T^{5} + 225 T^{4} + 486 T^{3} + \cdots + 27)^{2} \)
$73$
\( (T^{6} + 6 T^{5} - 174 T^{4} - 250 T^{3} + \cdots - 431)^{2} \)
$79$
\( T^{12} + 177 T^{10} - 140 T^{9} + \cdots + 3508129 \)
$83$
\( T^{12} - 12 T^{11} + \cdots + 6951057129 \)
$89$
\( (T^{6} + 9 T^{5} - 180 T^{4} - 1026 T^{3} + \cdots + 32589)^{2} \)
$97$
\( T^{12} + 204 T^{10} + \cdots + 66765241 \)
show more
show less