Newspace parameters
Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 729.c (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.82109430735\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} + 18x^{10} + 105x^{8} + 266x^{6} + 306x^{4} + 132x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 3^{3} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} + 18x^{10} + 105x^{8} + 266x^{6} + 306x^{4} + 132x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{8} + 15\nu^{6} + 58\nu^{4} + 63\nu^{2} + 8 ) / 4 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{11} + 16\nu^{9} + \nu^{8} + 70\nu^{7} + 15\nu^{6} + 76\nu^{5} + 58\nu^{4} - 95\nu^{3} + 63\nu^{2} - 149\nu + 8 ) / 8 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{11} - 2 \nu^{10} + 19 \nu^{9} - 34 \nu^{8} + 119 \nu^{7} - 175 \nu^{6} + 310 \nu^{5} - 343 \nu^{4} + 322 \nu^{3} - 222 \nu^{2} + 95 \nu + 3 ) / 8 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 2\nu^{10} + 33\nu^{8} + 160\nu^{6} + 285\nu^{4} + 163\nu^{2} + 1 ) / 4 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -2\nu^{10} - 34\nu^{8} - 175\nu^{6} - 343\nu^{4} - 222\nu^{2} + 3 ) / 4 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - \nu^{11} - 5 \nu^{10} - 16 \nu^{9} - 83 \nu^{8} - 73 \nu^{7} - 409 \nu^{6} - 121 \nu^{5} - 760 \nu^{4} - 79 \nu^{3} - 474 \nu^{2} - 28 \nu - 5 ) / 8 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 6 \nu^{10} + 3 \nu^{9} - 99 \nu^{8} + 49 \nu^{7} - 482 \nu^{6} + 234 \nu^{5} - 881 \nu^{4} + 417 \nu^{3} - 549 \nu^{2} + 256 \nu - 17 ) / 8 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 3\nu^{11} + 50\nu^{9} + 249\nu^{7} + 477\nu^{5} + 335\nu^{3} + 42\nu - 2 ) / 4 \)
|
\(\beta_{9}\) | \(=\) |
\( ( -5\nu^{10} - 83\nu^{8} - 409\nu^{6} - 760\nu^{4} - 474\nu^{2} - 5 ) / 4 \)
|
\(\beta_{10}\) | \(=\) |
\( ( -6\nu^{10} - 99\nu^{8} - 482\nu^{6} - 881\nu^{4} - 549\nu^{2} - 13 ) / 4 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 16 \nu^{11} + 2 \nu^{10} + 265 \nu^{9} + 33 \nu^{8} + 1301 \nu^{7} + 160 \nu^{6} + 2416 \nu^{5} + 285 \nu^{4} + 1555 \nu^{3} + 163 \nu^{2} + 86 \nu + 5 ) / 8 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{10} + 2\beta_{7} + \beta_{5} - 2\beta_{3} + 2\beta_{2} - \beta _1 + 1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{5} + \beta_{4} + \beta _1 - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 6 \beta_{11} + 4 \beta_{10} + 4 \beta_{9} - 18 \beta_{8} - 8 \beta_{7} - 8 \beta_{6} - 7 \beta_{5} - 3 \beta_{4} + 14 \beta_{3} - 10 \beta_{2} + 5 \beta _1 - 16 ) / 3 \)
|
\(\nu^{4}\) | \(=\) |
\( -3\beta_{10} + 4\beta_{9} - 10\beta_{5} - 9\beta_{4} - 8\beta _1 + 21 \)
|
\(\nu^{5}\) | \(=\) |
\( ( - 76 \beta_{11} - 27 \beta_{10} - 38 \beta_{9} + 222 \beta_{8} + 54 \beta_{7} + 76 \beta_{6} + 61 \beta_{5} + 38 \beta_{4} - 122 \beta_{3} + 82 \beta_{2} - 41 \beta _1 + 176 ) / 3 \)
|
\(\nu^{6}\) | \(=\) |
\( 37\beta_{10} - 52\beta_{9} + 100\beta_{5} + 81\beta_{4} + 74\beta _1 - 188 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 792 \beta_{11} + 232 \beta_{10} + 342 \beta_{9} - 2286 \beta_{8} - 464 \beta_{7} - 684 \beta_{6} - 568 \beta_{5} - 396 \beta_{4} + 1136 \beta_{3} - 776 \beta_{2} + 388 \beta _1 - 1771 ) / 3 \)
|
\(\nu^{8}\) | \(=\) |
\( -381\beta_{10} + 548\beta_{9} - 983\beta_{5} - 756\beta_{4} - 705\beta _1 + 1783 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 7842 \beta_{11} - 2158 \beta_{10} - 3178 \beta_{9} + 22524 \beta_{8} + 4316 \beta_{7} + 6356 \beta_{6} + 5407 \beta_{5} + 3921 \beta_{4} - 10814 \beta_{3} + 7498 \beta_{2} - 3749 \beta _1 + 17341 ) / 3 \)
|
\(\nu^{10}\) | \(=\) |
\( 3754\beta_{10} - 5452\beta_{9} + 9563\beta_{5} + 7197\beta_{4} + 6771\beta _1 - 17128 \)
|
\(\nu^{11}\) | \(=\) |
\( ( 76378 \beta_{11} + 20571 \beta_{10} + 30176 \beta_{9} - 218946 \beta_{8} - 41142 \beta_{7} - 60352 \beta_{6} - 51904 \beta_{5} - 38189 \beta_{4} + 103808 \beta_{3} - 72508 \beta_{2} + \cdots - 168233 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(-1 - \beta_{8}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
244.1 |
|
−1.22889 | − | 2.12851i | 0 | −2.02036 | + | 3.49937i | −1.54013 | + | 2.66759i | 0 | 1.32933 | + | 2.30247i | 5.01568 | 0 | 7.57064 | ||||||||||||||||||||||||||||||||||||||||||||||
244.2 | −0.388866 | − | 0.673536i | 0 | 0.697566 | − | 1.20822i | −1.18817 | + | 2.05798i | 0 | 1.25069 | + | 2.16626i | −2.64050 | 0 | 1.84816 | |||||||||||||||||||||||||||||||||||||||||||||||
244.3 | −0.0864880 | − | 0.149802i | 0 | 0.985040 | − | 1.70614i | 1.86828 | − | 3.23596i | 0 | −1.51575 | − | 2.62535i | −0.686728 | 0 | −0.646335 | |||||||||||||||||||||||||||||||||||||||||||||||
244.4 | 0.789202 | + | 1.36694i | 0 | −0.245680 | + | 0.425530i | −0.839254 | + | 1.45363i | 0 | −1.38964 | − | 2.40693i | 2.38124 | 0 | −2.64936 | |||||||||||||||||||||||||||||||||||||||||||||||
244.5 | 1.06251 | + | 1.84033i | 0 | −1.25787 | + | 2.17870i | 1.03547 | − | 1.79349i | 0 | −2.42434 | − | 4.19907i | −1.09598 | 0 | 4.40081 | |||||||||||||||||||||||||||||||||||||||||||||||
244.6 | 1.35253 | + | 2.34265i | 0 | −2.65869 | + | 4.60498i | −0.836192 | + | 1.44833i | 0 | −0.250296 | − | 0.433525i | −8.97372 | 0 | −4.52391 | |||||||||||||||||||||||||||||||||||||||||||||||
487.1 | −1.22889 | + | 2.12851i | 0 | −2.02036 | − | 3.49937i | −1.54013 | − | 2.66759i | 0 | 1.32933 | − | 2.30247i | 5.01568 | 0 | 7.57064 | |||||||||||||||||||||||||||||||||||||||||||||||
487.2 | −0.388866 | + | 0.673536i | 0 | 0.697566 | + | 1.20822i | −1.18817 | − | 2.05798i | 0 | 1.25069 | − | 2.16626i | −2.64050 | 0 | 1.84816 | |||||||||||||||||||||||||||||||||||||||||||||||
487.3 | −0.0864880 | + | 0.149802i | 0 | 0.985040 | + | 1.70614i | 1.86828 | + | 3.23596i | 0 | −1.51575 | + | 2.62535i | −0.686728 | 0 | −0.646335 | |||||||||||||||||||||||||||||||||||||||||||||||
487.4 | 0.789202 | − | 1.36694i | 0 | −0.245680 | − | 0.425530i | −0.839254 | − | 1.45363i | 0 | −1.38964 | + | 2.40693i | 2.38124 | 0 | −2.64936 | |||||||||||||||||||||||||||||||||||||||||||||||
487.5 | 1.06251 | − | 1.84033i | 0 | −1.25787 | − | 2.17870i | 1.03547 | + | 1.79349i | 0 | −2.42434 | + | 4.19907i | −1.09598 | 0 | 4.40081 | |||||||||||||||||||||||||||||||||||||||||||||||
487.6 | 1.35253 | − | 2.34265i | 0 | −2.65869 | − | 4.60498i | −0.836192 | − | 1.44833i | 0 | −0.250296 | + | 0.433525i | −8.97372 | 0 | −4.52391 | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 729.2.c.d | 12 | |
3.b | odd | 2 | 1 | 729.2.c.a | 12 | ||
9.c | even | 3 | 1 | 729.2.a.b | ✓ | 6 | |
9.c | even | 3 | 1 | inner | 729.2.c.d | 12 | |
9.d | odd | 6 | 1 | 729.2.a.e | yes | 6 | |
9.d | odd | 6 | 1 | 729.2.c.a | 12 | ||
27.e | even | 9 | 2 | 729.2.e.j | 12 | ||
27.e | even | 9 | 2 | 729.2.e.s | 12 | ||
27.e | even | 9 | 2 | 729.2.e.t | 12 | ||
27.f | odd | 18 | 2 | 729.2.e.k | 12 | ||
27.f | odd | 18 | 2 | 729.2.e.l | 12 | ||
27.f | odd | 18 | 2 | 729.2.e.u | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
729.2.a.b | ✓ | 6 | 9.c | even | 3 | 1 | |
729.2.a.e | yes | 6 | 9.d | odd | 6 | 1 | |
729.2.c.a | 12 | 3.b | odd | 2 | 1 | ||
729.2.c.a | 12 | 9.d | odd | 6 | 1 | ||
729.2.c.d | 12 | 1.a | even | 1 | 1 | trivial | |
729.2.c.d | 12 | 9.c | even | 3 | 1 | inner | |
729.2.e.j | 12 | 27.e | even | 9 | 2 | ||
729.2.e.k | 12 | 27.f | odd | 18 | 2 | ||
729.2.e.l | 12 | 27.f | odd | 18 | 2 | ||
729.2.e.s | 12 | 27.e | even | 9 | 2 | ||
729.2.e.t | 12 | 27.e | even | 9 | 2 | ||
729.2.e.u | 12 | 27.f | odd | 18 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} - 3 T_{2}^{11} + 15 T_{2}^{10} - 24 T_{2}^{9} + 99 T_{2}^{8} - 144 T_{2}^{7} + 381 T_{2}^{6} - 207 T_{2}^{5} + 360 T_{2}^{4} + 126 T_{2}^{3} + 324 T_{2}^{2} + 54 T_{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(729, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} - 3 T^{11} + 15 T^{10} - 24 T^{9} + \cdots + 9 \)
$3$
\( T^{12} \)
$5$
\( T^{12} + 3 T^{11} + 24 T^{10} + \cdots + 25281 \)
$7$
\( T^{12} + 6 T^{11} + 45 T^{10} + \cdots + 18496 \)
$11$
\( T^{12} + 6 T^{11} + 51 T^{10} + \cdots + 788544 \)
$13$
\( T^{12} + 6 T^{11} + 54 T^{10} + \cdots + 7921 \)
$17$
\( (T^{6} - 9 T^{5} + 135 T^{3} - 108 T^{2} + \cdots + 459)^{2} \)
$19$
\( (T^{6} - 12 T^{5} + 15 T^{4} + 155 T^{3} + \cdots - 296)^{2} \)
$23$
\( T^{12} + 12 T^{11} + 123 T^{10} + \cdots + 207936 \)
$29$
\( T^{12} - 21 T^{11} + 330 T^{10} + \cdots + 97594641 \)
$31$
\( T^{12} + 15 T^{11} + 180 T^{10} + \cdots + 1032256 \)
$37$
\( (T^{6} - 3 T^{5} - 129 T^{4} + 461 T^{3} + \cdots - 16109)^{2} \)
$41$
\( T^{12} + 12 T^{11} + \cdots + 534025881 \)
$43$
\( T^{12} + 6 T^{11} + 144 T^{10} + \cdots + 300814336 \)
$47$
\( T^{12} + 15 T^{11} + \cdots + 314565696 \)
$53$
\( (T^{6} - 9 T^{5} - 81 T^{4} + 729 T^{3} + \cdots + 1944)^{2} \)
$59$
\( T^{12} - 6 T^{11} + 141 T^{10} + \cdots + 166464 \)
$61$
\( T^{12} + 24 T^{11} + 459 T^{10} + \cdots + 2483776 \)
$67$
\( T^{12} + 15 T^{11} + \cdots + 298874944 \)
$71$
\( (T^{6} - 180 T^{4} + 864 T^{3} + \cdots + 29376)^{2} \)
$73$
\( (T^{6} - 12 T^{5} - 156 T^{4} + \cdots + 57601)^{2} \)
$79$
\( T^{12} + 24 T^{11} + \cdots + 8681766976 \)
$83$
\( T^{12} + 6 T^{11} + 123 T^{10} + \cdots + 18870336 \)
$89$
\( (T^{6} - 9 T^{5} - 225 T^{4} + \cdots - 123957)^{2} \)
$97$
\( T^{12} - 21 T^{11} + \cdots + 333099001 \)
show more
show less