Defining parameters
Level: | \( N \) | = | \( 729 = 3^{6} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 37 \) | ||
Sturm bound: | \(78732\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(729))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20331 | 15876 | 4455 |
Cusp forms | 19036 | 15228 | 3808 |
Eisenstein series | 1295 | 648 | 647 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(729))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
729.2.a | \(\chi_{729}(1, \cdot)\) | 729.2.a.a | 6 | 1 |
729.2.a.b | 6 | |||
729.2.a.c | 6 | |||
729.2.a.d | 6 | |||
729.2.a.e | 6 | |||
729.2.c | \(\chi_{729}(244, \cdot)\) | 729.2.c.a | 12 | 2 |
729.2.c.b | 12 | |||
729.2.c.c | 12 | |||
729.2.c.d | 12 | |||
729.2.c.e | 12 | |||
729.2.e | \(\chi_{729}(82, \cdot)\) | 729.2.e.a | 6 | 6 |
729.2.e.b | 6 | |||
729.2.e.c | 6 | |||
729.2.e.d | 6 | |||
729.2.e.e | 6 | |||
729.2.e.f | 6 | |||
729.2.e.g | 6 | |||
729.2.e.h | 6 | |||
729.2.e.i | 6 | |||
729.2.e.j | 12 | |||
729.2.e.k | 12 | |||
729.2.e.l | 12 | |||
729.2.e.m | 12 | |||
729.2.e.n | 12 | |||
729.2.e.o | 12 | |||
729.2.e.p | 12 | |||
729.2.e.q | 12 | |||
729.2.e.r | 12 | |||
729.2.e.s | 12 | |||
729.2.e.t | 12 | |||
729.2.e.u | 12 | |||
729.2.g | \(\chi_{729}(28, \cdot)\) | 729.2.g.a | 144 | 18 |
729.2.g.b | 144 | |||
729.2.g.c | 144 | |||
729.2.g.d | 144 | |||
729.2.i | \(\chi_{729}(10, \cdot)\) | 729.2.i.a | 1404 | 54 |
729.2.k | \(\chi_{729}(4, \cdot)\) | 729.2.k.a | 12960 | 162 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(729))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(729)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(243))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(729))\)\(^{\oplus 1}\)