Newspace parameters
Level: | \( N \) | \(=\) | \( 729 = 3^{6} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 729.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(5.82109430735\) |
Analytic rank: | \(1\) |
Dimension: | \(6\) |
Coefficient field: | \(\Q(\zeta_{36})^+\) |
Defining polynomial: |
\( x^{6} - 6x^{4} + 9x^{2} - 3 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of \(\nu = \zeta_{36} + \zeta_{36}^{-1}\):
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - 2 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{3} - 3\nu \)
|
\(\beta_{4}\) | \(=\) |
\( \nu^{4} - 5\nu^{2} + 4 \)
|
\(\beta_{5}\) | \(=\) |
\( \nu^{5} - 5\nu^{3} + 4\nu \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{3} + 3\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{4} + 5\beta_{2} + 6 \)
|
\(\nu^{5}\) | \(=\) |
\( \beta_{5} + 5\beta_{3} + 11\beta_1 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−1.96962 | 0 | 1.87939 | 3.70167 | 0 | −2.34730 | 0.237565 | 0 | −7.29086 | ||||||||||||||||||||||||||||||||||||
1.2 | −1.28558 | 0 | −0.347296 | −0.446476 | 0 | −3.53209 | 3.01763 | 0 | 0.573978 | |||||||||||||||||||||||||||||||||||||
1.3 | −0.684040 | 0 | −1.53209 | −1.04801 | 0 | −0.120615 | 2.41609 | 0 | 0.716881 | |||||||||||||||||||||||||||||||||||||
1.4 | 0.684040 | 0 | −1.53209 | 1.04801 | 0 | −0.120615 | −2.41609 | 0 | 0.716881 | |||||||||||||||||||||||||||||||||||||
1.5 | 1.28558 | 0 | −0.347296 | 0.446476 | 0 | −3.53209 | −3.01763 | 0 | 0.573978 | |||||||||||||||||||||||||||||||||||||
1.6 | 1.96962 | 0 | 1.87939 | −3.70167 | 0 | −2.34730 | −0.237565 | 0 | −7.29086 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(3\) | \(1\) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 729.2.a.c | ✓ | 6 |
3.b | odd | 2 | 1 | inner | 729.2.a.c | ✓ | 6 |
9.c | even | 3 | 2 | 729.2.c.c | 12 | ||
9.d | odd | 6 | 2 | 729.2.c.c | 12 | ||
27.e | even | 9 | 2 | 729.2.e.m | 12 | ||
27.e | even | 9 | 2 | 729.2.e.q | 12 | ||
27.e | even | 9 | 2 | 729.2.e.r | 12 | ||
27.f | odd | 18 | 2 | 729.2.e.m | 12 | ||
27.f | odd | 18 | 2 | 729.2.e.q | 12 | ||
27.f | odd | 18 | 2 | 729.2.e.r | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
729.2.a.c | ✓ | 6 | 1.a | even | 1 | 1 | trivial |
729.2.a.c | ✓ | 6 | 3.b | odd | 2 | 1 | inner |
729.2.c.c | 12 | 9.c | even | 3 | 2 | ||
729.2.c.c | 12 | 9.d | odd | 6 | 2 | ||
729.2.e.m | 12 | 27.e | even | 9 | 2 | ||
729.2.e.m | 12 | 27.f | odd | 18 | 2 | ||
729.2.e.q | 12 | 27.e | even | 9 | 2 | ||
729.2.e.q | 12 | 27.f | odd | 18 | 2 | ||
729.2.e.r | 12 | 27.e | even | 9 | 2 | ||
729.2.e.r | 12 | 27.f | odd | 18 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} - 6T_{2}^{4} + 9T_{2}^{2} - 3 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(729))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} - 6 T^{4} + 9 T^{2} - 3 \)
$3$
\( T^{6} \)
$5$
\( T^{6} - 15 T^{4} + 18 T^{2} - 3 \)
$7$
\( (T^{3} + 6 T^{2} + 9 T + 1)^{2} \)
$11$
\( T^{6} - 42 T^{4} + 405 T^{2} + \cdots - 1083 \)
$13$
\( (T^{3} + 6 T^{2} - 9 T - 71)^{2} \)
$17$
\( T^{6} - 81 T^{4} + 1755 T^{2} + \cdots - 9747 \)
$19$
\( (T^{3} + 12 T^{2} + 39 T + 19)^{2} \)
$23$
\( T^{6} - 114 T^{4} + 3249 T^{2} + \cdots - 867 \)
$29$
\( T^{6} - 51 T^{4} + 810 T^{2} + \cdots - 4107 \)
$31$
\( (T^{3} + 15 T^{2} + 63 T + 73)^{2} \)
$37$
\( (T^{3} + 3 T^{2} - 6 T - 17)^{2} \)
$41$
\( T^{6} - 87 T^{4} + 1854 T^{2} + \cdots - 8427 \)
$43$
\( (T^{3} + 6 T^{2} - 8)^{2} \)
$47$
\( T^{6} - 15 T^{4} + 54 T^{2} - 3 \)
$53$
\( T^{6} - 108 T^{4} + 2592 T^{2} + \cdots - 15552 \)
$59$
\( T^{6} - 186 T^{4} + 1557 T^{2} + \cdots - 3 \)
$61$
\( (T^{3} + 6 T^{2} - 72 T - 296)^{2} \)
$67$
\( (T^{3} - 3 T^{2} - 144 T - 251)^{2} \)
$71$
\( T^{6} - 72 T^{4} + 1296 T^{2} + \cdots - 1728 \)
$73$
\( (T^{3} - 6 T^{2} - 69 T - 89)^{2} \)
$79$
\( (T^{3} + 24 T^{2} + 135 T - 107)^{2} \)
$83$
\( T^{6} - 438 T^{4} + 51777 T^{2} + \cdots - 1550883 \)
$89$
\( T^{6} - 387 T^{4} + 16146 T^{2} + \cdots - 7803 \)
$97$
\( (T^{3} + 6 T^{2} - 99 T - 647)^{2} \)
show more
show less