Properties

Label 70.3.l.a.23.2
Level $70$
Weight $3$
Character 70.23
Analytic conductor $1.907$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,3,Mod(23,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.23"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 70.l (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.90736185052\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 23.2
Root \(-0.578737 + 2.15988i\) of defining polynomial
Character \(\chi\) \(=\) 70.23
Dual form 70.3.l.a.67.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(1.36843 - 5.10704i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(4.96410 - 0.598076i) q^{5} -7.47723 q^{6} +(-2.80041 + 6.41543i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-16.4150 - 9.47723i) q^{9} +(-2.63397 - 6.56218i) q^{10} +(-1.73861 - 3.01137i) q^{11} +(2.73685 + 10.2141i) q^{12} +(10.9545 + 10.9545i) q^{13} +(9.78866 + 1.47723i) q^{14} +(3.73861 - 26.1703i) q^{15} +(2.00000 - 3.46410i) q^{16} +(9.49996 + 2.54551i) q^{17} +(-6.93781 + 25.8923i) q^{18} +(-15.9623 - 9.21584i) q^{19} +(-8.00000 + 6.00000i) q^{20} +(28.9317 + 23.0809i) q^{21} +(-3.47723 + 3.47723i) q^{22} +(17.3390 - 4.64598i) q^{23} +(12.9509 - 7.47723i) q^{24} +(24.2846 - 5.93782i) q^{25} +(10.9545 - 18.9737i) q^{26} +(-37.2158 + 37.2158i) q^{27} +(-1.56497 - 13.9123i) q^{28} +49.8634i q^{29} +(-37.1177 + 4.47195i) q^{30} +(-8.00000 - 13.8564i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(-17.7583 + 4.75833i) q^{33} -13.9089i q^{34} +(-10.0646 + 33.5217i) q^{35} +37.9089 q^{36} +(-9.16731 - 34.2129i) q^{37} +(-6.74646 + 25.1781i) q^{38} +(70.9352 - 40.9545i) q^{39} +(11.1244 + 8.73205i) q^{40} -6.04555 q^{41} +(20.9393 - 47.9696i) q^{42} +(-9.64752 - 9.64752i) q^{43} +(6.02273 + 3.47723i) q^{44} +(-87.1540 - 37.2285i) q^{45} +(-12.6931 - 21.9850i) q^{46} +(5.44036 + 20.3037i) q^{47} +(-14.9545 - 14.9545i) q^{48} +(-33.3154 - 35.9317i) q^{49} +(-17.0000 - 31.0000i) q^{50} +(26.0000 - 45.0333i) q^{51} +(-29.9281 - 8.01921i) q^{52} +(-2.94488 + 10.9904i) q^{53} +(64.4597 + 37.2158i) q^{54} +(-10.4317 - 13.9089i) q^{55} +(-18.4317 + 7.23003i) q^{56} +(-68.9089 + 68.9089i) q^{57} +(68.1146 - 18.2513i) q^{58} +(-65.3652 + 37.7386i) q^{59} +(19.6948 + 49.0669i) q^{60} +(-51.4545 + 89.1217i) q^{61} +(-16.0000 + 16.0000i) q^{62} +(106.769 - 78.7693i) q^{63} +8.00000i q^{64} +(60.9306 + 47.8274i) q^{65} +(13.0000 + 22.5167i) q^{66} +(31.1237 + 8.33958i) q^{67} +(-18.9999 + 5.09101i) q^{68} -94.9089i q^{69} +(49.4754 + 1.47874i) q^{70} +40.3406 q^{71} +(-13.8756 - 51.7845i) q^{72} +(-22.9762 + 85.7485i) q^{73} +(-43.3802 + 25.0455i) q^{74} +(2.90703 - 132.148i) q^{75} +36.8634 q^{76} +(24.1880 - 2.72088i) q^{77} +(-81.9089 - 81.9089i) q^{78} +(-87.6452 - 50.6020i) q^{79} +(7.85641 - 18.3923i) q^{80} +(53.8406 + 93.2546i) q^{81} +(2.21282 + 8.25837i) q^{82} +(51.1247 + 51.1247i) q^{83} +(-73.1920 - 11.0455i) q^{84} +(48.6812 + 6.95445i) q^{85} +(-9.64752 + 16.7100i) q^{86} +(254.654 + 68.2344i) q^{87} +(2.54551 - 9.49996i) q^{88} +(71.6434 + 41.3634i) q^{89} +(-18.9545 + 132.681i) q^{90} +(-100.954 + 39.6005i) q^{91} +(-25.3861 + 25.3861i) q^{92} +(-81.7126 + 21.8948i) q^{93} +(25.7441 - 14.8634i) q^{94} +(-84.7503 - 36.2017i) q^{95} +(-14.9545 + 25.9019i) q^{96} +(45.7723 - 45.7723i) q^{97} +(-36.8893 + 58.6616i) q^{98} +65.9089i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{3} + 12 q^{5} - 16 q^{6} - 4 q^{7} + 16 q^{8} - 28 q^{10} + 8 q^{11} - 8 q^{12} + 8 q^{15} + 16 q^{16} - 16 q^{17} + 32 q^{18} - 64 q^{20} + 100 q^{21} + 16 q^{22} - 4 q^{23} + 28 q^{25}+ \cdots - 132 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/70\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(57\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) 1.36843 5.10704i 0.456142 1.70235i −0.228565 0.973529i \(-0.573403\pi\)
0.684707 0.728818i \(-0.259930\pi\)
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 4.96410 0.598076i 0.992820 0.119615i
\(6\) −7.47723 −1.24620
\(7\) −2.80041 + 6.41543i −0.400059 + 0.916489i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −16.4150 9.47723i −1.82389 1.05303i
\(10\) −2.63397 6.56218i −0.263397 0.656218i
\(11\) −1.73861 3.01137i −0.158056 0.273761i 0.776112 0.630595i \(-0.217189\pi\)
−0.934167 + 0.356835i \(0.883856\pi\)
\(12\) 2.73685 + 10.2141i 0.228071 + 0.851173i
\(13\) 10.9545 + 10.9545i 0.842650 + 0.842650i 0.989203 0.146553i \(-0.0468178\pi\)
−0.146553 + 0.989203i \(0.546818\pi\)
\(14\) 9.78866 + 1.47723i 0.699190 + 0.105516i
\(15\) 3.73861 26.1703i 0.249241 1.74469i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 9.49996 + 2.54551i 0.558821 + 0.149736i 0.527165 0.849763i \(-0.323255\pi\)
0.0316564 + 0.999499i \(0.489922\pi\)
\(18\) −6.93781 + 25.8923i −0.385434 + 1.43846i
\(19\) −15.9623 9.21584i −0.840121 0.485044i 0.0171843 0.999852i \(-0.494530\pi\)
−0.857305 + 0.514808i \(0.827863\pi\)
\(20\) −8.00000 + 6.00000i −0.400000 + 0.300000i
\(21\) 28.9317 + 23.0809i 1.37770 + 1.09909i
\(22\) −3.47723 + 3.47723i −0.158056 + 0.158056i
\(23\) 17.3390 4.64598i 0.753872 0.201999i 0.138637 0.990343i \(-0.455728\pi\)
0.615235 + 0.788344i \(0.289061\pi\)
\(24\) 12.9509 7.47723i 0.539622 0.311551i
\(25\) 24.2846 5.93782i 0.971384 0.237513i
\(26\) 10.9545 18.9737i 0.421325 0.729756i
\(27\) −37.2158 + 37.2158i −1.37836 + 1.37836i
\(28\) −1.56497 13.9123i −0.0558918 0.496866i
\(29\) 49.8634i 1.71943i 0.510777 + 0.859713i \(0.329358\pi\)
−0.510777 + 0.859713i \(0.670642\pi\)
\(30\) −37.1177 + 4.47195i −1.23726 + 0.149065i
\(31\) −8.00000 13.8564i −0.258065 0.446981i 0.707659 0.706554i \(-0.249751\pi\)
−0.965723 + 0.259573i \(0.916418\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) −17.7583 + 4.75833i −0.538131 + 0.144192i
\(34\) 13.9089i 0.409085i
\(35\) −10.0646 + 33.5217i −0.287561 + 0.957762i
\(36\) 37.9089 1.05303
\(37\) −9.16731 34.2129i −0.247765 0.924672i −0.971973 0.235091i \(-0.924461\pi\)
0.724208 0.689581i \(-0.242205\pi\)
\(38\) −6.74646 + 25.1781i −0.177538 + 0.662583i
\(39\) 70.9352 40.9545i 1.81885 1.05011i
\(40\) 11.1244 + 8.73205i 0.278109 + 0.218301i
\(41\) −6.04555 −0.147452 −0.0737262 0.997279i \(-0.523489\pi\)
−0.0737262 + 0.997279i \(0.523489\pi\)
\(42\) 20.9393 47.9696i 0.498555 1.14213i
\(43\) −9.64752 9.64752i −0.224361 0.224361i 0.585971 0.810332i \(-0.300713\pi\)
−0.810332 + 0.585971i \(0.800713\pi\)
\(44\) 6.02273 + 3.47723i 0.136880 + 0.0790279i
\(45\) −87.1540 37.2285i −1.93676 0.827299i
\(46\) −12.6931 21.9850i −0.275936 0.477935i
\(47\) 5.44036 + 20.3037i 0.115752 + 0.431994i 0.999342 0.0362680i \(-0.0115470\pi\)
−0.883590 + 0.468262i \(0.844880\pi\)
\(48\) −14.9545 14.9545i −0.311551 0.311551i
\(49\) −33.3154 35.9317i −0.679906 0.733300i
\(50\) −17.0000 31.0000i −0.340000 0.620000i
\(51\) 26.0000 45.0333i 0.509804 0.883006i
\(52\) −29.9281 8.01921i −0.575541 0.154216i
\(53\) −2.94488 + 10.9904i −0.0555637 + 0.207366i −0.988127 0.153640i \(-0.950900\pi\)
0.932563 + 0.361007i \(0.117567\pi\)
\(54\) 64.4597 + 37.2158i 1.19370 + 0.689182i
\(55\) −10.4317 13.9089i −0.189667 0.252889i
\(56\) −18.4317 + 7.23003i −0.329137 + 0.129108i
\(57\) −68.9089 + 68.9089i −1.20893 + 1.20893i
\(58\) 68.1146 18.2513i 1.17439 0.314677i
\(59\) −65.3652 + 37.7386i −1.10788 + 0.639638i −0.938281 0.345875i \(-0.887582\pi\)
−0.169604 + 0.985512i \(0.554249\pi\)
\(60\) 19.6948 + 49.0669i 0.328247 + 0.817781i
\(61\) −51.4545 + 89.1217i −0.843516 + 1.46101i 0.0433885 + 0.999058i \(0.486185\pi\)
−0.886904 + 0.461954i \(0.847149\pi\)
\(62\) −16.0000 + 16.0000i −0.258065 + 0.258065i
\(63\) 106.769 78.7693i 1.69475 1.25031i
\(64\) 8.00000i 0.125000i
\(65\) 60.9306 + 47.8274i 0.937394 + 0.735806i
\(66\) 13.0000 + 22.5167i 0.196970 + 0.341162i
\(67\) 31.1237 + 8.33958i 0.464533 + 0.124471i 0.483492 0.875349i \(-0.339368\pi\)
−0.0189583 + 0.999820i \(0.506035\pi\)
\(68\) −18.9999 + 5.09101i −0.279410 + 0.0748678i
\(69\) 94.9089i 1.37549i
\(70\) 49.4754 + 1.47874i 0.706791 + 0.0211248i
\(71\) 40.3406 0.568177 0.284089 0.958798i \(-0.408309\pi\)
0.284089 + 0.958798i \(0.408309\pi\)
\(72\) −13.8756 51.7845i −0.192717 0.719229i
\(73\) −22.9762 + 85.7485i −0.314743 + 1.17464i 0.609486 + 0.792797i \(0.291376\pi\)
−0.924229 + 0.381840i \(0.875291\pi\)
\(74\) −43.3802 + 25.0455i −0.586218 + 0.338453i
\(75\) 2.90703 132.148i 0.0387603 1.76197i
\(76\) 36.8634 0.485044
\(77\) 24.1880 2.72088i 0.314130 0.0353361i
\(78\) −81.9089 81.9089i −1.05011 1.05011i
\(79\) −87.6452 50.6020i −1.10943 0.640531i −0.170750 0.985314i \(-0.554619\pi\)
−0.938682 + 0.344783i \(0.887952\pi\)
\(80\) 7.85641 18.3923i 0.0982051 0.229904i
\(81\) 53.8406 + 93.2546i 0.664699 + 1.15129i
\(82\) 2.21282 + 8.25837i 0.0269857 + 0.100712i
\(83\) 51.1247 + 51.1247i 0.615961 + 0.615961i 0.944493 0.328532i \(-0.106554\pi\)
−0.328532 + 0.944493i \(0.606554\pi\)
\(84\) −73.1920 11.0455i −0.871333 0.131495i
\(85\) 48.6812 + 6.95445i 0.572720 + 0.0818171i
\(86\) −9.64752 + 16.7100i −0.112180 + 0.194302i
\(87\) 254.654 + 68.2344i 2.92706 + 0.784303i
\(88\) 2.54551 9.49996i 0.0289262 0.107954i
\(89\) 71.6434 + 41.3634i 0.804982 + 0.464757i 0.845210 0.534434i \(-0.179475\pi\)
−0.0402280 + 0.999191i \(0.512808\pi\)
\(90\) −18.9545 + 132.681i −0.210605 + 1.47424i
\(91\) −100.954 + 39.6005i −1.10939 + 0.435170i
\(92\) −25.3861 + 25.3861i −0.275936 + 0.275936i
\(93\) −81.7126 + 21.8948i −0.878631 + 0.235428i
\(94\) 25.7441 14.8634i 0.273873 0.158121i
\(95\) −84.7503 36.2017i −0.892108 0.381070i
\(96\) −14.9545 + 25.9019i −0.155776 + 0.269811i
\(97\) 45.7723 45.7723i 0.471879 0.471879i −0.430643 0.902522i \(-0.641713\pi\)
0.902522 + 0.430643i \(0.141713\pi\)
\(98\) −36.8893 + 58.6616i −0.376422 + 0.598587i
\(99\) 65.9089i 0.665746i
\(100\) −36.1244 + 34.5692i −0.361244 + 0.345692i
\(101\) −71.7495 124.274i −0.710391 1.23043i −0.964710 0.263313i \(-0.915185\pi\)
0.254320 0.967120i \(-0.418148\pi\)
\(102\) −71.0333 19.0333i −0.696405 0.186601i
\(103\) −54.2840 + 14.5453i −0.527029 + 0.141217i −0.512516 0.858678i \(-0.671286\pi\)
−0.0145128 + 0.999895i \(0.504620\pi\)
\(104\) 43.8178i 0.421325i
\(105\) 157.424 + 97.2724i 1.49928 + 0.926404i
\(106\) 16.0911 0.151803
\(107\) −15.5267 57.9465i −0.145109 0.541556i −0.999751 0.0223366i \(-0.992889\pi\)
0.854641 0.519219i \(-0.173777\pi\)
\(108\) 27.2439 101.676i 0.252258 0.941440i
\(109\) 32.2796 18.6366i 0.296143 0.170978i −0.344566 0.938762i \(-0.611974\pi\)
0.640709 + 0.767784i \(0.278640\pi\)
\(110\) −15.1817 + 19.3409i −0.138015 + 0.175827i
\(111\) −187.271 −1.68713
\(112\) 16.6229 + 22.5318i 0.148418 + 0.201176i
\(113\) −118.636 118.636i −1.04987 1.04987i −0.998689 0.0511834i \(-0.983701\pi\)
−0.0511834 0.998689i \(-0.516299\pi\)
\(114\) 119.354 + 68.9089i 1.04696 + 0.604464i
\(115\) 83.2941 33.4332i 0.724297 0.290724i
\(116\) −49.8634 86.3659i −0.429856 0.744533i
\(117\) −75.9999 283.636i −0.649572 2.42424i
\(118\) 75.4772 + 75.4772i 0.639638 + 0.639638i
\(119\) −42.9343 + 53.8178i −0.360792 + 0.452250i
\(120\) 59.8178 44.8634i 0.498482 0.373861i
\(121\) 54.4545 94.3179i 0.450037 0.779487i
\(122\) 140.576 + 37.6673i 1.15226 + 0.308748i
\(123\) −8.27289 + 30.8749i −0.0672593 + 0.251015i
\(124\) 27.7128 + 16.0000i 0.223490 + 0.129032i
\(125\) 117.000 44.0000i 0.936000 0.352000i
\(126\) −146.681 117.018i −1.16414 0.928714i
\(127\) 24.9545 24.9545i 0.196492 0.196492i −0.602002 0.798494i \(-0.705630\pi\)
0.798494 + 0.602002i \(0.205630\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) −62.4722 + 36.0683i −0.484280 + 0.279599i
\(130\) 43.0313 100.739i 0.331010 0.774914i
\(131\) 35.0455 60.7007i 0.267523 0.463364i −0.700698 0.713458i \(-0.747128\pi\)
0.968222 + 0.250094i \(0.0804614\pi\)
\(132\) 26.0000 26.0000i 0.196970 0.196970i
\(133\) 103.825 76.5968i 0.780636 0.575916i
\(134\) 45.5683i 0.340062i
\(135\) −162.485 + 207.001i −1.20359 + 1.53334i
\(136\) 13.9089 + 24.0909i 0.102271 + 0.177139i
\(137\) 9.25107 + 2.47882i 0.0675261 + 0.0180936i 0.292424 0.956289i \(-0.405538\pi\)
−0.224898 + 0.974382i \(0.572205\pi\)
\(138\) −129.648 + 34.7391i −0.939478 + 0.251732i
\(139\) 53.0217i 0.381451i 0.981643 + 0.190726i \(0.0610841\pi\)
−0.981643 + 0.190726i \(0.938916\pi\)
\(140\) −16.0893 68.1259i −0.114923 0.486613i
\(141\) 111.137 0.788203
\(142\) −14.7657 55.1063i −0.103984 0.388072i
\(143\) 13.9423 52.0334i 0.0974987 0.363870i
\(144\) −65.6601 + 37.9089i −0.455973 + 0.263256i
\(145\) 29.8221 + 247.527i 0.205670 + 1.70708i
\(146\) 125.545 0.859894
\(147\) −229.094 + 120.973i −1.55846 + 0.822946i
\(148\) 50.0911 + 50.0911i 0.338453 + 0.338453i
\(149\) 181.078 + 104.546i 1.21529 + 0.701648i 0.963907 0.266240i \(-0.0857813\pi\)
0.251383 + 0.967888i \(0.419115\pi\)
\(150\) −181.582 + 44.3984i −1.21054 + 0.295990i
\(151\) −81.0455 140.375i −0.536725 0.929636i −0.999078 0.0429394i \(-0.986328\pi\)
0.462352 0.886696i \(-0.347006\pi\)
\(152\) −13.4929 50.3563i −0.0887692 0.331291i
\(153\) −131.818 131.818i −0.861554 0.861554i
\(154\) −12.5702 32.0455i −0.0816248 0.208088i
\(155\) −48.0000 64.0000i −0.309677 0.412903i
\(156\) −81.9089 + 141.870i −0.525057 + 0.909426i
\(157\) −133.062 35.6538i −0.847526 0.227094i −0.191181 0.981555i \(-0.561232\pi\)
−0.656345 + 0.754461i \(0.727898\pi\)
\(158\) −37.0432 + 138.247i −0.234451 + 0.874982i
\(159\) 52.0987 + 30.0792i 0.327665 + 0.189177i
\(160\) −28.0000 4.00000i −0.175000 0.0250000i
\(161\) −18.7505 + 124.248i −0.116463 + 0.771727i
\(162\) 107.681 107.681i 0.664699 0.664699i
\(163\) −91.8348 + 24.6071i −0.563404 + 0.150964i −0.529270 0.848454i \(-0.677534\pi\)
−0.0341341 + 0.999417i \(0.510867\pi\)
\(164\) 10.4712 6.04555i 0.0638488 0.0368631i
\(165\) −85.3083 + 34.2417i −0.517020 + 0.207525i
\(166\) 51.1247 88.5506i 0.307980 0.533438i
\(167\) 133.988 133.988i 0.802324 0.802324i −0.181134 0.983458i \(-0.557977\pi\)
0.983458 + 0.181134i \(0.0579769\pi\)
\(168\) 11.7016 + 104.025i 0.0696526 + 0.619197i
\(169\) 71.0000i 0.420118i
\(170\) −8.31858 69.0452i −0.0489328 0.406148i
\(171\) 174.681 + 302.557i 1.02153 + 1.76934i
\(172\) 26.3575 + 7.06247i 0.153241 + 0.0410609i
\(173\) 0.248884 0.0666881i 0.00143863 0.000385481i −0.258100 0.966118i \(-0.583096\pi\)
0.259538 + 0.965733i \(0.416430\pi\)
\(174\) 372.840i 2.14276i
\(175\) −29.9133 + 172.424i −0.170933 + 0.985283i
\(176\) −13.9089 −0.0790279
\(177\) 103.285 + 385.465i 0.583532 + 2.17777i
\(178\) 30.2801 113.007i 0.170113 0.634870i
\(179\) 37.7895 21.8178i 0.211115 0.121887i −0.390715 0.920512i \(-0.627772\pi\)
0.601829 + 0.798625i \(0.294439\pi\)
\(180\) 188.184 22.6724i 1.04546 0.125958i
\(181\) 3.68116 0.0203379 0.0101689 0.999948i \(-0.496763\pi\)
0.0101689 + 0.999948i \(0.496763\pi\)
\(182\) 91.0472 + 123.412i 0.500259 + 0.678085i
\(183\) 384.737 + 384.737i 2.10239 + 2.10239i
\(184\) 43.9701 + 25.3861i 0.238968 + 0.137968i
\(185\) −65.9693 164.353i −0.356591 0.888396i
\(186\) 59.8178 + 103.607i 0.321601 + 0.557029i
\(187\) −8.85130 33.0335i −0.0473331 0.176650i
\(188\) −29.7267 29.7267i −0.158121 0.158121i
\(189\) −134.536 342.975i −0.711829 1.81468i
\(190\) −18.4317 + 129.022i −0.0970088 + 0.679062i
\(191\) −8.96636 + 15.5302i −0.0469443 + 0.0813099i −0.888543 0.458794i \(-0.848282\pi\)
0.841598 + 0.540104i \(0.181615\pi\)
\(192\) 40.8563 + 10.9474i 0.212793 + 0.0570178i
\(193\) 55.0364 205.399i 0.285163 1.06424i −0.663557 0.748125i \(-0.730954\pi\)
0.948720 0.316117i \(-0.102379\pi\)
\(194\) −79.2799 45.7723i −0.408659 0.235939i
\(195\) 327.636 245.727i 1.68018 1.26014i
\(196\) 93.6356 + 28.9201i 0.477733 + 0.147552i
\(197\) 41.0911 41.0911i 0.208584 0.208584i −0.595081 0.803666i \(-0.702880\pi\)
0.803666 + 0.595081i \(0.202880\pi\)
\(198\) 90.0332 24.1243i 0.454713 0.121840i
\(199\) −261.145 + 150.772i −1.31229 + 0.757650i −0.982475 0.186397i \(-0.940319\pi\)
−0.329813 + 0.944046i \(0.606986\pi\)
\(200\) 60.4449 + 36.6936i 0.302224 + 0.183468i
\(201\) 85.1812 147.538i 0.423787 0.734020i
\(202\) −143.499 + 143.499i −0.710391 + 0.710391i
\(203\) −319.895 139.638i −1.57584 0.687872i
\(204\) 104.000i 0.509804i
\(205\) −30.0107 + 3.61570i −0.146394 + 0.0176376i
\(206\) 39.7386 + 68.8293i 0.192906 + 0.334123i
\(207\) −328.652 88.0621i −1.58769 0.425421i
\(208\) 59.8562 16.0384i 0.287770 0.0771078i
\(209\) 64.0911i 0.306656i
\(210\) 75.2554 250.649i 0.358359 1.19357i
\(211\) −177.703 −0.842194 −0.421097 0.907016i \(-0.638355\pi\)
−0.421097 + 0.907016i \(0.638355\pi\)
\(212\) −5.88975 21.9808i −0.0277818 0.103683i
\(213\) 55.2031 206.021i 0.259170 0.967235i
\(214\) −73.4732 + 42.4198i −0.343333 + 0.198223i
\(215\) −53.6612 42.1213i −0.249587 0.195913i
\(216\) −148.863 −0.689182
\(217\) 111.298 12.5198i 0.512894 0.0576947i
\(218\) −37.2733 37.2733i −0.170978 0.170978i
\(219\) 406.480 + 234.681i 1.85607 + 1.07160i
\(220\) 31.9771 + 13.6592i 0.145350 + 0.0620875i
\(221\) 76.1822 + 131.951i 0.344716 + 0.597065i
\(222\) 68.5460 + 255.817i 0.308766 + 1.15233i
\(223\) 249.113 + 249.113i 1.11710 + 1.11710i 0.992165 + 0.124933i \(0.0398715\pi\)
0.124933 + 0.992165i \(0.460129\pi\)
\(224\) 24.6946 30.9545i 0.110244 0.138190i
\(225\) −454.907 132.681i −2.02181 0.589694i
\(226\) −118.636 + 205.483i −0.524936 + 0.909216i
\(227\) 40.0503 + 10.7314i 0.176433 + 0.0472751i 0.345954 0.938252i \(-0.387555\pi\)
−0.169521 + 0.985527i \(0.554222\pi\)
\(228\) 50.4448 188.263i 0.221249 0.825713i
\(229\) −272.875 157.545i −1.19159 0.687967i −0.232926 0.972494i \(-0.574830\pi\)
−0.958668 + 0.284527i \(0.908163\pi\)
\(230\) −76.1584 101.545i −0.331123 0.441498i
\(231\) 19.2039 127.253i 0.0831339 0.550877i
\(232\) −99.7267 + 99.7267i −0.429856 + 0.429856i
\(233\) −111.143 + 29.7807i −0.477009 + 0.127814i −0.489309 0.872110i \(-0.662751\pi\)
0.0123008 + 0.999924i \(0.496084\pi\)
\(234\) −359.635 + 207.636i −1.53690 + 0.887332i
\(235\) 39.1497 + 97.5360i 0.166594 + 0.415047i
\(236\) 75.4772 130.730i 0.319819 0.553942i
\(237\) −378.362 + 378.362i −1.59647 + 1.59647i
\(238\) 89.2315 + 38.9507i 0.374922 + 0.163658i
\(239\) 438.725i 1.83567i −0.396965 0.917834i \(-0.629936\pi\)
0.396965 0.917834i \(-0.370064\pi\)
\(240\) −83.1793 65.2915i −0.346580 0.272048i
\(241\) 78.0911 + 135.258i 0.324029 + 0.561235i 0.981315 0.192406i \(-0.0616290\pi\)
−0.657286 + 0.753641i \(0.728296\pi\)
\(242\) −148.772 39.8634i −0.614762 0.164725i
\(243\) 92.3920 24.7564i 0.380214 0.101878i
\(244\) 205.818i 0.843516i
\(245\) −186.871 158.443i −0.762738 0.646708i
\(246\) 45.2039 0.183756
\(247\) −73.9038 275.813i −0.299206 1.11665i
\(248\) 11.7128 43.7128i 0.0472291 0.176261i
\(249\) 331.057 191.136i 1.32954 0.767613i
\(250\) −102.930 143.720i −0.411720 0.574879i
\(251\) 185.727 0.739947 0.369974 0.929042i \(-0.379367\pi\)
0.369974 + 0.929042i \(0.379367\pi\)
\(252\) −106.161 + 243.202i −0.421272 + 0.965086i
\(253\) −44.1366 44.1366i −0.174453 0.174453i
\(254\) −43.2224 24.9545i −0.170167 0.0982459i
\(255\) 102.133 239.100i 0.400523 0.937647i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 61.7416 + 230.423i 0.240240 + 0.896587i 0.975717 + 0.219037i \(0.0702915\pi\)
−0.735477 + 0.677550i \(0.763042\pi\)
\(258\) 72.1366 + 72.1366i 0.279599 + 0.279599i
\(259\) 245.162 + 36.9979i 0.946573 + 0.142849i
\(260\) −153.362 21.9089i −0.589855 0.0842650i
\(261\) 472.566 818.509i 1.81060 3.13605i
\(262\) −95.7462 25.6551i −0.365444 0.0979203i
\(263\) −85.0136 + 317.275i −0.323246 + 1.20637i 0.592818 + 0.805336i \(0.298015\pi\)
−0.916064 + 0.401032i \(0.868651\pi\)
\(264\) −45.0333 26.0000i −0.170581 0.0984848i
\(265\) −8.04555 + 56.3188i −0.0303606 + 0.212524i
\(266\) −142.636 113.791i −0.536224 0.427784i
\(267\) 309.283 309.283i 1.15836 1.15836i
\(268\) −62.2475 + 16.6792i −0.232267 + 0.0622357i
\(269\) 247.839 143.090i 0.921336 0.531933i 0.0372746 0.999305i \(-0.488132\pi\)
0.884061 + 0.467372i \(0.154799\pi\)
\(270\) 342.243 + 146.191i 1.26756 + 0.541450i
\(271\) −204.760 + 354.655i −0.755573 + 1.30869i 0.189516 + 0.981878i \(0.439308\pi\)
−0.945089 + 0.326814i \(0.894025\pi\)
\(272\) 27.8178 27.8178i 0.102271 0.102271i
\(273\) 64.0925 + 569.769i 0.234771 + 2.08707i
\(274\) 13.5445i 0.0494325i
\(275\) −60.1025 62.8063i −0.218554 0.228386i
\(276\) 94.9089 + 164.387i 0.343873 + 0.595605i
\(277\) 15.7107 + 4.20967i 0.0567174 + 0.0151974i 0.287066 0.957911i \(-0.407320\pi\)
−0.230349 + 0.973108i \(0.573987\pi\)
\(278\) 72.4290 19.4073i 0.260536 0.0698104i
\(279\) 303.271i 1.08699i
\(280\) −87.1726 + 46.9141i −0.311331 + 0.167550i
\(281\) 302.542 1.07666 0.538332 0.842733i \(-0.319055\pi\)
0.538332 + 0.842733i \(0.319055\pi\)
\(282\) −40.6788 151.815i −0.144251 0.538353i
\(283\) 41.0108 153.054i 0.144914 0.540828i −0.854845 0.518884i \(-0.826348\pi\)
0.999759 0.0219440i \(-0.00698556\pi\)
\(284\) −69.8719 + 40.3406i −0.246028 + 0.142044i
\(285\) −300.858 + 383.284i −1.05564 + 1.34485i
\(286\) −76.1822 −0.266371
\(287\) 16.9300 38.7848i 0.0589897 0.135139i
\(288\) 75.8178 + 75.8178i 0.263256 + 0.263256i
\(289\) −166.512 96.1356i −0.576165 0.332649i
\(290\) 327.212 131.339i 1.12832 0.452892i
\(291\) −171.125 296.397i −0.588058 1.01855i
\(292\) −45.9525 171.497i −0.157372 0.587318i
\(293\) −100.182 100.182i −0.341919 0.341919i 0.515170 0.857088i \(-0.327729\pi\)
−0.857088 + 0.515170i \(0.827729\pi\)
\(294\) 249.107 + 268.669i 0.847301 + 0.913841i
\(295\) −301.909 + 226.432i −1.02342 + 0.767565i
\(296\) 50.0911 86.7603i 0.169227 0.293109i
\(297\) 176.774 + 47.3666i 0.595200 + 0.159483i
\(298\) 76.5327 285.624i 0.256821 0.958469i
\(299\) 240.834 + 139.046i 0.805465 + 0.465035i
\(300\) 127.113 + 231.794i 0.423709 + 0.772647i
\(301\) 88.9099 34.8759i 0.295382 0.115867i
\(302\) −162.091 + 162.091i −0.536725 + 0.536725i
\(303\) −732.855 + 196.368i −2.41866 + 0.648079i
\(304\) −63.8492 + 36.8634i −0.210030 + 0.121261i
\(305\) −202.124 + 473.183i −0.662700 + 1.55142i
\(306\) −131.818 + 228.315i −0.430777 + 0.746128i
\(307\) −242.602 + 242.602i −0.790234 + 0.790234i −0.981532 0.191298i \(-0.938730\pi\)
0.191298 + 0.981532i \(0.438730\pi\)
\(308\) −39.1740 + 28.9007i −0.127188 + 0.0938335i
\(309\) 297.135i 0.961601i
\(310\) −69.8564 + 88.9948i −0.225343 + 0.287080i
\(311\) −3.73861 6.47547i −0.0120213 0.0208214i 0.859952 0.510375i \(-0.170493\pi\)
−0.871973 + 0.489553i \(0.837160\pi\)
\(312\) 223.779 + 59.9615i 0.717241 + 0.192184i
\(313\) 577.950 154.861i 1.84649 0.494765i 0.847156 0.531344i \(-0.178313\pi\)
0.999331 + 0.0365796i \(0.0116462\pi\)
\(314\) 194.816i 0.620432i
\(315\) 482.904 454.875i 1.53303 1.44405i
\(316\) 202.408 0.640531
\(317\) −105.415 393.415i −0.332540 1.24106i −0.906511 0.422182i \(-0.861264\pi\)
0.573971 0.818876i \(-0.305402\pi\)
\(318\) 22.0195 82.1779i 0.0692437 0.258421i
\(319\) 150.157 86.6931i 0.470711 0.271765i
\(320\) 4.78461 + 39.7128i 0.0149519 + 0.124103i
\(321\) −317.182 −0.988107
\(322\) 176.589 19.8643i 0.548414 0.0616902i
\(323\) −128.182 128.182i −0.396849 0.396849i
\(324\) −186.509 107.681i −0.575646 0.332349i
\(325\) 331.070 + 200.979i 1.01868 + 0.618397i
\(326\) 67.2277 + 116.442i 0.206220 + 0.357184i
\(327\) −51.0058 190.356i −0.155981 0.582129i
\(328\) −12.0911 12.0911i −0.0368631 0.0368631i
\(329\) −145.492 21.9565i −0.442226 0.0667372i
\(330\) 78.0000 + 104.000i 0.236364 + 0.315152i
\(331\) −118.317 + 204.931i −0.357452 + 0.619126i −0.987534 0.157403i \(-0.949688\pi\)
0.630082 + 0.776529i \(0.283021\pi\)
\(332\) −139.675 37.4259i −0.420709 0.112729i
\(333\) −173.761 + 648.486i −0.521806 + 1.94741i
\(334\) −232.074 133.988i −0.694833 0.401162i
\(335\) 159.489 + 22.7842i 0.476087 + 0.0680124i
\(336\) 137.818 54.0605i 0.410172 0.160894i
\(337\) 316.271 316.271i 0.938490 0.938490i −0.0597246 0.998215i \(-0.519022\pi\)
0.998215 + 0.0597246i \(0.0190223\pi\)
\(338\) 96.9878 25.9878i 0.286946 0.0768870i
\(339\) −768.221 + 443.533i −2.26614 + 1.30836i
\(340\) −91.2727 + 36.6357i −0.268449 + 0.107752i
\(341\) −27.8178 + 48.1819i −0.0815771 + 0.141296i
\(342\) 349.362 349.362i 1.02153 1.02153i
\(343\) 323.814 113.109i 0.944064 0.329763i
\(344\) 38.5901i 0.112180i
\(345\) −56.7628 471.137i −0.164530 1.36562i
\(346\) −0.182195 0.315572i −0.000526576 0.000912057i
\(347\) 137.052 + 36.7228i 0.394961 + 0.105830i 0.450833 0.892608i \(-0.351127\pi\)
−0.0558716 + 0.998438i \(0.517794\pi\)
\(348\) −509.308 + 136.469i −1.46353 + 0.392152i
\(349\) 298.861i 0.856336i −0.903699 0.428168i \(-0.859159\pi\)
0.903699 0.428168i \(-0.140841\pi\)
\(350\) 246.485 22.2495i 0.704243 0.0635699i
\(351\) −815.358 −2.32296
\(352\) 5.09101 + 18.9999i 0.0144631 + 0.0539770i
\(353\) −8.91723 + 33.2795i −0.0252613 + 0.0942763i −0.977406 0.211373i \(-0.932207\pi\)
0.952144 + 0.305649i \(0.0988734\pi\)
\(354\) 488.750 282.180i 1.38065 0.797119i
\(355\) 200.255 24.1267i 0.564098 0.0679626i
\(356\) −165.453 −0.464757
\(357\) 216.097 + 292.913i 0.605314 + 0.820484i
\(358\) −43.6356 43.6356i −0.121887 0.121887i
\(359\) 426.160 + 246.043i 1.18707 + 0.685358i 0.957641 0.287966i \(-0.0929791\pi\)
0.229434 + 0.973324i \(0.426312\pi\)
\(360\) −99.8511 248.765i −0.277364 0.691014i
\(361\) −10.6366 18.4232i −0.0294644 0.0510338i
\(362\) −1.34740 5.02856i −0.00372209 0.0138910i
\(363\) −407.168 407.168i −1.12168 1.12168i
\(364\) 135.258 169.545i 0.371587 0.465782i
\(365\) −62.7723 + 439.406i −0.171979 + 1.20385i
\(366\) 384.737 666.383i 1.05119 1.82072i
\(367\) 70.3355 + 18.8463i 0.191650 + 0.0513524i 0.353367 0.935485i \(-0.385037\pi\)
−0.161717 + 0.986837i \(0.551703\pi\)
\(368\) 18.5839 69.3562i 0.0504998 0.188468i
\(369\) 99.2379 + 57.2950i 0.268937 + 0.155271i
\(370\) −200.364 + 150.273i −0.541525 + 0.406144i
\(371\) −62.2614 49.6703i −0.167820 0.133882i
\(372\) 119.636 119.636i 0.321601 0.321601i
\(373\) 332.315 89.0434i 0.890924 0.238722i 0.215810 0.976435i \(-0.430761\pi\)
0.675114 + 0.737713i \(0.264094\pi\)
\(374\) −41.8848 + 24.1822i −0.111991 + 0.0646583i
\(375\) −64.6038 657.734i −0.172277 1.75396i
\(376\) −29.7267 + 51.4882i −0.0790604 + 0.136937i
\(377\) −546.226 + 546.226i −1.44887 + 1.44887i
\(378\) −419.269 + 309.317i −1.10918 + 0.818299i
\(379\) 33.5683i 0.0885708i 0.999019 + 0.0442854i \(0.0141011\pi\)
−0.999019 + 0.0442854i \(0.985899\pi\)
\(380\) 182.993 22.0471i 0.481562 0.0580187i
\(381\) −93.2950 161.592i −0.244869 0.424125i
\(382\) 24.4965 + 6.56383i 0.0641271 + 0.0171828i
\(383\) 694.888 186.195i 1.81433 0.486148i 0.818269 0.574836i \(-0.194934\pi\)
0.996059 + 0.0886883i \(0.0282675\pi\)
\(384\) 59.8178i 0.155776i
\(385\) 118.445 27.9730i 0.307648 0.0726571i
\(386\) −300.725 −0.779079
\(387\) 66.9326 + 249.796i 0.172953 + 0.645468i
\(388\) −33.5076 + 125.052i −0.0863598 + 0.322299i
\(389\) −459.937 + 265.545i −1.18236 + 0.682634i −0.956558 0.291540i \(-0.905832\pi\)
−0.225798 + 0.974174i \(0.572499\pi\)
\(390\) −455.592 357.616i −1.16818 0.916965i
\(391\) 176.547 0.451526
\(392\) 5.23259 138.494i 0.0133484 0.353301i
\(393\) −262.043 262.043i −0.666777 0.666777i
\(394\) −71.1719 41.0911i −0.180639 0.104292i
\(395\) −465.343 198.775i −1.17808 0.503227i
\(396\) −65.9089 114.158i −0.166437 0.288277i
\(397\) 69.5948 + 259.731i 0.175302 + 0.654235i 0.996500 + 0.0835924i \(0.0266394\pi\)
−0.821198 + 0.570643i \(0.806694\pi\)
\(398\) 301.545 + 301.545i 0.757650 + 0.757650i
\(399\) −249.107 635.053i −0.624327 1.59161i
\(400\) 28.0000 96.0000i 0.0700000 0.240000i
\(401\) −276.270 + 478.514i −0.688953 + 1.19330i 0.283224 + 0.959054i \(0.408596\pi\)
−0.972177 + 0.234248i \(0.924737\pi\)
\(402\) −232.719 62.3569i −0.578904 0.155117i
\(403\) 64.1537 239.425i 0.159190 0.594107i
\(404\) 248.547 + 143.499i 0.615217 + 0.355195i
\(405\) 323.043 + 430.725i 0.797638 + 1.06352i
\(406\) −73.6594 + 488.095i −0.181427 + 1.20221i
\(407\) −87.0890 + 87.0890i −0.213978 + 0.213978i
\(408\) 142.067 38.0666i 0.348203 0.0933006i
\(409\) −108.528 + 62.6584i −0.265348 + 0.153199i −0.626772 0.779203i \(-0.715624\pi\)
0.361423 + 0.932402i \(0.382291\pi\)
\(410\) 15.9238 + 39.6720i 0.0388386 + 0.0967609i
\(411\) 25.3188 43.8535i 0.0616030 0.106700i
\(412\) 79.4772 79.4772i 0.192906 0.192906i
\(413\) −59.0598 525.029i −0.143002 1.27126i
\(414\) 481.180i 1.16227i
\(415\) 284.365 + 223.212i 0.685217 + 0.537860i
\(416\) −43.8178 75.8947i −0.105331 0.182439i
\(417\) 270.784 + 72.5564i 0.649362 + 0.173996i
\(418\) 87.5501 23.4590i 0.209450 0.0561219i
\(419\) 116.269i 0.277492i −0.990328 0.138746i \(-0.955693\pi\)
0.990328 0.138746i \(-0.0443072\pi\)
\(420\) −369.939 11.0568i −0.880806 0.0263258i
\(421\) 534.449 1.26948 0.634738 0.772728i \(-0.281108\pi\)
0.634738 + 0.772728i \(0.281108\pi\)
\(422\) 65.0438 + 242.747i 0.154132 + 0.575229i
\(423\) 103.119 384.846i 0.243780 0.909801i
\(424\) −27.8706 + 16.0911i −0.0657325 + 0.0379507i
\(425\) 245.818 + 5.40756i 0.578394 + 0.0127237i
\(426\) −301.636 −0.708065
\(427\) −427.660 579.680i −1.00155 1.35756i
\(428\) 84.8395 + 84.8395i 0.198223 + 0.198223i
\(429\) −246.658 142.408i −0.574960 0.331953i
\(430\) −37.8974 + 88.7200i −0.0881335 + 0.206326i
\(431\) 238.737 + 413.504i 0.553913 + 0.959406i 0.997987 + 0.0634155i \(0.0201994\pi\)
−0.444074 + 0.895990i \(0.646467\pi\)
\(432\) 54.4878 + 203.351i 0.126129 + 0.470720i
\(433\) −542.271 542.271i −1.25236 1.25236i −0.954660 0.297699i \(-0.903781\pi\)
−0.297699 0.954660i \(-0.596219\pi\)
\(434\) −57.8402 147.453i −0.133272 0.339754i
\(435\) 1304.94 + 186.420i 2.99986 + 0.428551i
\(436\) −37.2733 + 64.5592i −0.0854892 + 0.148072i
\(437\) −319.588 85.6333i −0.731322 0.195957i
\(438\) 171.799 641.161i 0.392234 1.46384i
\(439\) −232.568 134.273i −0.529768 0.305862i 0.211154 0.977453i \(-0.432278\pi\)
−0.740922 + 0.671591i \(0.765611\pi\)
\(440\) 6.95445 48.6812i 0.0158056 0.110639i
\(441\) 206.341 + 905.557i 0.467892 + 2.05342i
\(442\) 152.364 152.364i 0.344716 0.344716i
\(443\) −85.1751 + 22.8226i −0.192269 + 0.0515183i −0.353668 0.935371i \(-0.615066\pi\)
0.161400 + 0.986889i \(0.448399\pi\)
\(444\) 324.363 187.271i 0.730548 0.421782i
\(445\) 380.384 + 162.484i 0.854795 + 0.365132i
\(446\) 249.113 431.476i 0.558549 0.967435i
\(447\) 781.711 781.711i 1.74879 1.74879i
\(448\) −51.3234 22.4033i −0.114561 0.0500074i
\(449\) 100.410i 0.223630i −0.993729 0.111815i \(-0.964334\pi\)
0.993729 0.111815i \(-0.0356664\pi\)
\(450\) −14.7384 + 669.979i −0.0327519 + 1.48884i
\(451\) 10.5109 + 18.2054i 0.0233057 + 0.0403666i
\(452\) 324.119 + 86.8473i 0.717076 + 0.192140i
\(453\) −827.806 + 221.810i −1.82739 + 0.489647i
\(454\) 58.6377i 0.129158i
\(455\) −477.464 + 256.959i −1.04937 + 0.564746i
\(456\) −275.636 −0.604464
\(457\) −180.050 671.954i −0.393982 1.47036i −0.823508 0.567305i \(-0.807986\pi\)
0.429526 0.903055i \(-0.358681\pi\)
\(458\) −115.331 + 430.420i −0.251814 + 0.939781i
\(459\) −448.282 + 258.816i −0.976649 + 0.563869i
\(460\) −110.836 + 141.202i −0.240949 + 0.306961i
\(461\) −191.636 −0.415695 −0.207848 0.978161i \(-0.566646\pi\)
−0.207848 + 0.978161i \(0.566646\pi\)
\(462\) −180.859 + 20.3446i −0.391470 + 0.0440359i
\(463\) 268.079 + 268.079i 0.579005 + 0.579005i 0.934629 0.355624i \(-0.115732\pi\)
−0.355624 + 0.934629i \(0.615732\pi\)
\(464\) 172.732 + 99.7267i 0.372267 + 0.214928i
\(465\) −392.535 + 157.559i −0.844161 + 0.338836i
\(466\) 81.3623 + 140.924i 0.174597 + 0.302411i
\(467\) 49.9577 + 186.445i 0.106976 + 0.399239i 0.998562 0.0536121i \(-0.0170734\pi\)
−0.891586 + 0.452851i \(0.850407\pi\)
\(468\) 415.271 + 415.271i 0.887332 + 0.887332i
\(469\) −140.661 + 176.318i −0.299917 + 0.375944i
\(470\) 118.907 89.1801i 0.252993 0.189745i
\(471\) −364.170 + 630.761i −0.773185 + 1.33920i
\(472\) −206.208 55.2532i −0.436881 0.117062i
\(473\) −12.2789 + 45.8255i −0.0259596 + 0.0968826i
\(474\) 655.343 + 378.362i 1.38258 + 0.798233i
\(475\) −442.360 129.022i −0.931285 0.271625i
\(476\) 20.5466 136.149i 0.0431651 0.286028i
\(477\) 152.499 152.499i 0.319704 0.319704i
\(478\) −599.309 + 160.584i −1.25378 + 0.335951i
\(479\) 642.196 370.772i 1.34070 0.774055i 0.353792 0.935324i \(-0.384892\pi\)
0.986910 + 0.161269i \(0.0515588\pi\)
\(480\) −58.7441 + 137.523i −0.122384 + 0.286507i
\(481\) 274.360 475.206i 0.570396 0.987954i
\(482\) 156.182 156.182i 0.324029 0.324029i
\(483\) 608.881 + 265.784i 1.26062 + 0.550278i
\(484\) 217.818i 0.450037i
\(485\) 199.843 254.593i 0.412047 0.524935i
\(486\) −67.6356 117.148i −0.139168 0.241046i
\(487\) 761.430 + 204.025i 1.56351 + 0.418942i 0.933773 0.357865i \(-0.116495\pi\)
0.629739 + 0.776807i \(0.283162\pi\)
\(488\) −281.152 + 75.3345i −0.576132 + 0.154374i
\(489\) 502.677i 1.02797i
\(490\) −148.038 + 313.265i −0.302119 + 0.639315i
\(491\) −232.000 −0.472505 −0.236253 0.971692i \(-0.575919\pi\)
−0.236253 + 0.971692i \(0.575919\pi\)
\(492\) −16.5458 61.7497i −0.0336296 0.125508i
\(493\) −126.927 + 473.700i −0.257459 + 0.960851i
\(494\) −349.716 + 201.909i −0.707928 + 0.408722i
\(495\) 39.4185 + 327.178i 0.0796334 + 0.660967i
\(496\) −64.0000 −0.129032
\(497\) −112.970 + 258.802i −0.227304 + 0.520728i
\(498\) −382.271 382.271i −0.767613 0.767613i
\(499\) 570.335 + 329.283i 1.14296 + 0.659886i 0.947161 0.320759i \(-0.103938\pi\)
0.195795 + 0.980645i \(0.437271\pi\)
\(500\) −158.650 + 193.210i −0.317300 + 0.386420i
\(501\) −500.930 867.636i −0.999859 1.73181i
\(502\) −67.9807 253.707i −0.135420 0.505393i
\(503\) 230.055 + 230.055i 0.457367 + 0.457367i 0.897790 0.440424i \(-0.145172\pi\)
−0.440424 + 0.897790i \(0.645172\pi\)
\(504\) 371.077 + 56.0000i 0.736264 + 0.111111i
\(505\) −430.497 573.996i −0.852469 1.13663i
\(506\) −44.1366 + 76.4469i −0.0872266 + 0.151081i
\(507\) 362.600 + 97.1583i 0.715187 + 0.191634i
\(508\) −18.2679 + 68.1768i −0.0359605 + 0.134206i
\(509\) −105.300 60.7950i −0.206876 0.119440i 0.392983 0.919546i \(-0.371443\pi\)
−0.599859 + 0.800106i \(0.704777\pi\)
\(510\) −364.000 52.0000i −0.713725 0.101961i
\(511\) −485.770 387.534i −0.950627 0.758383i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 937.026 251.075i 1.82656 0.489425i
\(514\) 292.164 168.681i 0.568413 0.328173i
\(515\) −260.772 + 104.670i −0.506353 + 0.203244i
\(516\) 72.1366 124.944i 0.139800 0.242140i
\(517\) 51.6832 51.6832i 0.0999676 0.0999676i
\(518\) −39.1955 348.440i −0.0756670 0.672664i
\(519\) 1.36232i 0.00262489i
\(520\) 26.2064 + 217.516i 0.0503969 + 0.418300i
\(521\) 244.135 + 422.853i 0.468588 + 0.811619i 0.999355 0.0358988i \(-0.0114294\pi\)
−0.530767 + 0.847518i \(0.678096\pi\)
\(522\) −1291.08 345.943i −2.47332 0.662725i
\(523\) −631.039 + 169.086i −1.20657 + 0.323301i −0.805417 0.592708i \(-0.798059\pi\)
−0.401158 + 0.916009i \(0.631392\pi\)
\(524\) 140.182i 0.267523i
\(525\) 839.645 + 388.719i 1.59932 + 0.740416i
\(526\) 464.523 0.883123
\(527\) −40.7281 151.999i −0.0772829 0.288424i
\(528\) −19.0333 + 71.0333i −0.0360480 + 0.134533i
\(529\) −179.070 + 103.386i −0.338507 + 0.195437i
\(530\) 79.8778 9.62370i 0.150713 0.0181579i
\(531\) 1430.63 2.69422
\(532\) −103.233 + 236.494i −0.194046 + 0.444538i
\(533\) −66.2257 66.2257i −0.124251 0.124251i
\(534\) −535.694 309.283i −1.00317 0.579182i
\(535\) −111.733 278.366i −0.208846 0.520310i
\(536\) 45.5683 + 78.9267i 0.0850155 + 0.147251i
\(537\) −59.7122 222.849i −0.111196 0.414988i
\(538\) −286.180 286.180i −0.531933 0.531933i
\(539\) −50.2809 + 162.796i −0.0932855 + 0.302034i
\(540\) 74.4317 521.022i 0.137836 0.964855i
\(541\) −221.793 + 384.157i −0.409968 + 0.710086i −0.994886 0.101007i \(-0.967794\pi\)
0.584917 + 0.811093i \(0.301127\pi\)
\(542\) 559.416 + 149.895i 1.03213 + 0.276559i
\(543\) 5.03740 18.7998i 0.00927697 0.0346221i
\(544\) −48.1819 27.8178i −0.0885696 0.0511357i
\(545\) 149.093 111.820i 0.273565 0.205174i
\(546\) 754.859 296.102i 1.38253 0.542311i
\(547\) −686.507 + 686.507i −1.25504 + 1.25504i −0.301608 + 0.953432i \(0.597523\pi\)
−0.953432 + 0.301608i \(0.902477\pi\)
\(548\) −18.5021 + 4.95764i −0.0337630 + 0.00904678i
\(549\) 1689.25 975.291i 3.07696 1.77649i
\(550\) −63.7959 + 105.090i −0.115993 + 0.191073i
\(551\) 459.533 795.934i 0.833997 1.44453i
\(552\) 189.818 189.818i 0.343873 0.343873i
\(553\) 570.076 420.575i 1.03088 0.760533i
\(554\) 23.0021i 0.0415200i
\(555\) −929.633 + 112.002i −1.67502 + 0.201806i
\(556\) −53.0217 91.8363i −0.0953628 0.165173i
\(557\) −44.0239 11.7962i −0.0790376 0.0211780i 0.219084 0.975706i \(-0.429693\pi\)
−0.298121 + 0.954528i \(0.596360\pi\)
\(558\) 414.276 111.005i 0.742430 0.198934i
\(559\) 211.366i 0.378115i
\(560\) 95.9933 + 101.908i 0.171417 + 0.181979i
\(561\) −180.816 −0.322310
\(562\) −110.738 413.281i −0.197043 0.735375i
\(563\) −185.429 + 692.031i −0.329359 + 1.22919i 0.580497 + 0.814262i \(0.302858\pi\)
−0.909857 + 0.414923i \(0.863809\pi\)
\(564\) −192.494 + 111.137i −0.341302 + 0.197051i
\(565\) −659.872 517.966i −1.16792 0.916754i
\(566\) −224.087 −0.395913
\(567\) −749.044 + 84.2589i −1.32107 + 0.148605i
\(568\) 80.6812 + 80.6812i 0.142044 + 0.142044i
\(569\) −724.073 418.043i −1.27254 0.734699i −0.297071 0.954855i \(-0.596010\pi\)
−0.975464 + 0.220157i \(0.929343\pi\)
\(570\) 633.697 + 270.688i 1.11175 + 0.474892i
\(571\) −517.327 896.036i −0.906001 1.56924i −0.819568 0.572982i \(-0.805786\pi\)
−0.0864332 0.996258i \(-0.527547\pi\)
\(572\) 27.8846 + 104.067i 0.0487493 + 0.181935i
\(573\) 67.0435 + 67.0435i 0.117004 + 0.117004i
\(574\) −59.1778 8.93064i −0.103097 0.0155586i
\(575\) 393.485 215.782i 0.684322 0.375273i
\(576\) 75.8178 131.320i 0.131628 0.227987i
\(577\) −115.431 30.9295i −0.200053 0.0536040i 0.157401 0.987535i \(-0.449688\pi\)
−0.357454 + 0.933931i \(0.616355\pi\)
\(578\) −70.3762 + 262.647i −0.121758 + 0.454407i
\(579\) −973.666 562.146i −1.68163 0.970892i
\(580\) −299.180 398.907i −0.515828 0.687770i
\(581\) −471.157 + 184.817i −0.810942 + 0.318101i
\(582\) −342.249 + 342.249i −0.588058 + 0.588058i
\(583\) 38.2162 10.2400i 0.0655509 0.0175643i
\(584\) −217.449 + 125.545i −0.372345 + 0.214973i
\(585\) −546.907 1362.54i −0.934884 2.32913i
\(586\) −100.182 + 173.521i −0.170959 + 0.296110i
\(587\) −808.313 + 808.313i −1.37702 + 1.37702i −0.527416 + 0.849607i \(0.676839\pi\)
−0.849607 + 0.527416i \(0.823161\pi\)
\(588\) 275.830 438.626i 0.469098 0.745962i
\(589\) 294.907i 0.500691i
\(590\) 419.818 + 329.535i 0.711556 + 0.558535i
\(591\) −153.624 266.084i −0.259939 0.450227i
\(592\) −136.851 36.6692i −0.231168 0.0619413i
\(593\) 86.3085 23.1263i 0.145546 0.0389988i −0.185311 0.982680i \(-0.559329\pi\)
0.330856 + 0.943681i \(0.392662\pi\)
\(594\) 258.816i 0.435717i
\(595\) −180.943 + 292.835i −0.304106 + 0.492160i
\(596\) −418.182 −0.701648
\(597\) 412.642 + 1540.00i 0.691192 + 2.57956i
\(598\) 101.788 379.880i 0.170215 0.635250i
\(599\) 337.198 194.681i 0.562934 0.325010i −0.191388 0.981514i \(-0.561299\pi\)
0.754322 + 0.656504i \(0.227966\pi\)
\(600\) 270.110 258.482i 0.450183 0.430803i
\(601\) 478.638 0.796402 0.398201 0.917298i \(-0.369635\pi\)
0.398201 + 0.917298i \(0.369635\pi\)
\(602\) −80.1847 108.688i −0.133197 0.180544i
\(603\) −431.861 431.861i −0.716188 0.716188i
\(604\) 280.750 + 162.091i 0.464818 + 0.268363i
\(605\) 213.908 500.771i 0.353567 0.827721i
\(606\) 536.487 + 929.223i 0.885292 + 1.53337i
\(607\) 165.729 + 618.509i 0.273030 + 1.01896i 0.957150 + 0.289592i \(0.0935195\pi\)
−0.684121 + 0.729369i \(0.739814\pi\)
\(608\) 73.7267 + 73.7267i 0.121261 + 0.121261i
\(609\) −1150.89 + 1442.63i −1.88980 + 2.36885i
\(610\) 720.362 + 102.909i 1.18092 + 0.168703i
\(611\) −162.820 + 282.012i −0.266481 + 0.461559i
\(612\) 360.133 + 96.4973i 0.588453 + 0.157675i
\(613\) −295.398 + 1102.44i −0.481889 + 1.79843i 0.111792 + 0.993732i \(0.464341\pi\)
−0.593681 + 0.804701i \(0.702326\pi\)
\(614\) 420.199 + 242.602i 0.684363 + 0.395117i
\(615\) −22.6020 + 158.214i −0.0367512 + 0.257258i
\(616\) 53.8178 + 42.9343i 0.0873666 + 0.0696985i
\(617\) 15.0890 15.0890i 0.0244555 0.0244555i −0.694773 0.719229i \(-0.744495\pi\)
0.719229 + 0.694773i \(0.244495\pi\)
\(618\) 405.893 108.759i 0.656785 0.175985i
\(619\) −124.687 + 71.9881i −0.201433 + 0.116297i −0.597324 0.802000i \(-0.703769\pi\)
0.395891 + 0.918298i \(0.370436\pi\)
\(620\) 147.138 + 62.8513i 0.237320 + 0.101373i
\(621\) −472.383 + 818.191i −0.760681 + 1.31754i
\(622\) −7.47723 + 7.47723i −0.0120213 + 0.0120213i
\(623\) −465.995 + 343.789i −0.747985 + 0.551828i
\(624\) 327.636i 0.525057i
\(625\) 554.485 288.395i 0.887175 0.461433i
\(626\) −423.089 732.812i −0.675861 1.17063i
\(627\) 327.316 + 87.7040i 0.522035 + 0.139879i
\(628\) 266.123 71.3075i 0.423763 0.113547i
\(629\) 348.356i 0.553825i
\(630\) −798.126 493.163i −1.26687 0.782798i
\(631\) 395.200 0.626307 0.313154 0.949703i \(-0.398615\pi\)
0.313154 + 0.949703i \(0.398615\pi\)
\(632\) −74.0864 276.494i −0.117225 0.437491i
\(633\) −243.173 + 907.536i −0.384160 + 1.43371i
\(634\) −498.831 + 288.000i −0.786799 + 0.454259i
\(635\) 108.952 138.801i 0.171578 0.218584i
\(636\) −120.317 −0.189177
\(637\) 28.6601 758.564i 0.0449923 1.19084i
\(638\) −173.386 173.386i −0.271765 0.271765i
\(639\) −662.192 382.317i −1.03629 0.598305i
\(640\) 52.4974 21.0718i 0.0820272 0.0329247i
\(641\) 50.3416 + 87.1942i 0.0785361 + 0.136028i 0.902619 0.430441i \(-0.141642\pi\)
−0.824082 + 0.566470i \(0.808309\pi\)
\(642\) 116.097 + 433.279i 0.180836 + 0.674889i
\(643\) 301.770 + 301.770i 0.469316 + 0.469316i 0.901693 0.432377i \(-0.142325\pi\)
−0.432377 + 0.901693i \(0.642325\pi\)
\(644\) −91.7712 233.954i −0.142502 0.363283i
\(645\) −288.547 + 216.410i −0.447359 + 0.335519i
\(646\) −128.182 + 222.018i −0.198424 + 0.343681i
\(647\) 517.894 + 138.769i 0.800454 + 0.214481i 0.635784 0.771867i \(-0.280677\pi\)
0.164671 + 0.986349i \(0.447344\pi\)
\(648\) −78.8281 + 294.190i −0.121648 + 0.453998i
\(649\) 227.290 + 131.226i 0.350215 + 0.202197i
\(650\) 153.362 525.814i 0.235942 0.808944i
\(651\) 88.3644 585.536i 0.135736 0.899441i
\(652\) 134.455 134.455i 0.206220 0.206220i
\(653\) 938.581 251.492i 1.43734 0.385133i 0.545737 0.837957i \(-0.316250\pi\)
0.891600 + 0.452823i \(0.149583\pi\)
\(654\) −241.362 + 139.350i −0.369055 + 0.213074i
\(655\) 137.666 322.284i 0.210177 0.492037i
\(656\) −12.0911 + 20.9424i −0.0184316 + 0.0319244i
\(657\) 1189.81 1189.81i 1.81098 1.81098i
\(658\) 23.2607 + 206.783i 0.0353506 + 0.314260i
\(659\) 735.842i 1.11660i −0.829638 0.558302i \(-0.811453\pi\)
0.829638 0.558302i \(-0.188547\pi\)
\(660\) 113.517 144.617i 0.171995 0.219116i
\(661\) −23.0901 39.9932i −0.0349320 0.0605040i 0.848031 0.529947i \(-0.177788\pi\)
−0.882963 + 0.469443i \(0.844455\pi\)
\(662\) 323.247 + 86.6139i 0.488289 + 0.130837i
\(663\) 778.131 208.500i 1.17365 0.314479i
\(664\) 204.499i 0.307980i
\(665\) 469.585 442.329i 0.706143 0.665157i
\(666\) 949.449 1.42560
\(667\) 231.664 + 864.583i 0.347323 + 1.29623i
\(668\) −98.0861 + 366.062i −0.146835 + 0.547997i
\(669\) 1613.12 931.336i 2.41124 1.39213i
\(670\) −27.2533 226.206i −0.0406766 0.337621i
\(671\) 357.837 0.533290
\(672\) −124.293 168.475i −0.184960 0.250707i
\(673\) −122.772 122.772i −0.182425 0.182425i 0.609986 0.792412i \(-0.291175\pi\)
−0.792412 + 0.609986i \(0.791175\pi\)
\(674\) −547.798 316.271i −0.812756 0.469245i
\(675\) −682.791 + 1124.75i −1.01154 + 1.66630i
\(676\) −71.0000 122.976i −0.105030 0.181917i
\(677\) −89.4436 333.808i −0.132118 0.493069i 0.867876 0.496782i \(-0.165485\pi\)
−0.999993 + 0.00371227i \(0.998818\pi\)
\(678\) 887.065 + 887.065i 1.30836 + 1.30836i
\(679\) 165.467 + 421.830i 0.243693 + 0.621251i
\(680\) 83.4534 + 111.271i 0.122726 + 0.163634i
\(681\) 109.612 189.853i 0.160957 0.278786i
\(682\) 75.9997 + 20.3640i 0.111436 + 0.0298593i
\(683\) 183.607 685.231i 0.268824 1.00327i −0.691043 0.722813i \(-0.742849\pi\)
0.959868 0.280453i \(-0.0904846\pi\)
\(684\) −605.113 349.362i −0.884669 0.510764i
\(685\) 47.4058 + 6.77226i 0.0692055 + 0.00988650i
\(686\) −273.034 400.937i −0.398008 0.584457i
\(687\) −1178.00 + 1178.00i −1.71470 + 1.71470i
\(688\) −52.7150 + 14.1249i −0.0766206 + 0.0205304i
\(689\) −152.654 + 88.1346i −0.221558 + 0.127917i
\(690\) −622.809 + 249.988i −0.902622 + 0.362301i
\(691\) −572.329 + 991.302i −0.828261 + 1.43459i 0.0711395 + 0.997466i \(0.477336\pi\)
−0.899401 + 0.437125i \(0.855997\pi\)
\(692\) −0.364391 + 0.364391i −0.000526576 + 0.000526576i
\(693\) −422.834 184.572i −0.610150 0.266338i
\(694\) 200.657i 0.289132i
\(695\) 31.7110 + 263.205i 0.0456274 + 0.378713i
\(696\) 372.840 + 645.777i 0.535689 + 0.927841i
\(697\) −57.4325 15.3890i −0.0823995 0.0220789i
\(698\) −408.252 + 109.391i −0.584888 + 0.156720i
\(699\) 608.364i 0.870335i
\(700\) −120.613 328.561i −0.172305 0.469373i
\(701\) 496.362 0.708077 0.354039 0.935231i \(-0.384808\pi\)
0.354039 + 0.935231i \(0.384808\pi\)
\(702\) 298.442 + 1113.80i 0.425131 + 1.58661i
\(703\) −168.969 + 630.600i −0.240354 + 0.897013i
\(704\) 24.0909 13.9089i 0.0342201 0.0197570i
\(705\) 551.694 66.4682i 0.782544 0.0942811i
\(706\) 48.7246 0.0690151
\(707\) 998.197 112.286i 1.41188 0.158820i
\(708\) −564.360 564.360i −0.797119 0.797119i
\(709\) 282.281 + 162.975i 0.398140 + 0.229866i 0.685681 0.727902i \(-0.259504\pi\)
−0.287541 + 0.957768i \(0.592838\pi\)
\(710\) −106.256 264.722i −0.149656 0.372848i
\(711\) 959.132 + 1661.27i 1.34899 + 2.33652i
\(712\) 60.5602 + 226.014i 0.0850564 + 0.317435i
\(713\) −203.089 203.089i −0.284837 0.284837i
\(714\) 321.029 402.408i 0.449621 0.563596i
\(715\) 38.0911 266.638i 0.0532743 0.372920i
\(716\) −43.6356 + 75.5791i −0.0609436 + 0.105557i
\(717\) −2240.58 600.363i −3.12494 0.837326i
\(718\) 180.116 672.203i 0.250858 0.936216i
\(719\) −543.130 313.576i −0.755396 0.436128i 0.0722443 0.997387i \(-0.476984\pi\)
−0.827640 + 0.561259i \(0.810317\pi\)
\(720\) −303.271 + 227.453i −0.421210 + 0.315908i
\(721\) 58.7029 388.988i 0.0814187 0.539511i
\(722\) −21.2733 + 21.2733i −0.0294644 + 0.0294644i
\(723\) 797.629 213.724i 1.10322 0.295607i
\(724\) −6.37595 + 3.68116i −0.00880656 + 0.00508447i
\(725\) 296.080 + 1210.91i 0.408386 + 1.67022i
\(726\) −407.168 + 705.236i −0.560838 + 0.971399i
\(727\) −9.62370 + 9.62370i −0.0132376 + 0.0132376i −0.713695 0.700457i \(-0.752980\pi\)
0.700457 + 0.713695i \(0.252980\pi\)
\(728\) −281.110 122.708i −0.386140 0.168555i
\(729\) 463.404i 0.635670i
\(730\) 623.216 75.0852i 0.853720 0.102856i
\(731\) −67.0932 116.209i −0.0917827 0.158972i
\(732\) −1051.12 281.647i −1.43596 0.384763i
\(733\) −211.301 + 56.6180i −0.288269 + 0.0772415i −0.400056 0.916491i \(-0.631009\pi\)
0.111787 + 0.993732i \(0.464343\pi\)
\(734\) 102.978i 0.140297i
\(735\) −1064.90 + 737.539i −1.44884 + 1.00345i
\(736\) −101.545 −0.137968
\(737\) −28.9986 108.224i −0.0393468 0.146844i
\(738\) 41.9429 156.533i 0.0568332 0.212104i
\(739\) −467.750 + 270.055i −0.632949 + 0.365434i −0.781893 0.623412i \(-0.785746\pi\)
0.148944 + 0.988846i \(0.452413\pi\)
\(740\) 278.616 + 218.699i 0.376508 + 0.295539i
\(741\) −1509.72 −2.03741
\(742\) −45.0617 + 103.231i −0.0607301 + 0.139126i
\(743\) 142.376 + 142.376i 0.191624 + 0.191624i 0.796397 0.604774i \(-0.206736\pi\)
−0.604774 + 0.796397i \(0.706736\pi\)
\(744\) −207.215 119.636i −0.278515 0.160801i
\(745\) 961.417 + 410.676i 1.29049 + 0.551243i
\(746\) −243.271 421.358i −0.326101 0.564823i
\(747\) −354.694 1323.74i −0.474824 1.77207i
\(748\) 48.3644 + 48.3644i 0.0646583 + 0.0646583i
\(749\) 415.233 + 62.6636i 0.554383 + 0.0836630i
\(750\) −874.835 + 328.998i −1.16645 + 0.438664i
\(751\) 602.043 1042.77i 0.801656 1.38851i −0.116870 0.993147i \(-0.537286\pi\)
0.918526 0.395361i \(-0.129381\pi\)
\(752\) 81.2149 + 21.7615i 0.107999 + 0.0289381i
\(753\) 254.153 948.514i 0.337521 1.25965i
\(754\) 946.091 + 546.226i 1.25476 + 0.724437i
\(755\) −486.273 648.364i −0.644071 0.858761i
\(756\) 575.998 + 459.515i 0.761902 + 0.607824i
\(757\) −297.410 + 297.410i −0.392880 + 0.392880i −0.875713 0.482833i \(-0.839608\pi\)
0.482833 + 0.875713i \(0.339608\pi\)
\(758\) 45.8552 12.2869i 0.0604950 0.0162096i
\(759\) −285.805 + 165.010i −0.376555 + 0.217404i
\(760\) −97.0971 241.904i −0.127759 0.318295i
\(761\) 368.271 637.864i 0.483931 0.838192i −0.515899 0.856649i \(-0.672542\pi\)
0.999830 + 0.0184569i \(0.00587536\pi\)
\(762\) −186.590 + 186.590i −0.244869 + 0.244869i
\(763\) 29.1658 + 259.278i 0.0382251 + 0.339814i
\(764\) 35.8654i 0.0469443i
\(765\) −733.194 575.520i −0.958424 0.752314i
\(766\) −508.693 881.082i −0.664090 1.15024i
\(767\) −1129.45 302.634i −1.47255 0.394569i
\(768\) −81.7126 + 21.8948i −0.106397 + 0.0285089i
\(769\) 1006.45i 1.30877i −0.756160 0.654387i \(-0.772927\pi\)
0.756160 0.654387i \(-0.227073\pi\)
\(770\) −81.5655 151.559i −0.105929 0.196830i
\(771\) 1261.27 1.63588
\(772\) 110.073 + 410.797i 0.142581 + 0.532121i
\(773\) 208.117 776.703i 0.269233 1.00479i −0.690376 0.723451i \(-0.742555\pi\)
0.959608 0.281339i \(-0.0907786\pi\)
\(774\) 316.729 182.863i 0.409210 0.236258i
\(775\) −276.554 288.995i −0.356844 0.372897i
\(776\) 183.089 0.235939
\(777\) 524.437 1201.42i 0.674951 1.54624i
\(778\) 531.089 + 531.089i 0.682634 + 0.682634i
\(779\) 96.5009 + 55.7148i 0.123878 + 0.0715209i
\(780\) −321.755 + 753.247i −0.412506 + 0.965701i
\(781\) −70.1366 121.480i −0.0898036 0.155544i
\(782\) −64.6205 241.167i −0.0826350 0.308398i
\(783\) −1855.71 1855.71i −2.37000 2.37000i
\(784\) −191.102 + 43.5445i −0.243752 + 0.0555415i
\(785\) −681.855 97.4079i −0.868605 0.124086i
\(786\) −262.043 + 453.873i −0.333389 + 0.577446i
\(787\) 643.687 + 172.475i 0.817900 + 0.219156i 0.643428 0.765507i \(-0.277512\pi\)
0.174472 + 0.984662i \(0.444178\pi\)
\(788\) −30.0808 + 112.263i −0.0381736 + 0.142466i
\(789\) 1504.00 + 868.335i 1.90621 + 1.10055i
\(790\) −101.204 + 708.428i −0.128106 + 0.896744i
\(791\) 1093.33 428.869i 1.38221 0.542186i
\(792\) −131.818 + 131.818i −0.166437 + 0.166437i
\(793\) −1539.93 + 412.624i −1.94191 + 0.520333i
\(794\) 329.326 190.137i 0.414769 0.239467i
\(795\) 276.613 + 118.157i 0.347941 + 0.148625i
\(796\) 301.545 522.290i 0.378825 0.656144i
\(797\) 202.408 202.408i 0.253962 0.253962i −0.568631 0.822593i \(-0.692527\pi\)
0.822593 + 0.568631i \(0.192527\pi\)
\(798\) −776.320 + 572.732i −0.972832 + 0.717709i
\(799\) 206.733i 0.258740i
\(800\) −141.387 3.11027i −0.176734 0.00388784i
\(801\) −784.020 1357.96i −0.978801 1.69533i
\(802\) 754.784 + 202.244i 0.941127 + 0.252174i
\(803\) 298.167 79.8936i 0.371316 0.0994939i
\(804\) 340.725i 0.423787i
\(805\) −18.7697 + 627.994i −0.0233164 + 0.780117i
\(806\) −350.542 −0.434916
\(807\) −391.617 1461.53i −0.485275 1.81107i
\(808\) 105.049 392.046i 0.130011 0.485206i
\(809\) 138.014 79.6822i 0.170598 0.0984947i −0.412270 0.911062i \(-0.635264\pi\)
0.582868 + 0.812567i \(0.301931\pi\)
\(810\) 470.139 598.942i 0.580418 0.739434i
\(811\) 741.545 0.914358 0.457179 0.889375i \(-0.348860\pi\)
0.457179 + 0.889375i \(0.348860\pi\)
\(812\) 693.712 78.0346i 0.854325 0.0961018i
\(813\) 1531.04 + 1531.04i 1.88320 + 1.88320i
\(814\) 150.843 + 87.0890i 0.185310 + 0.106989i
\(815\) −441.160 + 177.076i −0.541301 + 0.217271i
\(816\) −104.000 180.133i −0.127451 0.220752i
\(817\) 65.0866 + 242.906i 0.0796654 + 0.297315i
\(818\) 125.317 + 125.317i 0.153199 + 0.153199i
\(819\) 2032.47 + 306.725i 2.48165 + 0.374511i
\(820\) 48.3644 36.2733i 0.0589810 0.0442357i
\(821\) −788.950 + 1366.50i −0.960963 + 1.66444i −0.240871 + 0.970557i \(0.577433\pi\)
−0.720092 + 0.693879i \(0.755900\pi\)
\(822\) −69.1724 18.5347i −0.0841513 0.0225483i
\(823\) −157.478 + 587.715i −0.191346 + 0.714114i 0.801836 + 0.597544i \(0.203857\pi\)
−0.993182 + 0.116570i \(0.962810\pi\)
\(824\) −137.659 79.4772i −0.167061 0.0964529i
\(825\) −403.000 + 221.000i −0.488485 + 0.267879i
\(826\) −695.586 + 272.851i −0.842114 + 0.330328i
\(827\) 1014.44 1014.44i 1.22665 1.22665i 0.261426 0.965223i \(-0.415807\pi\)
0.965223 0.261426i \(-0.0841929\pi\)
\(828\) 657.304 176.124i 0.793846 0.212710i
\(829\) 344.517 198.907i 0.415581 0.239936i −0.277604 0.960696i \(-0.589540\pi\)
0.693185 + 0.720760i \(0.256207\pi\)
\(830\) 200.828 470.151i 0.241962 0.566447i
\(831\) 42.9979 74.4746i 0.0517424 0.0896204i
\(832\) −87.6356 + 87.6356i −0.105331 + 0.105331i
\(833\) −225.030 426.154i −0.270145 0.511589i
\(834\) 396.455i 0.475366i
\(835\) 584.995 745.266i 0.700593 0.892534i
\(836\) −64.0911 111.009i −0.0766640 0.132786i
\(837\) 813.404 + 217.951i 0.971809 + 0.260396i
\(838\) −158.827 + 42.5575i −0.189531 + 0.0507846i
\(839\) 1475.70i 1.75888i 0.476011 + 0.879439i \(0.342082\pi\)
−0.476011 + 0.879439i \(0.657918\pi\)
\(840\) 120.303 + 509.393i 0.143218 + 0.606420i
\(841\) −1645.35 −1.95643
\(842\) −195.622 730.071i −0.232330 0.867068i
\(843\) 414.007 1545.10i 0.491112 1.83285i
\(844\) 307.790 177.703i 0.364681 0.210548i
\(845\) 42.4634 + 352.451i 0.0502526 + 0.417102i
\(846\) −563.453 −0.666021
\(847\) 452.594 + 613.477i 0.534350 + 0.724295i
\(848\) 32.1822 + 32.1822i 0.0379507 + 0.0379507i
\(849\) −725.534 418.887i −0.854575 0.493389i
\(850\) −82.5886 337.772i −0.0971630 0.397379i
\(851\) −317.905 550.627i −0.373566 0.647035i
\(852\) 110.406 + 412.042i 0.129585 + 0.483617i
\(853\) 307.404 + 307.404i 0.360380 + 0.360380i 0.863953 0.503573i \(-0.167982\pi\)
−0.503573 + 0.863953i \(0.667982\pi\)
\(854\) −635.323 + 796.372i −0.743938 + 0.932520i
\(855\) 1048.09 + 1397.45i 1.22583 + 1.63444i
\(856\) 84.8395 146.946i 0.0991116 0.171666i
\(857\) −1162.11 311.386i −1.35602 0.363344i −0.493666 0.869651i \(-0.664344\pi\)
−0.862353 + 0.506307i \(0.831010\pi\)
\(858\) −104.250 + 389.066i −0.121503 + 0.453456i
\(859\) −795.008 458.998i −0.925504 0.534340i −0.0401170 0.999195i \(-0.512773\pi\)
−0.885387 + 0.464855i \(0.846106\pi\)
\(860\) 135.065 + 19.2950i 0.157053 + 0.0224361i
\(861\) −174.908 139.536i −0.203145 0.162063i
\(862\) 477.473 477.473i 0.553913 0.553913i
\(863\) −1226.45 + 328.625i −1.42114 + 0.380794i −0.885889 0.463897i \(-0.846451\pi\)
−0.535254 + 0.844691i \(0.679784\pi\)
\(864\) 257.839 148.863i 0.298425 0.172296i
\(865\) 1.19560 0.479898i 0.00138219 0.000554795i
\(866\) −542.271 + 939.241i −0.626179 + 1.08457i
\(867\) −718.828 + 718.828i −0.829098 + 0.829098i
\(868\) −180.254 + 132.983i −0.207666 + 0.153206i
\(869\) 351.909i 0.404958i
\(870\) −222.986 1850.81i −0.256306 2.12737i
\(871\) 249.588 + 432.299i 0.286553 + 0.496325i
\(872\) 101.833 + 27.2859i 0.116780 + 0.0312912i
\(873\) −1185.15 + 317.559i −1.35756 + 0.363756i
\(874\) 467.909i 0.535365i
\(875\) −45.3695 + 873.823i −0.0518509 + 0.998655i
\(876\) −938.725 −1.07160
\(877\) 104.335 + 389.382i 0.118968 + 0.443993i 0.999553 0.0298940i \(-0.00951699\pi\)
−0.880585 + 0.473888i \(0.842850\pi\)
\(878\) −98.2949 + 366.841i −0.111953 + 0.417815i
\(879\) −648.727 + 374.542i −0.738028 + 0.426101i
\(880\) −69.0452 + 8.31858i −0.0784605 + 0.00945294i
\(881\) 338.402 0.384111 0.192055 0.981384i \(-0.438485\pi\)
0.192055 + 0.981384i \(0.438485\pi\)
\(882\) 1161.49 613.323i 1.31688 0.695378i
\(883\) −455.410 455.410i −0.515753 0.515753i 0.400530 0.916283i \(-0.368826\pi\)
−0.916283 + 0.400530i \(0.868826\pi\)
\(884\) −263.903 152.364i −0.298533 0.172358i
\(885\) 743.255 + 1851.72i 0.839836 + 2.09233i
\(886\) 62.3525 + 107.998i 0.0703753 + 0.121894i
\(887\) 104.463 + 389.861i 0.117771 + 0.439528i 0.999479 0.0322675i \(-0.0102729\pi\)
−0.881708 + 0.471795i \(0.843606\pi\)
\(888\) −374.542 374.542i −0.421782 0.421782i
\(889\) 90.2107 + 229.976i 0.101474 + 0.258691i
\(890\) 82.7267 579.087i 0.0929514 0.650659i
\(891\) 187.216 324.267i 0.210119 0.363936i
\(892\) −680.589 182.363i −0.762992 0.204443i
\(893\) 100.275 374.232i 0.112290 0.419072i
\(894\) −1353.96 781.711i −1.51450 0.874397i
\(895\) 174.542 130.907i 0.195019 0.146265i
\(896\) −11.8178 + 78.3093i −0.0131895 + 0.0873987i
\(897\) 1039.67 1039.67i 1.15906 1.15906i
\(898\) −137.163 + 36.7526i −0.152742 + 0.0409272i
\(899\) 690.927 398.907i 0.768550 0.443723i
\(900\) 920.603 225.096i 1.02289 0.250107i
\(901\) −55.9524 + 96.9124i −0.0621003 + 0.107561i
\(902\) 21.0217 21.0217i 0.0233057 0.0233057i
\(903\) −56.4458 501.792i −0.0625092 0.555694i
\(904\) 474.542i 0.524936i
\(905\) 18.2736 2.20161i 0.0201919 0.00243272i
\(906\) 605.996 + 1049.62i 0.668870 + 1.15852i
\(907\) 589.236 + 157.885i 0.649653 + 0.174074i 0.568572 0.822633i \(-0.307496\pi\)
0.0810812 + 0.996707i \(0.474163\pi\)
\(908\) −80.1006 + 21.4629i −0.0882165 + 0.0236375i
\(909\) 2719.94i 2.99224i
\(910\) 525.777 + 558.174i 0.577777 + 0.613378i
\(911\) −716.063 −0.786019 −0.393009 0.919534i \(-0.628566\pi\)
−0.393009 + 0.919534i \(0.628566\pi\)
\(912\) 100.890 + 376.525i 0.110625 + 0.412857i
\(913\) 65.0692 242.841i 0.0712696 0.265982i
\(914\) −852.004 + 491.905i −0.932171 + 0.538189i
\(915\) 2139.97 + 1679.77i 2.33877 + 1.83581i
\(916\) 630.178 0.687967
\(917\) 291.279 + 394.819i 0.317643 + 0.430555i
\(918\) 517.631 + 517.631i 0.563869 + 0.563869i
\(919\) −222.629 128.535i −0.242251 0.139864i 0.373960 0.927445i \(-0.378000\pi\)
−0.616211 + 0.787581i \(0.711333\pi\)
\(920\) 233.455 + 99.7219i 0.253755 + 0.108393i
\(921\) 906.995 + 1570.96i 0.984793 + 1.70571i
\(922\) 70.1435 + 261.779i 0.0760776 + 0.283925i
\(923\) 441.909 + 441.909i 0.478775 + 0.478775i
\(924\) 93.9904 + 239.612i 0.101721 + 0.259320i
\(925\) −425.774 776.412i −0.460297 0.839364i
\(926\) 268.079 464.327i 0.289502 0.501433i
\(927\) 1028.92 + 275.699i 1.10995 + 0.297410i
\(928\) 73.0050 272.458i 0.0786692 0.293597i
\(929\) −1104.77 637.841i −1.18921 0.686588i −0.231080 0.972935i \(-0.574226\pi\)
−0.958126 + 0.286346i \(0.907559\pi\)
\(930\) 358.907 + 478.542i 0.385921 + 0.514562i
\(931\) 200.650 + 880.581i 0.215521 + 0.945845i
\(932\) 162.725 162.725i 0.174597 0.174597i
\(933\) −38.1865 + 10.2320i −0.0409287 + 0.0109668i
\(934\) 236.403 136.487i 0.253108 0.146132i
\(935\) −63.6953 158.688i −0.0681233 0.169720i
\(936\) 415.271 719.271i 0.443666 0.768452i
\(937\) −589.180 + 589.180i −0.628794 + 0.628794i −0.947765 0.318970i \(-0.896663\pi\)
0.318970 + 0.947765i \(0.396663\pi\)
\(938\) 292.340 + 127.610i 0.311663 + 0.136045i
\(939\) 3163.53i 3.36904i
\(940\) −165.345 129.788i −0.175899 0.138072i
\(941\) −98.6377 170.845i −0.104822 0.181557i 0.808843 0.588024i \(-0.200094\pi\)
−0.913666 + 0.406467i \(0.866761\pi\)
\(942\) 994.932 + 266.591i 1.05619 + 0.283005i
\(943\) −104.824 + 28.0875i −0.111160 + 0.0297853i
\(944\) 301.909i 0.319819i
\(945\) −872.974 1622.10i −0.923783 1.71651i
\(946\) 67.0932 0.0709230
\(947\) −400.951 1496.37i −0.423390 1.58011i −0.767413 0.641153i \(-0.778456\pi\)
0.344023 0.938961i \(-0.388210\pi\)
\(948\) 276.980 1033.71i 0.292173 1.09041i
\(949\) −1191.02 + 687.636i −1.25503 + 0.724590i
\(950\) −14.3319 + 651.501i −0.0150862 + 0.685790i
\(951\) −2153.44 −2.26440
\(952\) −193.504 + 21.7670i −0.203261 + 0.0228645i
\(953\) 1139.41 + 1139.41i 1.19560 + 1.19560i 0.975471 + 0.220128i \(0.0706475\pi\)
0.220128 + 0.975471i \(0.429353\pi\)
\(954\) −264.136 152.499i −0.276872 0.159852i
\(955\) −35.2217 + 82.4560i −0.0368813 + 0.0863413i
\(956\) 438.725 + 759.893i 0.458917 + 0.794868i
\(957\) −237.266 885.490i −0.247927 0.925277i
\(958\) −741.545 741.545i −0.774055 0.774055i
\(959\) −41.8095 + 52.4079i −0.0435970 + 0.0546485i
\(960\) 209.362 + 29.9089i 0.218086 + 0.0311551i
\(961\) 352.500 610.548i 0.366805 0.635326i
\(962\) −749.566 200.846i −0.779175 0.208779i
\(963\) −294.300 + 1098.34i −0.305608 + 1.14054i
\(964\) −270.515 156.182i −0.280618 0.162015i
\(965\) 150.362 1052.54i 0.155816 1.09071i
\(966\) 140.202 929.031i 0.145136 0.961729i
\(967\) −184.424 + 184.424i −0.190718 + 0.190718i −0.796006 0.605289i \(-0.793058\pi\)
0.605289 + 0.796006i \(0.293058\pi\)
\(968\) 297.545 79.7268i 0.307381 0.0823624i
\(969\) −830.040 + 479.224i −0.856594 + 0.494555i
\(970\) −420.929 179.803i −0.433947 0.185364i
\(971\) −745.089 + 1290.53i −0.767342 + 1.32908i 0.171658 + 0.985157i \(0.445088\pi\)
−0.938999 + 0.343919i \(0.888246\pi\)
\(972\) −135.271 + 135.271i −0.139168 + 0.139168i
\(973\) −340.157 148.483i −0.349596 0.152603i
\(974\) 1114.81i 1.14457i
\(975\) 1479.45 1415.76i 1.51739 1.45207i
\(976\) 205.818 + 356.487i 0.210879 + 0.365253i
\(977\) 1016.44 + 272.355i 1.04037 + 0.278767i 0.738268 0.674507i \(-0.235644\pi\)
0.302105 + 0.953275i \(0.402311\pi\)
\(978\) 686.670 183.993i 0.702116 0.188131i
\(979\) 287.659i 0.293830i
\(980\) 482.113 + 87.5611i 0.491952 + 0.0893481i
\(981\) −706.495 −0.720178
\(982\) 84.9179 + 316.918i 0.0864744 + 0.322727i
\(983\) 185.170 691.062i 0.188372 0.703014i −0.805512 0.592580i \(-0.798109\pi\)
0.993884 0.110434i \(-0.0352240\pi\)
\(984\) −78.2955 + 45.2039i −0.0795686 + 0.0459390i
\(985\) 179.405 228.556i 0.182137 0.232037i
\(986\) 693.545 0.703392
\(987\) −311.228 + 712.989i −0.315328 + 0.722380i
\(988\) 403.818 + 403.818i 0.408722 + 0.408722i
\(989\) −212.101 122.457i −0.214460 0.123819i
\(990\) 432.506 173.602i 0.436875 0.175356i
\(991\) −646.768 1120.24i −0.652642 1.13041i −0.982479 0.186371i \(-0.940327\pi\)
0.329838 0.944038i \(-0.393006\pi\)
\(992\) 23.4256 + 87.4256i 0.0236145 + 0.0881307i
\(993\) 884.681 + 884.681i 0.890918 + 0.890918i
\(994\) 394.880 + 59.5921i 0.397264 + 0.0599518i
\(995\) −1206.18 + 904.634i −1.21224 + 0.909179i
\(996\) −382.271 + 662.113i −0.383806 + 0.664772i
\(997\) −175.157 46.9331i −0.175684 0.0470743i 0.169905 0.985460i \(-0.445654\pi\)
−0.345588 + 0.938386i \(0.612321\pi\)
\(998\) 241.052 899.618i 0.241535 0.901421i
\(999\) 1614.43 + 932.091i 1.61605 + 0.933024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 70.3.l.a.23.2 8
5.2 odd 4 inner 70.3.l.a.37.1 yes 8
5.3 odd 4 350.3.p.c.107.2 8
5.4 even 2 350.3.p.c.93.1 8
7.2 even 3 490.3.f.l.393.2 4
7.4 even 3 inner 70.3.l.a.53.1 yes 8
7.5 odd 6 490.3.f.e.393.1 4
35.2 odd 12 490.3.f.l.197.2 4
35.4 even 6 350.3.p.c.193.2 8
35.12 even 12 490.3.f.e.197.1 4
35.18 odd 12 350.3.p.c.207.1 8
35.32 odd 12 inner 70.3.l.a.67.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.a.23.2 8 1.1 even 1 trivial
70.3.l.a.37.1 yes 8 5.2 odd 4 inner
70.3.l.a.53.1 yes 8 7.4 even 3 inner
70.3.l.a.67.2 yes 8 35.32 odd 12 inner
350.3.p.c.93.1 8 5.4 even 2
350.3.p.c.107.2 8 5.3 odd 4
350.3.p.c.193.2 8 35.4 even 6
350.3.p.c.207.1 8 35.18 odd 12
490.3.f.e.197.1 4 35.12 even 12
490.3.f.e.393.1 4 7.5 odd 6
490.3.f.l.197.2 4 35.2 odd 12
490.3.f.l.393.2 4 7.2 even 3