Properties

Label 350.3.p.c.207.1
Level $350$
Weight $3$
Character 350.207
Analytic conductor $9.537$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,3,Mod(93,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.93"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.p (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,4,0,0,-16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 207.1
Root \(0.578737 + 2.15988i\) of defining polynomial
Character \(\chi\) \(=\) 350.207
Dual form 350.3.p.c.93.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 - 1.36603i) q^{2} +(-1.36843 - 5.10704i) q^{3} +(-1.73205 - 1.00000i) q^{4} -7.47723 q^{6} +(2.80041 + 6.41543i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-16.4150 + 9.47723i) q^{9} +(-1.73861 + 3.01137i) q^{11} +(-2.73685 + 10.2141i) q^{12} +(-10.9545 + 10.9545i) q^{13} +(9.78866 - 1.47723i) q^{14} +(2.00000 + 3.46410i) q^{16} +(-9.49996 + 2.54551i) q^{17} +(6.93781 + 25.8923i) q^{18} +(-15.9623 + 9.21584i) q^{19} +(28.9317 - 23.0809i) q^{21} +(3.47723 + 3.47723i) q^{22} +(-17.3390 - 4.64598i) q^{23} +(12.9509 + 7.47723i) q^{24} +(10.9545 + 18.9737i) q^{26} +(37.2158 + 37.2158i) q^{27} +(1.56497 - 13.9123i) q^{28} -49.8634i q^{29} +(-8.00000 + 13.8564i) q^{31} +(5.46410 - 1.46410i) q^{32} +(17.7583 + 4.75833i) q^{33} +13.9089i q^{34} +37.9089 q^{36} +(9.16731 - 34.2129i) q^{37} +(6.74646 + 25.1781i) q^{38} +(70.9352 + 40.9545i) q^{39} -6.04555 q^{41} +(-20.9393 - 47.9696i) q^{42} +(9.64752 - 9.64752i) q^{43} +(6.02273 - 3.47723i) q^{44} +(-12.6931 + 21.9850i) q^{46} +(-5.44036 + 20.3037i) q^{47} +(14.9545 - 14.9545i) q^{48} +(-33.3154 + 35.9317i) q^{49} +(26.0000 + 45.0333i) q^{51} +(29.9281 - 8.01921i) q^{52} +(2.94488 + 10.9904i) q^{53} +(64.4597 - 37.2158i) q^{54} +(-18.4317 - 7.23003i) q^{56} +(68.9089 + 68.9089i) q^{57} +(-68.1146 - 18.2513i) q^{58} +(-65.3652 - 37.7386i) q^{59} +(-51.4545 - 89.1217i) q^{61} +(16.0000 + 16.0000i) q^{62} +(-106.769 - 78.7693i) q^{63} -8.00000i q^{64} +(13.0000 - 22.5167i) q^{66} +(-31.1237 + 8.33958i) q^{67} +(18.9999 + 5.09101i) q^{68} +94.9089i q^{69} +40.3406 q^{71} +(13.8756 - 51.7845i) q^{72} +(22.9762 + 85.7485i) q^{73} +(-43.3802 - 25.0455i) q^{74} +36.8634 q^{76} +(-24.1880 - 2.72088i) q^{77} +(81.9089 - 81.9089i) q^{78} +(-87.6452 + 50.6020i) q^{79} +(53.8406 - 93.2546i) q^{81} +(-2.21282 + 8.25837i) q^{82} +(-51.1247 + 51.1247i) q^{83} +(-73.1920 + 11.0455i) q^{84} +(-9.64752 - 16.7100i) q^{86} +(-254.654 + 68.2344i) q^{87} +(-2.54551 - 9.49996i) q^{88} +(71.6434 - 41.3634i) q^{89} +(-100.954 - 39.6005i) q^{91} +(25.3861 + 25.3861i) q^{92} +(81.7126 + 21.8948i) q^{93} +(25.7441 + 14.8634i) q^{94} +(-14.9545 - 25.9019i) q^{96} +(-45.7723 - 45.7723i) q^{97} +(36.8893 + 58.6616i) q^{98} -65.9089i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 4 q^{3} - 16 q^{6} + 4 q^{7} - 16 q^{8} + 8 q^{11} + 8 q^{12} + 16 q^{16} + 16 q^{17} - 32 q^{18} + 100 q^{21} - 16 q^{22} + 4 q^{23} + 232 q^{27} + 40 q^{28} - 64 q^{31} + 16 q^{32} + 52 q^{33}+ \cdots + 132 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 1.36603i 0.183013 0.683013i
\(3\) −1.36843 5.10704i −0.456142 1.70235i −0.684707 0.728818i \(-0.740070\pi\)
0.228565 0.973529i \(-0.426597\pi\)
\(4\) −1.73205 1.00000i −0.433013 0.250000i
\(5\) 0 0
\(6\) −7.47723 −1.24620
\(7\) 2.80041 + 6.41543i 0.400059 + 0.916489i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −16.4150 + 9.47723i −1.82389 + 1.05303i
\(10\) 0 0
\(11\) −1.73861 + 3.01137i −0.158056 + 0.273761i −0.934167 0.356835i \(-0.883856\pi\)
0.776112 + 0.630595i \(0.217189\pi\)
\(12\) −2.73685 + 10.2141i −0.228071 + 0.851173i
\(13\) −10.9545 + 10.9545i −0.842650 + 0.842650i −0.989203 0.146553i \(-0.953182\pi\)
0.146553 + 0.989203i \(0.453182\pi\)
\(14\) 9.78866 1.47723i 0.699190 0.105516i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −9.49996 + 2.54551i −0.558821 + 0.149736i −0.527165 0.849763i \(-0.676745\pi\)
−0.0316564 + 0.999499i \(0.510078\pi\)
\(18\) 6.93781 + 25.8923i 0.385434 + 1.43846i
\(19\) −15.9623 + 9.21584i −0.840121 + 0.485044i −0.857305 0.514808i \(-0.827863\pi\)
0.0171843 + 0.999852i \(0.494530\pi\)
\(20\) 0 0
\(21\) 28.9317 23.0809i 1.37770 1.09909i
\(22\) 3.47723 + 3.47723i 0.158056 + 0.158056i
\(23\) −17.3390 4.64598i −0.753872 0.201999i −0.138637 0.990343i \(-0.544272\pi\)
−0.615235 + 0.788344i \(0.710939\pi\)
\(24\) 12.9509 + 7.47723i 0.539622 + 0.311551i
\(25\) 0 0
\(26\) 10.9545 + 18.9737i 0.421325 + 0.729756i
\(27\) 37.2158 + 37.2158i 1.37836 + 1.37836i
\(28\) 1.56497 13.9123i 0.0558918 0.496866i
\(29\) 49.8634i 1.71943i −0.510777 0.859713i \(-0.670642\pi\)
0.510777 0.859713i \(-0.329358\pi\)
\(30\) 0 0
\(31\) −8.00000 + 13.8564i −0.258065 + 0.446981i −0.965723 0.259573i \(-0.916418\pi\)
0.707659 + 0.706554i \(0.249751\pi\)
\(32\) 5.46410 1.46410i 0.170753 0.0457532i
\(33\) 17.7583 + 4.75833i 0.538131 + 0.144192i
\(34\) 13.9089i 0.409085i
\(35\) 0 0
\(36\) 37.9089 1.05303
\(37\) 9.16731 34.2129i 0.247765 0.924672i −0.724208 0.689581i \(-0.757795\pi\)
0.971973 0.235091i \(-0.0755387\pi\)
\(38\) 6.74646 + 25.1781i 0.177538 + 0.662583i
\(39\) 70.9352 + 40.9545i 1.81885 + 1.05011i
\(40\) 0 0
\(41\) −6.04555 −0.147452 −0.0737262 0.997279i \(-0.523489\pi\)
−0.0737262 + 0.997279i \(0.523489\pi\)
\(42\) −20.9393 47.9696i −0.498555 1.14213i
\(43\) 9.64752 9.64752i 0.224361 0.224361i −0.585971 0.810332i \(-0.699287\pi\)
0.810332 + 0.585971i \(0.199287\pi\)
\(44\) 6.02273 3.47723i 0.136880 0.0790279i
\(45\) 0 0
\(46\) −12.6931 + 21.9850i −0.275936 + 0.477935i
\(47\) −5.44036 + 20.3037i −0.115752 + 0.431994i −0.999342 0.0362680i \(-0.988453\pi\)
0.883590 + 0.468262i \(0.155120\pi\)
\(48\) 14.9545 14.9545i 0.311551 0.311551i
\(49\) −33.3154 + 35.9317i −0.679906 + 0.733300i
\(50\) 0 0
\(51\) 26.0000 + 45.0333i 0.509804 + 0.883006i
\(52\) 29.9281 8.01921i 0.575541 0.154216i
\(53\) 2.94488 + 10.9904i 0.0555637 + 0.207366i 0.988127 0.153640i \(-0.0490997\pi\)
−0.932563 + 0.361007i \(0.882433\pi\)
\(54\) 64.4597 37.2158i 1.19370 0.689182i
\(55\) 0 0
\(56\) −18.4317 7.23003i −0.329137 0.129108i
\(57\) 68.9089 + 68.9089i 1.20893 + 1.20893i
\(58\) −68.1146 18.2513i −1.17439 0.314677i
\(59\) −65.3652 37.7386i −1.10788 0.639638i −0.169604 0.985512i \(-0.554249\pi\)
−0.938281 + 0.345875i \(0.887582\pi\)
\(60\) 0 0
\(61\) −51.4545 89.1217i −0.843516 1.46101i −0.886904 0.461954i \(-0.847149\pi\)
0.0433885 0.999058i \(-0.486185\pi\)
\(62\) 16.0000 + 16.0000i 0.258065 + 0.258065i
\(63\) −106.769 78.7693i −1.69475 1.25031i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 13.0000 22.5167i 0.196970 0.341162i
\(67\) −31.1237 + 8.33958i −0.464533 + 0.124471i −0.483492 0.875349i \(-0.660632\pi\)
0.0189583 + 0.999820i \(0.493965\pi\)
\(68\) 18.9999 + 5.09101i 0.279410 + 0.0748678i
\(69\) 94.9089i 1.37549i
\(70\) 0 0
\(71\) 40.3406 0.568177 0.284089 0.958798i \(-0.408309\pi\)
0.284089 + 0.958798i \(0.408309\pi\)
\(72\) 13.8756 51.7845i 0.192717 0.719229i
\(73\) 22.9762 + 85.7485i 0.314743 + 1.17464i 0.924229 + 0.381840i \(0.124709\pi\)
−0.609486 + 0.792797i \(0.708624\pi\)
\(74\) −43.3802 25.0455i −0.586218 0.338453i
\(75\) 0 0
\(76\) 36.8634 0.485044
\(77\) −24.1880 2.72088i −0.314130 0.0353361i
\(78\) 81.9089 81.9089i 1.05011 1.05011i
\(79\) −87.6452 + 50.6020i −1.10943 + 0.640531i −0.938682 0.344783i \(-0.887952\pi\)
−0.170750 + 0.985314i \(0.554619\pi\)
\(80\) 0 0
\(81\) 53.8406 93.2546i 0.664699 1.15129i
\(82\) −2.21282 + 8.25837i −0.0269857 + 0.100712i
\(83\) −51.1247 + 51.1247i −0.615961 + 0.615961i −0.944493 0.328532i \(-0.893446\pi\)
0.328532 + 0.944493i \(0.393446\pi\)
\(84\) −73.1920 + 11.0455i −0.871333 + 0.131495i
\(85\) 0 0
\(86\) −9.64752 16.7100i −0.112180 0.194302i
\(87\) −254.654 + 68.2344i −2.92706 + 0.784303i
\(88\) −2.54551 9.49996i −0.0289262 0.107954i
\(89\) 71.6434 41.3634i 0.804982 0.464757i −0.0402280 0.999191i \(-0.512808\pi\)
0.845210 + 0.534434i \(0.179475\pi\)
\(90\) 0 0
\(91\) −100.954 39.6005i −1.10939 0.435170i
\(92\) 25.3861 + 25.3861i 0.275936 + 0.275936i
\(93\) 81.7126 + 21.8948i 0.878631 + 0.235428i
\(94\) 25.7441 + 14.8634i 0.273873 + 0.158121i
\(95\) 0 0
\(96\) −14.9545 25.9019i −0.155776 0.269811i
\(97\) −45.7723 45.7723i −0.471879 0.471879i 0.430643 0.902522i \(-0.358287\pi\)
−0.902522 + 0.430643i \(0.858287\pi\)
\(98\) 36.8893 + 58.6616i 0.376422 + 0.598587i
\(99\) 65.9089i 0.665746i
\(100\) 0 0
\(101\) −71.7495 + 124.274i −0.710391 + 1.23043i 0.254320 + 0.967120i \(0.418148\pi\)
−0.964710 + 0.263313i \(0.915185\pi\)
\(102\) 71.0333 19.0333i 0.696405 0.186601i
\(103\) 54.2840 + 14.5453i 0.527029 + 0.141217i 0.512516 0.858678i \(-0.328714\pi\)
0.0145128 + 0.999895i \(0.495380\pi\)
\(104\) 43.8178i 0.421325i
\(105\) 0 0
\(106\) 16.0911 0.151803
\(107\) 15.5267 57.9465i 0.145109 0.541556i −0.854641 0.519219i \(-0.826223\pi\)
0.999751 0.0223366i \(-0.00711055\pi\)
\(108\) −27.2439 101.676i −0.252258 0.941440i
\(109\) 32.2796 + 18.6366i 0.296143 + 0.170978i 0.640709 0.767784i \(-0.278640\pi\)
−0.344566 + 0.938762i \(0.611974\pi\)
\(110\) 0 0
\(111\) −187.271 −1.68713
\(112\) −16.6229 + 22.5318i −0.148418 + 0.201176i
\(113\) 118.636 118.636i 1.04987 1.04987i 0.0511834 0.998689i \(-0.483701\pi\)
0.998689 0.0511834i \(-0.0162993\pi\)
\(114\) 119.354 68.9089i 1.04696 0.604464i
\(115\) 0 0
\(116\) −49.8634 + 86.3659i −0.429856 + 0.744533i
\(117\) 75.9999 283.636i 0.649572 2.42424i
\(118\) −75.4772 + 75.4772i −0.639638 + 0.639638i
\(119\) −42.9343 53.8178i −0.360792 0.452250i
\(120\) 0 0
\(121\) 54.4545 + 94.3179i 0.450037 + 0.779487i
\(122\) −140.576 + 37.6673i −1.15226 + 0.308748i
\(123\) 8.27289 + 30.8749i 0.0672593 + 0.251015i
\(124\) 27.7128 16.0000i 0.223490 0.129032i
\(125\) 0 0
\(126\) −146.681 + 117.018i −1.16414 + 0.928714i
\(127\) −24.9545 24.9545i −0.196492 0.196492i 0.602002 0.798494i \(-0.294370\pi\)
−0.798494 + 0.602002i \(0.794370\pi\)
\(128\) −10.9282 2.92820i −0.0853766 0.0228766i
\(129\) −62.4722 36.0683i −0.484280 0.279599i
\(130\) 0 0
\(131\) 35.0455 + 60.7007i 0.267523 + 0.463364i 0.968222 0.250094i \(-0.0804614\pi\)
−0.700698 + 0.713458i \(0.747128\pi\)
\(132\) −26.0000 26.0000i −0.196970 0.196970i
\(133\) −103.825 76.5968i −0.780636 0.575916i
\(134\) 45.5683i 0.340062i
\(135\) 0 0
\(136\) 13.9089 24.0909i 0.102271 0.177139i
\(137\) −9.25107 + 2.47882i −0.0675261 + 0.0180936i −0.292424 0.956289i \(-0.594462\pi\)
0.224898 + 0.974382i \(0.427795\pi\)
\(138\) 129.648 + 34.7391i 0.939478 + 0.251732i
\(139\) 53.0217i 0.381451i −0.981643 0.190726i \(-0.938916\pi\)
0.981643 0.190726i \(-0.0610841\pi\)
\(140\) 0 0
\(141\) 111.137 0.788203
\(142\) 14.7657 55.1063i 0.103984 0.388072i
\(143\) −13.9423 52.0334i −0.0974987 0.363870i
\(144\) −65.6601 37.9089i −0.455973 0.263256i
\(145\) 0 0
\(146\) 125.545 0.859894
\(147\) 229.094 + 120.973i 1.55846 + 0.822946i
\(148\) −50.0911 + 50.0911i −0.338453 + 0.338453i
\(149\) 181.078 104.546i 1.21529 0.701648i 0.251383 0.967888i \(-0.419115\pi\)
0.963907 + 0.266240i \(0.0857813\pi\)
\(150\) 0 0
\(151\) −81.0455 + 140.375i −0.536725 + 0.929636i 0.462352 + 0.886696i \(0.347006\pi\)
−0.999078 + 0.0429394i \(0.986328\pi\)
\(152\) 13.4929 50.3563i 0.0887692 0.331291i
\(153\) 131.818 131.818i 0.861554 0.861554i
\(154\) −12.5702 + 32.0455i −0.0816248 + 0.208088i
\(155\) 0 0
\(156\) −81.9089 141.870i −0.525057 0.909426i
\(157\) 133.062 35.6538i 0.847526 0.227094i 0.191181 0.981555i \(-0.438768\pi\)
0.656345 + 0.754461i \(0.272102\pi\)
\(158\) 37.0432 + 138.247i 0.234451 + 0.874982i
\(159\) 52.0987 30.0792i 0.327665 0.189177i
\(160\) 0 0
\(161\) −18.7505 124.248i −0.116463 0.771727i
\(162\) −107.681 107.681i −0.664699 0.664699i
\(163\) 91.8348 + 24.6071i 0.563404 + 0.150964i 0.529270 0.848454i \(-0.322466\pi\)
0.0341341 + 0.999417i \(0.489133\pi\)
\(164\) 10.4712 + 6.04555i 0.0638488 + 0.0368631i
\(165\) 0 0
\(166\) 51.1247 + 88.5506i 0.307980 + 0.533438i
\(167\) −133.988 133.988i −0.802324 0.802324i 0.181134 0.983458i \(-0.442023\pi\)
−0.983458 + 0.181134i \(0.942023\pi\)
\(168\) −11.7016 + 104.025i −0.0696526 + 0.619197i
\(169\) 71.0000i 0.420118i
\(170\) 0 0
\(171\) 174.681 302.557i 1.02153 1.76934i
\(172\) −26.3575 + 7.06247i −0.153241 + 0.0410609i
\(173\) −0.248884 0.0666881i −0.00143863 0.000385481i 0.258100 0.966118i \(-0.416904\pi\)
−0.259538 + 0.965733i \(0.583570\pi\)
\(174\) 372.840i 2.14276i
\(175\) 0 0
\(176\) −13.9089 −0.0790279
\(177\) −103.285 + 385.465i −0.583532 + 2.17777i
\(178\) −30.2801 113.007i −0.170113 0.634870i
\(179\) 37.7895 + 21.8178i 0.211115 + 0.121887i 0.601829 0.798625i \(-0.294439\pi\)
−0.390715 + 0.920512i \(0.627772\pi\)
\(180\) 0 0
\(181\) 3.68116 0.0203379 0.0101689 0.999948i \(-0.496763\pi\)
0.0101689 + 0.999948i \(0.496763\pi\)
\(182\) −91.0472 + 123.412i −0.500259 + 0.678085i
\(183\) −384.737 + 384.737i −2.10239 + 2.10239i
\(184\) 43.9701 25.3861i 0.238968 0.137968i
\(185\) 0 0
\(186\) 59.8178 103.607i 0.321601 0.557029i
\(187\) 8.85130 33.0335i 0.0473331 0.176650i
\(188\) 29.7267 29.7267i 0.158121 0.158121i
\(189\) −134.536 + 342.975i −0.711829 + 1.81468i
\(190\) 0 0
\(191\) −8.96636 15.5302i −0.0469443 0.0813099i 0.841598 0.540104i \(-0.181615\pi\)
−0.888543 + 0.458794i \(0.848282\pi\)
\(192\) −40.8563 + 10.9474i −0.212793 + 0.0570178i
\(193\) −55.0364 205.399i −0.285163 1.06424i −0.948720 0.316117i \(-0.897621\pi\)
0.663557 0.748125i \(-0.269046\pi\)
\(194\) −79.2799 + 45.7723i −0.408659 + 0.235939i
\(195\) 0 0
\(196\) 93.6356 28.9201i 0.477733 0.147552i
\(197\) −41.0911 41.0911i −0.208584 0.208584i 0.595081 0.803666i \(-0.297120\pi\)
−0.803666 + 0.595081i \(0.797120\pi\)
\(198\) −90.0332 24.1243i −0.454713 0.121840i
\(199\) −261.145 150.772i −1.31229 0.757650i −0.329813 0.944046i \(-0.606986\pi\)
−0.982475 + 0.186397i \(0.940319\pi\)
\(200\) 0 0
\(201\) 85.1812 + 147.538i 0.423787 + 0.734020i
\(202\) 143.499 + 143.499i 0.710391 + 0.710391i
\(203\) 319.895 139.638i 1.57584 0.687872i
\(204\) 104.000i 0.509804i
\(205\) 0 0
\(206\) 39.7386 68.8293i 0.192906 0.334123i
\(207\) 328.652 88.0621i 1.58769 0.425421i
\(208\) −59.8562 16.0384i −0.287770 0.0771078i
\(209\) 64.0911i 0.306656i
\(210\) 0 0
\(211\) −177.703 −0.842194 −0.421097 0.907016i \(-0.638355\pi\)
−0.421097 + 0.907016i \(0.638355\pi\)
\(212\) 5.88975 21.9808i 0.0277818 0.103683i
\(213\) −55.2031 206.021i −0.259170 0.967235i
\(214\) −73.4732 42.4198i −0.343333 0.198223i
\(215\) 0 0
\(216\) −148.863 −0.689182
\(217\) −111.298 12.5198i −0.512894 0.0576947i
\(218\) 37.2733 37.2733i 0.170978 0.170978i
\(219\) 406.480 234.681i 1.85607 1.07160i
\(220\) 0 0
\(221\) 76.1822 131.951i 0.344716 0.597065i
\(222\) −68.5460 + 255.817i −0.308766 + 1.15233i
\(223\) −249.113 + 249.113i −1.11710 + 1.11710i −0.124933 + 0.992165i \(0.539871\pi\)
−0.992165 + 0.124933i \(0.960129\pi\)
\(224\) 24.6946 + 30.9545i 0.110244 + 0.138190i
\(225\) 0 0
\(226\) −118.636 205.483i −0.524936 0.909216i
\(227\) −40.0503 + 10.7314i −0.176433 + 0.0472751i −0.345954 0.938252i \(-0.612445\pi\)
0.169521 + 0.985527i \(0.445778\pi\)
\(228\) −50.4448 188.263i −0.221249 0.825713i
\(229\) −272.875 + 157.545i −1.19159 + 0.687967i −0.958668 0.284527i \(-0.908163\pi\)
−0.232926 + 0.972494i \(0.574830\pi\)
\(230\) 0 0
\(231\) 19.2039 + 127.253i 0.0831339 + 0.550877i
\(232\) 99.7267 + 99.7267i 0.429856 + 0.429856i
\(233\) 111.143 + 29.7807i 0.477009 + 0.127814i 0.489309 0.872110i \(-0.337249\pi\)
−0.0123008 + 0.999924i \(0.503916\pi\)
\(234\) −359.635 207.636i −1.53690 0.887332i
\(235\) 0 0
\(236\) 75.4772 + 130.730i 0.319819 + 0.553942i
\(237\) 378.362 + 378.362i 1.59647 + 1.59647i
\(238\) −89.2315 + 38.9507i −0.374922 + 0.163658i
\(239\) 438.725i 1.83567i 0.396965 + 0.917834i \(0.370064\pi\)
−0.396965 + 0.917834i \(0.629936\pi\)
\(240\) 0 0
\(241\) 78.0911 135.258i 0.324029 0.561235i −0.657286 0.753641i \(-0.728296\pi\)
0.981315 + 0.192406i \(0.0616290\pi\)
\(242\) 148.772 39.8634i 0.614762 0.164725i
\(243\) −92.3920 24.7564i −0.380214 0.101878i
\(244\) 205.818i 0.843516i
\(245\) 0 0
\(246\) 45.2039 0.183756
\(247\) 73.9038 275.813i 0.299206 1.11665i
\(248\) −11.7128 43.7128i −0.0472291 0.176261i
\(249\) 331.057 + 191.136i 1.32954 + 0.767613i
\(250\) 0 0
\(251\) 185.727 0.739947 0.369974 0.929042i \(-0.379367\pi\)
0.369974 + 0.929042i \(0.379367\pi\)
\(252\) 106.161 + 243.202i 0.421272 + 0.965086i
\(253\) 44.1366 44.1366i 0.174453 0.174453i
\(254\) −43.2224 + 24.9545i −0.170167 + 0.0982459i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −61.7416 + 230.423i −0.240240 + 0.896587i 0.735477 + 0.677550i \(0.236958\pi\)
−0.975717 + 0.219037i \(0.929709\pi\)
\(258\) −72.1366 + 72.1366i −0.279599 + 0.279599i
\(259\) 245.162 36.9979i 0.946573 0.142849i
\(260\) 0 0
\(261\) 472.566 + 818.509i 1.81060 + 3.13605i
\(262\) 95.7462 25.6551i 0.365444 0.0979203i
\(263\) 85.0136 + 317.275i 0.323246 + 1.20637i 0.916064 + 0.401032i \(0.131349\pi\)
−0.592818 + 0.805336i \(0.701985\pi\)
\(264\) −45.0333 + 26.0000i −0.170581 + 0.0984848i
\(265\) 0 0
\(266\) −142.636 + 113.791i −0.536224 + 0.427784i
\(267\) −309.283 309.283i −1.15836 1.15836i
\(268\) 62.2475 + 16.6792i 0.232267 + 0.0622357i
\(269\) 247.839 + 143.090i 0.921336 + 0.531933i 0.884061 0.467372i \(-0.154799\pi\)
0.0372746 + 0.999305i \(0.488132\pi\)
\(270\) 0 0
\(271\) −204.760 354.655i −0.755573 1.30869i −0.945089 0.326814i \(-0.894025\pi\)
0.189516 0.981878i \(-0.439308\pi\)
\(272\) −27.8178 27.8178i −0.102271 0.102271i
\(273\) −64.0925 + 569.769i −0.234771 + 2.08707i
\(274\) 13.5445i 0.0494325i
\(275\) 0 0
\(276\) 94.9089 164.387i 0.343873 0.595605i
\(277\) −15.7107 + 4.20967i −0.0567174 + 0.0151974i −0.287066 0.957911i \(-0.592680\pi\)
0.230349 + 0.973108i \(0.426013\pi\)
\(278\) −72.4290 19.4073i −0.260536 0.0698104i
\(279\) 303.271i 1.08699i
\(280\) 0 0
\(281\) 302.542 1.07666 0.538332 0.842733i \(-0.319055\pi\)
0.538332 + 0.842733i \(0.319055\pi\)
\(282\) 40.6788 151.815i 0.144251 0.538353i
\(283\) −41.0108 153.054i −0.144914 0.540828i −0.999759 0.0219440i \(-0.993014\pi\)
0.854845 0.518884i \(-0.173652\pi\)
\(284\) −69.8719 40.3406i −0.246028 0.142044i
\(285\) 0 0
\(286\) −76.1822 −0.266371
\(287\) −16.9300 38.7848i −0.0589897 0.135139i
\(288\) −75.8178 + 75.8178i −0.263256 + 0.263256i
\(289\) −166.512 + 96.1356i −0.576165 + 0.332649i
\(290\) 0 0
\(291\) −171.125 + 296.397i −0.588058 + 1.01855i
\(292\) 45.9525 171.497i 0.157372 0.587318i
\(293\) 100.182 100.182i 0.341919 0.341919i −0.515170 0.857088i \(-0.672271\pi\)
0.857088 + 0.515170i \(0.172271\pi\)
\(294\) 249.107 268.669i 0.847301 0.913841i
\(295\) 0 0
\(296\) 50.0911 + 86.7603i 0.169227 + 0.293109i
\(297\) −176.774 + 47.3666i −0.595200 + 0.159483i
\(298\) −76.5327 285.624i −0.256821 0.958469i
\(299\) 240.834 139.046i 0.805465 0.465035i
\(300\) 0 0
\(301\) 88.9099 + 34.8759i 0.295382 + 0.115867i
\(302\) 162.091 + 162.091i 0.536725 + 0.536725i
\(303\) 732.855 + 196.368i 2.41866 + 0.648079i
\(304\) −63.8492 36.8634i −0.210030 0.121261i
\(305\) 0 0
\(306\) −131.818 228.315i −0.430777 0.746128i
\(307\) 242.602 + 242.602i 0.790234 + 0.790234i 0.981532 0.191298i \(-0.0612696\pi\)
−0.191298 + 0.981532i \(0.561270\pi\)
\(308\) 39.1740 + 28.9007i 0.127188 + 0.0938335i
\(309\) 297.135i 0.961601i
\(310\) 0 0
\(311\) −3.73861 + 6.47547i −0.0120213 + 0.0208214i −0.871973 0.489553i \(-0.837160\pi\)
0.859952 + 0.510375i \(0.170493\pi\)
\(312\) −223.779 + 59.9615i −0.717241 + 0.192184i
\(313\) −577.950 154.861i −1.84649 0.494765i −0.847156 0.531344i \(-0.821687\pi\)
−0.999331 + 0.0365796i \(0.988354\pi\)
\(314\) 194.816i 0.620432i
\(315\) 0 0
\(316\) 202.408 0.640531
\(317\) 105.415 393.415i 0.332540 1.24106i −0.573971 0.818876i \(-0.694598\pi\)
0.906511 0.422182i \(-0.138736\pi\)
\(318\) −22.0195 82.1779i −0.0692437 0.258421i
\(319\) 150.157 + 86.6931i 0.470711 + 0.271765i
\(320\) 0 0
\(321\) −317.182 −0.988107
\(322\) −176.589 19.8643i −0.548414 0.0616902i
\(323\) 128.182 128.182i 0.396849 0.396849i
\(324\) −186.509 + 107.681i −0.575646 + 0.332349i
\(325\) 0 0
\(326\) 67.2277 116.442i 0.206220 0.357184i
\(327\) 51.0058 190.356i 0.155981 0.582129i
\(328\) 12.0911 12.0911i 0.0368631 0.0368631i
\(329\) −145.492 + 21.9565i −0.442226 + 0.0667372i
\(330\) 0 0
\(331\) −118.317 204.931i −0.357452 0.619126i 0.630082 0.776529i \(-0.283021\pi\)
−0.987534 + 0.157403i \(0.949688\pi\)
\(332\) 139.675 37.4259i 0.420709 0.112729i
\(333\) 173.761 + 648.486i 0.521806 + 1.94741i
\(334\) −232.074 + 133.988i −0.694833 + 0.401162i
\(335\) 0 0
\(336\) 137.818 + 54.0605i 0.410172 + 0.160894i
\(337\) −316.271 316.271i −0.938490 0.938490i 0.0597246 0.998215i \(-0.480978\pi\)
−0.998215 + 0.0597246i \(0.980978\pi\)
\(338\) −96.9878 25.9878i −0.286946 0.0768870i
\(339\) −768.221 443.533i −2.26614 1.30836i
\(340\) 0 0
\(341\) −27.8178 48.1819i −0.0815771 0.141296i
\(342\) −349.362 349.362i −1.02153 1.02153i
\(343\) −323.814 113.109i −0.944064 0.329763i
\(344\) 38.5901i 0.112180i
\(345\) 0 0
\(346\) −0.182195 + 0.315572i −0.000526576 + 0.000912057i
\(347\) −137.052 + 36.7228i −0.394961 + 0.105830i −0.450833 0.892608i \(-0.648873\pi\)
0.0558716 + 0.998438i \(0.482206\pi\)
\(348\) 509.308 + 136.469i 1.46353 + 0.392152i
\(349\) 298.861i 0.856336i 0.903699 + 0.428168i \(0.140841\pi\)
−0.903699 + 0.428168i \(0.859159\pi\)
\(350\) 0 0
\(351\) −815.358 −2.32296
\(352\) −5.09101 + 18.9999i −0.0144631 + 0.0539770i
\(353\) 8.91723 + 33.2795i 0.0252613 + 0.0942763i 0.977406 0.211373i \(-0.0677933\pi\)
−0.952144 + 0.305649i \(0.901127\pi\)
\(354\) 488.750 + 282.180i 1.38065 + 0.797119i
\(355\) 0 0
\(356\) −165.453 −0.464757
\(357\) −216.097 + 292.913i −0.605314 + 0.820484i
\(358\) 43.6356 43.6356i 0.121887 0.121887i
\(359\) 426.160 246.043i 1.18707 0.685358i 0.229434 0.973324i \(-0.426312\pi\)
0.957641 + 0.287966i \(0.0929791\pi\)
\(360\) 0 0
\(361\) −10.6366 + 18.4232i −0.0294644 + 0.0510338i
\(362\) 1.34740 5.02856i 0.00372209 0.0138910i
\(363\) 407.168 407.168i 1.12168 1.12168i
\(364\) 135.258 + 169.545i 0.371587 + 0.465782i
\(365\) 0 0
\(366\) 384.737 + 666.383i 1.05119 + 1.82072i
\(367\) −70.3355 + 18.8463i −0.191650 + 0.0513524i −0.353367 0.935485i \(-0.614963\pi\)
0.161717 + 0.986837i \(0.448297\pi\)
\(368\) −18.5839 69.3562i −0.0504998 0.188468i
\(369\) 99.2379 57.2950i 0.268937 0.155271i
\(370\) 0 0
\(371\) −62.2614 + 49.6703i −0.167820 + 0.133882i
\(372\) −119.636 119.636i −0.321601 0.321601i
\(373\) −332.315 89.0434i −0.890924 0.238722i −0.215810 0.976435i \(-0.569239\pi\)
−0.675114 + 0.737713i \(0.735906\pi\)
\(374\) −41.8848 24.1822i −0.111991 0.0646583i
\(375\) 0 0
\(376\) −29.7267 51.4882i −0.0790604 0.136937i
\(377\) 546.226 + 546.226i 1.44887 + 1.44887i
\(378\) 419.269 + 309.317i 1.10918 + 0.818299i
\(379\) 33.5683i 0.0885708i −0.999019 0.0442854i \(-0.985899\pi\)
0.999019 0.0442854i \(-0.0141011\pi\)
\(380\) 0 0
\(381\) −93.2950 + 161.592i −0.244869 + 0.424125i
\(382\) −24.4965 + 6.56383i −0.0641271 + 0.0171828i
\(383\) −694.888 186.195i −1.81433 0.486148i −0.818269 0.574836i \(-0.805066\pi\)
−0.996059 + 0.0886883i \(0.971733\pi\)
\(384\) 59.8178i 0.155776i
\(385\) 0 0
\(386\) −300.725 −0.779079
\(387\) −66.9326 + 249.796i −0.172953 + 0.645468i
\(388\) 33.5076 + 125.052i 0.0863598 + 0.322299i
\(389\) −459.937 265.545i −1.18236 0.682634i −0.225798 0.974174i \(-0.572499\pi\)
−0.956558 + 0.291540i \(0.905832\pi\)
\(390\) 0 0
\(391\) 176.547 0.451526
\(392\) −5.23259 138.494i −0.0133484 0.353301i
\(393\) 262.043 262.043i 0.666777 0.666777i
\(394\) −71.1719 + 41.0911i −0.180639 + 0.104292i
\(395\) 0 0
\(396\) −65.9089 + 114.158i −0.166437 + 0.288277i
\(397\) −69.5948 + 259.731i −0.175302 + 0.654235i 0.821198 + 0.570643i \(0.193306\pi\)
−0.996500 + 0.0835924i \(0.973361\pi\)
\(398\) −301.545 + 301.545i −0.757650 + 0.757650i
\(399\) −249.107 + 635.053i −0.624327 + 1.59161i
\(400\) 0 0
\(401\) −276.270 478.514i −0.688953 1.19330i −0.972177 0.234248i \(-0.924737\pi\)
0.283224 0.959054i \(-0.408596\pi\)
\(402\) 232.719 62.3569i 0.578904 0.155117i
\(403\) −64.1537 239.425i −0.159190 0.594107i
\(404\) 248.547 143.499i 0.615217 0.355195i
\(405\) 0 0
\(406\) −73.6594 488.095i −0.181427 1.20221i
\(407\) 87.0890 + 87.0890i 0.213978 + 0.213978i
\(408\) −142.067 38.0666i −0.348203 0.0933006i
\(409\) −108.528 62.6584i −0.265348 0.153199i 0.361423 0.932402i \(-0.382291\pi\)
−0.626772 + 0.779203i \(0.715624\pi\)
\(410\) 0 0
\(411\) 25.3188 + 43.8535i 0.0616030 + 0.106700i
\(412\) −79.4772 79.4772i −0.192906 0.192906i
\(413\) 59.0598 525.029i 0.143002 1.27126i
\(414\) 481.180i 1.16227i
\(415\) 0 0
\(416\) −43.8178 + 75.8947i −0.105331 + 0.182439i
\(417\) −270.784 + 72.5564i −0.649362 + 0.173996i
\(418\) −87.5501 23.4590i −0.209450 0.0561219i
\(419\) 116.269i 0.277492i 0.990328 + 0.138746i \(0.0443072\pi\)
−0.990328 + 0.138746i \(0.955693\pi\)
\(420\) 0 0
\(421\) 534.449 1.26948 0.634738 0.772728i \(-0.281108\pi\)
0.634738 + 0.772728i \(0.281108\pi\)
\(422\) −65.0438 + 242.747i −0.154132 + 0.575229i
\(423\) −103.119 384.846i −0.243780 0.909801i
\(424\) −27.8706 16.0911i −0.0657325 0.0379507i
\(425\) 0 0
\(426\) −301.636 −0.708065
\(427\) 427.660 579.680i 1.00155 1.35756i
\(428\) −84.8395 + 84.8395i −0.198223 + 0.198223i
\(429\) −246.658 + 142.408i −0.574960 + 0.331953i
\(430\) 0 0
\(431\) 238.737 413.504i 0.553913 0.959406i −0.444074 0.895990i \(-0.646467\pi\)
0.997987 0.0634155i \(-0.0201994\pi\)
\(432\) −54.4878 + 203.351i −0.126129 + 0.470720i
\(433\) 542.271 542.271i 1.25236 1.25236i 0.297699 0.954660i \(-0.403781\pi\)
0.954660 0.297699i \(-0.0962190\pi\)
\(434\) −57.8402 + 147.453i −0.133272 + 0.339754i
\(435\) 0 0
\(436\) −37.2733 64.5592i −0.0854892 0.148072i
\(437\) 319.588 85.6333i 0.731322 0.195957i
\(438\) −171.799 641.161i −0.392234 1.46384i
\(439\) −232.568 + 134.273i −0.529768 + 0.305862i −0.740922 0.671591i \(-0.765611\pi\)
0.211154 + 0.977453i \(0.432278\pi\)
\(440\) 0 0
\(441\) 206.341 905.557i 0.467892 2.05342i
\(442\) −152.364 152.364i −0.344716 0.344716i
\(443\) 85.1751 + 22.8226i 0.192269 + 0.0515183i 0.353668 0.935371i \(-0.384934\pi\)
−0.161400 + 0.986889i \(0.551601\pi\)
\(444\) 324.363 + 187.271i 0.730548 + 0.421782i
\(445\) 0 0
\(446\) 249.113 + 431.476i 0.558549 + 0.967435i
\(447\) −781.711 781.711i −1.74879 1.74879i
\(448\) 51.3234 22.4033i 0.114561 0.0500074i
\(449\) 100.410i 0.223630i 0.993729 + 0.111815i \(0.0356664\pi\)
−0.993729 + 0.111815i \(0.964334\pi\)
\(450\) 0 0
\(451\) 10.5109 18.2054i 0.0233057 0.0403666i
\(452\) −324.119 + 86.8473i −0.717076 + 0.192140i
\(453\) 827.806 + 221.810i 1.82739 + 0.489647i
\(454\) 58.6377i 0.129158i
\(455\) 0 0
\(456\) −275.636 −0.604464
\(457\) 180.050 671.954i 0.393982 1.47036i −0.429526 0.903055i \(-0.641319\pi\)
0.823508 0.567305i \(-0.192014\pi\)
\(458\) 115.331 + 430.420i 0.251814 + 0.939781i
\(459\) −448.282 258.816i −0.976649 0.563869i
\(460\) 0 0
\(461\) −191.636 −0.415695 −0.207848 0.978161i \(-0.566646\pi\)
−0.207848 + 0.978161i \(0.566646\pi\)
\(462\) 180.859 + 20.3446i 0.391470 + 0.0440359i
\(463\) −268.079 + 268.079i −0.579005 + 0.579005i −0.934629 0.355624i \(-0.884268\pi\)
0.355624 + 0.934629i \(0.384268\pi\)
\(464\) 172.732 99.7267i 0.372267 0.214928i
\(465\) 0 0
\(466\) 81.3623 140.924i 0.174597 0.302411i
\(467\) −49.9577 + 186.445i −0.106976 + 0.399239i −0.998562 0.0536121i \(-0.982927\pi\)
0.891586 + 0.452851i \(0.149593\pi\)
\(468\) −415.271 + 415.271i −0.887332 + 0.887332i
\(469\) −140.661 176.318i −0.299917 0.375944i
\(470\) 0 0
\(471\) −364.170 630.761i −0.773185 1.33920i
\(472\) 206.208 55.2532i 0.436881 0.117062i
\(473\) 12.2789 + 45.8255i 0.0259596 + 0.0968826i
\(474\) 655.343 378.362i 1.38258 0.798233i
\(475\) 0 0
\(476\) 20.5466 + 136.149i 0.0431651 + 0.286028i
\(477\) −152.499 152.499i −0.319704 0.319704i
\(478\) 599.309 + 160.584i 1.25378 + 0.335951i
\(479\) 642.196 + 370.772i 1.34070 + 0.774055i 0.986910 0.161269i \(-0.0515588\pi\)
0.353792 + 0.935324i \(0.384892\pi\)
\(480\) 0 0
\(481\) 274.360 + 475.206i 0.570396 + 0.987954i
\(482\) −156.182 156.182i −0.324029 0.324029i
\(483\) −608.881 + 265.784i −1.26062 + 0.550278i
\(484\) 217.818i 0.450037i
\(485\) 0 0
\(486\) −67.6356 + 117.148i −0.139168 + 0.241046i
\(487\) −761.430 + 204.025i −1.56351 + 0.418942i −0.933773 0.357865i \(-0.883505\pi\)
−0.629739 + 0.776807i \(0.716838\pi\)
\(488\) 281.152 + 75.3345i 0.576132 + 0.154374i
\(489\) 502.677i 1.02797i
\(490\) 0 0
\(491\) −232.000 −0.472505 −0.236253 0.971692i \(-0.575919\pi\)
−0.236253 + 0.971692i \(0.575919\pi\)
\(492\) 16.5458 61.7497i 0.0336296 0.125508i
\(493\) 126.927 + 473.700i 0.257459 + 0.960851i
\(494\) −349.716 201.909i −0.707928 0.408722i
\(495\) 0 0
\(496\) −64.0000 −0.129032
\(497\) 112.970 + 258.802i 0.227304 + 0.520728i
\(498\) 382.271 382.271i 0.767613 0.767613i
\(499\) 570.335 329.283i 1.14296 0.659886i 0.195795 0.980645i \(-0.437271\pi\)
0.947161 + 0.320759i \(0.103938\pi\)
\(500\) 0 0
\(501\) −500.930 + 867.636i −0.999859 + 1.73181i
\(502\) 67.9807 253.707i 0.135420 0.505393i
\(503\) −230.055 + 230.055i −0.457367 + 0.457367i −0.897790 0.440424i \(-0.854828\pi\)
0.440424 + 0.897790i \(0.354828\pi\)
\(504\) 371.077 56.0000i 0.736264 0.111111i
\(505\) 0 0
\(506\) −44.1366 76.4469i −0.0872266 0.151081i
\(507\) −362.600 + 97.1583i −0.715187 + 0.191634i
\(508\) 18.2679 + 68.1768i 0.0359605 + 0.134206i
\(509\) −105.300 + 60.7950i −0.206876 + 0.119440i −0.599859 0.800106i \(-0.704777\pi\)
0.392983 + 0.919546i \(0.371443\pi\)
\(510\) 0 0
\(511\) −485.770 + 387.534i −0.950627 + 0.758383i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −937.026 251.075i −1.82656 0.489425i
\(514\) 292.164 + 168.681i 0.568413 + 0.328173i
\(515\) 0 0
\(516\) 72.1366 + 124.944i 0.139800 + 0.242140i
\(517\) −51.6832 51.6832i −0.0999676 0.0999676i
\(518\) 39.1955 348.440i 0.0756670 0.672664i
\(519\) 1.36232i 0.00262489i
\(520\) 0 0
\(521\) 244.135 422.853i 0.468588 0.811619i −0.530767 0.847518i \(-0.678096\pi\)
0.999355 + 0.0358988i \(0.0114294\pi\)
\(522\) 1291.08 345.943i 2.47332 0.662725i
\(523\) 631.039 + 169.086i 1.20657 + 0.323301i 0.805417 0.592708i \(-0.201941\pi\)
0.401158 + 0.916009i \(0.368608\pi\)
\(524\) 140.182i 0.267523i
\(525\) 0 0
\(526\) 464.523 0.883123
\(527\) 40.7281 151.999i 0.0772829 0.288424i
\(528\) 19.0333 + 71.0333i 0.0360480 + 0.134533i
\(529\) −179.070 103.386i −0.338507 0.195437i
\(530\) 0 0
\(531\) 1430.63 2.69422
\(532\) 103.233 + 236.494i 0.194046 + 0.444538i
\(533\) 66.2257 66.2257i 0.124251 0.124251i
\(534\) −535.694 + 309.283i −1.00317 + 0.579182i
\(535\) 0 0
\(536\) 45.5683 78.9267i 0.0850155 0.147251i
\(537\) 59.7122 222.849i 0.111196 0.414988i
\(538\) 286.180 286.180i 0.531933 0.531933i
\(539\) −50.2809 162.796i −0.0932855 0.302034i
\(540\) 0 0
\(541\) −221.793 384.157i −0.409968 0.710086i 0.584917 0.811093i \(-0.301127\pi\)
−0.994886 + 0.101007i \(0.967794\pi\)
\(542\) −559.416 + 149.895i −1.03213 + 0.276559i
\(543\) −5.03740 18.7998i −0.00927697 0.0346221i
\(544\) −48.1819 + 27.8178i −0.0885696 + 0.0511357i
\(545\) 0 0
\(546\) 754.859 + 296.102i 1.38253 + 0.542311i
\(547\) 686.507 + 686.507i 1.25504 + 1.25504i 0.953432 + 0.301608i \(0.0975232\pi\)
0.301608 + 0.953432i \(0.402477\pi\)
\(548\) 18.5021 + 4.95764i 0.0337630 + 0.00904678i
\(549\) 1689.25 + 975.291i 3.07696 + 1.77649i
\(550\) 0 0
\(551\) 459.533 + 795.934i 0.833997 + 1.44453i
\(552\) −189.818 189.818i −0.343873 0.343873i
\(553\) −570.076 420.575i −1.03088 0.760533i
\(554\) 23.0021i 0.0415200i
\(555\) 0 0
\(556\) −53.0217 + 91.8363i −0.0953628 + 0.165173i
\(557\) 44.0239 11.7962i 0.0790376 0.0211780i −0.219084 0.975706i \(-0.570307\pi\)
0.298121 + 0.954528i \(0.403640\pi\)
\(558\) −414.276 111.005i −0.742430 0.198934i
\(559\) 211.366i 0.378115i
\(560\) 0 0
\(561\) −180.816 −0.322310
\(562\) 110.738 413.281i 0.197043 0.735375i
\(563\) 185.429 + 692.031i 0.329359 + 1.22919i 0.909857 + 0.414923i \(0.136191\pi\)
−0.580497 + 0.814262i \(0.697142\pi\)
\(564\) −192.494 111.137i −0.341302 0.197051i
\(565\) 0 0
\(566\) −224.087 −0.395913
\(567\) 749.044 + 84.2589i 1.32107 + 0.148605i
\(568\) −80.6812 + 80.6812i −0.142044 + 0.142044i
\(569\) −724.073 + 418.043i −1.27254 + 0.734699i −0.975464 0.220157i \(-0.929343\pi\)
−0.297071 + 0.954855i \(0.596010\pi\)
\(570\) 0 0
\(571\) −517.327 + 896.036i −0.906001 + 1.56924i −0.0864332 + 0.996258i \(0.527547\pi\)
−0.819568 + 0.572982i \(0.805786\pi\)
\(572\) −27.8846 + 104.067i −0.0487493 + 0.181935i
\(573\) −67.0435 + 67.0435i −0.117004 + 0.117004i
\(574\) −59.1778 + 8.93064i −0.103097 + 0.0155586i
\(575\) 0 0
\(576\) 75.8178 + 131.320i 0.131628 + 0.227987i
\(577\) 115.431 30.9295i 0.200053 0.0536040i −0.157401 0.987535i \(-0.550312\pi\)
0.357454 + 0.933931i \(0.383645\pi\)
\(578\) 70.3762 + 262.647i 0.121758 + 0.454407i
\(579\) −973.666 + 562.146i −1.68163 + 0.970892i
\(580\) 0 0
\(581\) −471.157 184.817i −0.810942 0.318101i
\(582\) 342.249 + 342.249i 0.588058 + 0.588058i
\(583\) −38.2162 10.2400i −0.0655509 0.0175643i
\(584\) −217.449 125.545i −0.372345 0.214973i
\(585\) 0 0
\(586\) −100.182 173.521i −0.170959 0.296110i
\(587\) 808.313 + 808.313i 1.37702 + 1.37702i 0.849607 + 0.527416i \(0.176839\pi\)
0.527416 + 0.849607i \(0.323161\pi\)
\(588\) −275.830 438.626i −0.469098 0.745962i
\(589\) 294.907i 0.500691i
\(590\) 0 0
\(591\) −153.624 + 266.084i −0.259939 + 0.450227i
\(592\) 136.851 36.6692i 0.231168 0.0619413i
\(593\) −86.3085 23.1263i −0.145546 0.0389988i 0.185311 0.982680i \(-0.440671\pi\)
−0.330856 + 0.943681i \(0.607338\pi\)
\(594\) 258.816i 0.435717i
\(595\) 0 0
\(596\) −418.182 −0.701648
\(597\) −412.642 + 1540.00i −0.691192 + 2.57956i
\(598\) −101.788 379.880i −0.170215 0.635250i
\(599\) 337.198 + 194.681i 0.562934 + 0.325010i 0.754322 0.656504i \(-0.227966\pi\)
−0.191388 + 0.981514i \(0.561299\pi\)
\(600\) 0 0
\(601\) 478.638 0.796402 0.398201 0.917298i \(-0.369635\pi\)
0.398201 + 0.917298i \(0.369635\pi\)
\(602\) 80.1847 108.688i 0.133197 0.180544i
\(603\) 431.861 431.861i 0.716188 0.716188i
\(604\) 280.750 162.091i 0.464818 0.268363i
\(605\) 0 0
\(606\) 536.487 929.223i 0.885292 1.53337i
\(607\) −165.729 + 618.509i −0.273030 + 1.01896i 0.684121 + 0.729369i \(0.260186\pi\)
−0.957150 + 0.289592i \(0.906481\pi\)
\(608\) −73.7267 + 73.7267i −0.121261 + 0.121261i
\(609\) −1150.89 1442.63i −1.88980 2.36885i
\(610\) 0 0
\(611\) −162.820 282.012i −0.266481 0.461559i
\(612\) −360.133 + 96.4973i −0.588453 + 0.157675i
\(613\) 295.398 + 1102.44i 0.481889 + 1.79843i 0.593681 + 0.804701i \(0.297674\pi\)
−0.111792 + 0.993732i \(0.535659\pi\)
\(614\) 420.199 242.602i 0.684363 0.395117i
\(615\) 0 0
\(616\) 53.8178 42.9343i 0.0873666 0.0696985i
\(617\) −15.0890 15.0890i −0.0244555 0.0244555i 0.694773 0.719229i \(-0.255505\pi\)
−0.719229 + 0.694773i \(0.755505\pi\)
\(618\) −405.893 108.759i −0.656785 0.175985i
\(619\) −124.687 71.9881i −0.201433 0.116297i 0.395891 0.918298i \(-0.370436\pi\)
−0.597324 + 0.802000i \(0.703769\pi\)
\(620\) 0 0
\(621\) −472.383 818.191i −0.760681 1.31754i
\(622\) 7.47723 + 7.47723i 0.0120213 + 0.0120213i
\(623\) 465.995 + 343.789i 0.747985 + 0.551828i
\(624\) 327.636i 0.525057i
\(625\) 0 0
\(626\) −423.089 + 732.812i −0.675861 + 1.17063i
\(627\) −327.316 + 87.7040i −0.522035 + 0.139879i
\(628\) −266.123 71.3075i −0.423763 0.113547i
\(629\) 348.356i 0.553825i
\(630\) 0 0
\(631\) 395.200 0.626307 0.313154 0.949703i \(-0.398615\pi\)
0.313154 + 0.949703i \(0.398615\pi\)
\(632\) 74.0864 276.494i 0.117225 0.437491i
\(633\) 243.173 + 907.536i 0.384160 + 1.43371i
\(634\) −498.831 288.000i −0.786799 0.454259i
\(635\) 0 0
\(636\) −120.317 −0.189177
\(637\) −28.6601 758.564i −0.0449923 1.19084i
\(638\) 173.386 173.386i 0.271765 0.271765i
\(639\) −662.192 + 382.317i −1.03629 + 0.598305i
\(640\) 0 0
\(641\) 50.3416 87.1942i 0.0785361 0.136028i −0.824082 0.566470i \(-0.808309\pi\)
0.902619 + 0.430441i \(0.141642\pi\)
\(642\) −116.097 + 433.279i −0.180836 + 0.674889i
\(643\) −301.770 + 301.770i −0.469316 + 0.469316i −0.901693 0.432377i \(-0.857675\pi\)
0.432377 + 0.901693i \(0.357675\pi\)
\(644\) −91.7712 + 233.954i −0.142502 + 0.363283i
\(645\) 0 0
\(646\) −128.182 222.018i −0.198424 0.343681i
\(647\) −517.894 + 138.769i −0.800454 + 0.214481i −0.635784 0.771867i \(-0.719323\pi\)
−0.164671 + 0.986349i \(0.552656\pi\)
\(648\) 78.8281 + 294.190i 0.121648 + 0.453998i
\(649\) 227.290 131.226i 0.350215 0.202197i
\(650\) 0 0
\(651\) 88.3644 + 585.536i 0.135736 + 0.899441i
\(652\) −134.455 134.455i −0.206220 0.206220i
\(653\) −938.581 251.492i −1.43734 0.385133i −0.545737 0.837957i \(-0.683750\pi\)
−0.891600 + 0.452823i \(0.850417\pi\)
\(654\) −241.362 139.350i −0.369055 0.213074i
\(655\) 0 0
\(656\) −12.0911 20.9424i −0.0184316 0.0319244i
\(657\) −1189.81 1189.81i −1.81098 1.81098i
\(658\) −23.2607 + 206.783i −0.0353506 + 0.314260i
\(659\) 735.842i 1.11660i 0.829638 + 0.558302i \(0.188547\pi\)
−0.829638 + 0.558302i \(0.811453\pi\)
\(660\) 0 0
\(661\) −23.0901 + 39.9932i −0.0349320 + 0.0605040i −0.882963 0.469443i \(-0.844455\pi\)
0.848031 + 0.529947i \(0.177788\pi\)
\(662\) −323.247 + 86.6139i −0.488289 + 0.130837i
\(663\) −778.131 208.500i −1.17365 0.314479i
\(664\) 204.499i 0.307980i
\(665\) 0 0
\(666\) 949.449 1.42560
\(667\) −231.664 + 864.583i −0.347323 + 1.29623i
\(668\) 98.0861 + 366.062i 0.146835 + 0.547997i
\(669\) 1613.12 + 931.336i 2.41124 + 1.39213i
\(670\) 0 0
\(671\) 357.837 0.533290
\(672\) 124.293 168.475i 0.184960 0.250707i
\(673\) 122.772 122.772i 0.182425 0.182425i −0.609986 0.792412i \(-0.708825\pi\)
0.792412 + 0.609986i \(0.208825\pi\)
\(674\) −547.798 + 316.271i −0.812756 + 0.469245i
\(675\) 0 0
\(676\) −71.0000 + 122.976i −0.105030 + 0.181917i
\(677\) 89.4436 333.808i 0.132118 0.493069i −0.867876 0.496782i \(-0.834515\pi\)
0.999993 + 0.00371227i \(0.00118165\pi\)
\(678\) −887.065 + 887.065i −1.30836 + 1.30836i
\(679\) 165.467 421.830i 0.243693 0.621251i
\(680\) 0 0
\(681\) 109.612 + 189.853i 0.160957 + 0.278786i
\(682\) −75.9997 + 20.3640i −0.111436 + 0.0298593i
\(683\) −183.607 685.231i −0.268824 1.00327i −0.959868 0.280453i \(-0.909515\pi\)
0.691043 0.722813i \(-0.257151\pi\)
\(684\) −605.113 + 349.362i −0.884669 + 0.510764i
\(685\) 0 0
\(686\) −273.034 + 400.937i −0.398008 + 0.584457i
\(687\) 1178.00 + 1178.00i 1.71470 + 1.71470i
\(688\) 52.7150 + 14.1249i 0.0766206 + 0.0205304i
\(689\) −152.654 88.1346i −0.221558 0.127917i
\(690\) 0 0
\(691\) −572.329 991.302i −0.828261 1.43459i −0.899401 0.437125i \(-0.855997\pi\)
0.0711395 0.997466i \(-0.477336\pi\)
\(692\) 0.364391 + 0.364391i 0.000526576 + 0.000526576i
\(693\) 422.834 184.572i 0.610150 0.266338i
\(694\) 200.657i 0.289132i
\(695\) 0 0
\(696\) 372.840 645.777i 0.535689 0.927841i
\(697\) 57.4325 15.3890i 0.0823995 0.0220789i
\(698\) 408.252 + 109.391i 0.584888 + 0.156720i
\(699\) 608.364i 0.870335i
\(700\) 0 0
\(701\) 496.362 0.708077 0.354039 0.935231i \(-0.384808\pi\)
0.354039 + 0.935231i \(0.384808\pi\)
\(702\) −298.442 + 1113.80i −0.425131 + 1.58661i
\(703\) 168.969 + 630.600i 0.240354 + 0.897013i
\(704\) 24.0909 + 13.9089i 0.0342201 + 0.0197570i
\(705\) 0 0
\(706\) 48.7246 0.0690151
\(707\) −998.197 112.286i −1.41188 0.158820i
\(708\) 564.360 564.360i 0.797119 0.797119i
\(709\) 282.281 162.975i 0.398140 0.229866i −0.287541 0.957768i \(-0.592838\pi\)
0.685681 + 0.727902i \(0.259504\pi\)
\(710\) 0 0
\(711\) 959.132 1661.27i 1.34899 2.33652i
\(712\) −60.5602 + 226.014i −0.0850564 + 0.317435i
\(713\) 203.089 203.089i 0.284837 0.284837i
\(714\) 321.029 + 402.408i 0.449621 + 0.563596i
\(715\) 0 0
\(716\) −43.6356 75.5791i −0.0609436 0.105557i
\(717\) 2240.58 600.363i 3.12494 0.837326i
\(718\) −180.116 672.203i −0.250858 0.936216i
\(719\) −543.130 + 313.576i −0.755396 + 0.436128i −0.827640 0.561259i \(-0.810317\pi\)
0.0722443 + 0.997387i \(0.476984\pi\)
\(720\) 0 0
\(721\) 58.7029 + 388.988i 0.0814187 + 0.539511i
\(722\) 21.2733 + 21.2733i 0.0294644 + 0.0294644i
\(723\) −797.629 213.724i −1.10322 0.295607i
\(724\) −6.37595 3.68116i −0.00880656 0.00508447i
\(725\) 0 0
\(726\) −407.168 705.236i −0.560838 0.971399i
\(727\) 9.62370 + 9.62370i 0.0132376 + 0.0132376i 0.713695 0.700457i \(-0.247020\pi\)
−0.700457 + 0.713695i \(0.747020\pi\)
\(728\) 281.110 122.708i 0.386140 0.168555i
\(729\) 463.404i 0.635670i
\(730\) 0 0
\(731\) −67.0932 + 116.209i −0.0917827 + 0.158972i
\(732\) 1051.12 281.647i 1.43596 0.384763i
\(733\) 211.301 + 56.6180i 0.288269 + 0.0772415i 0.400056 0.916491i \(-0.368991\pi\)
−0.111787 + 0.993732i \(0.535657\pi\)
\(734\) 102.978i 0.140297i
\(735\) 0 0
\(736\) −101.545 −0.137968
\(737\) 28.9986 108.224i 0.0393468 0.146844i
\(738\) −41.9429 156.533i −0.0568332 0.212104i
\(739\) −467.750 270.055i −0.632949 0.365434i 0.148944 0.988846i \(-0.452413\pi\)
−0.781893 + 0.623412i \(0.785746\pi\)
\(740\) 0 0
\(741\) −1509.72 −2.03741
\(742\) 45.0617 + 103.231i 0.0607301 + 0.139126i
\(743\) −142.376 + 142.376i −0.191624 + 0.191624i −0.796397 0.604774i \(-0.793264\pi\)
0.604774 + 0.796397i \(0.293264\pi\)
\(744\) −207.215 + 119.636i −0.278515 + 0.160801i
\(745\) 0 0
\(746\) −243.271 + 421.358i −0.326101 + 0.564823i
\(747\) 354.694 1323.74i 0.474824 1.77207i
\(748\) −48.3644 + 48.3644i −0.0646583 + 0.0646583i
\(749\) 415.233 62.6636i 0.554383 0.0836630i
\(750\) 0 0
\(751\) 602.043 + 1042.77i 0.801656 + 1.38851i 0.918526 + 0.395361i \(0.129381\pi\)
−0.116870 + 0.993147i \(0.537286\pi\)
\(752\) −81.2149 + 21.7615i −0.107999 + 0.0289381i
\(753\) −254.153 948.514i −0.337521 1.25965i
\(754\) 946.091 546.226i 1.25476 0.724437i
\(755\) 0 0
\(756\) 575.998 459.515i 0.761902 0.607824i
\(757\) 297.410 + 297.410i 0.392880 + 0.392880i 0.875713 0.482833i \(-0.160392\pi\)
−0.482833 + 0.875713i \(0.660392\pi\)
\(758\) −45.8552 12.2869i −0.0604950 0.0162096i
\(759\) −285.805 165.010i −0.376555 0.217404i
\(760\) 0 0
\(761\) 368.271 + 637.864i 0.483931 + 0.838192i 0.999830 0.0184569i \(-0.00587536\pi\)
−0.515899 + 0.856649i \(0.672542\pi\)
\(762\) 186.590 + 186.590i 0.244869 + 0.244869i
\(763\) −29.1658 + 259.278i −0.0382251 + 0.339814i
\(764\) 35.8654i 0.0469443i
\(765\) 0 0
\(766\) −508.693 + 881.082i −0.664090 + 1.15024i
\(767\) 1129.45 302.634i 1.47255 0.394569i
\(768\) 81.7126 + 21.8948i 0.106397 + 0.0285089i
\(769\) 1006.45i 1.30877i 0.756160 + 0.654387i \(0.227073\pi\)
−0.756160 + 0.654387i \(0.772927\pi\)
\(770\) 0 0
\(771\) 1261.27 1.63588
\(772\) −110.073 + 410.797i −0.142581 + 0.532121i
\(773\) −208.117 776.703i −0.269233 1.00479i −0.959608 0.281339i \(-0.909221\pi\)
0.690376 0.723451i \(-0.257445\pi\)
\(774\) 316.729 + 182.863i 0.409210 + 0.236258i
\(775\) 0 0
\(776\) 183.089 0.235939
\(777\) −524.437 1201.42i −0.674951 1.54624i
\(778\) −531.089 + 531.089i −0.682634 + 0.682634i
\(779\) 96.5009 55.7148i 0.123878 0.0715209i
\(780\) 0 0
\(781\) −70.1366 + 121.480i −0.0898036 + 0.155544i
\(782\) 64.6205 241.167i 0.0826350 0.308398i
\(783\) 1855.71 1855.71i 2.37000 2.37000i
\(784\) −191.102 43.5445i −0.243752 0.0555415i
\(785\) 0 0
\(786\) −262.043 453.873i −0.333389 0.577446i
\(787\) −643.687 + 172.475i −0.817900 + 0.219156i −0.643428 0.765507i \(-0.722488\pi\)
−0.174472 + 0.984662i \(0.555822\pi\)
\(788\) 30.0808 + 112.263i 0.0381736 + 0.142466i
\(789\) 1504.00 868.335i 1.90621 1.10055i
\(790\) 0 0
\(791\) 1093.33 + 428.869i 1.38221 + 0.542186i
\(792\) 131.818 + 131.818i 0.166437 + 0.166437i
\(793\) 1539.93 + 412.624i 1.94191 + 0.520333i
\(794\) 329.326 + 190.137i 0.414769 + 0.239467i
\(795\) 0 0
\(796\) 301.545 + 522.290i 0.378825 + 0.656144i
\(797\) −202.408 202.408i −0.253962 0.253962i 0.568631 0.822593i \(-0.307473\pi\)
−0.822593 + 0.568631i \(0.807473\pi\)
\(798\) 776.320 + 572.732i 0.972832 + 0.717709i
\(799\) 206.733i 0.258740i
\(800\) 0 0
\(801\) −784.020 + 1357.96i −0.978801 + 1.69533i
\(802\) −754.784 + 202.244i −0.941127 + 0.252174i
\(803\) −298.167 79.8936i −0.371316 0.0994939i
\(804\) 340.725i 0.423787i
\(805\) 0 0
\(806\) −350.542 −0.434916
\(807\) 391.617 1461.53i 0.485275 1.81107i
\(808\) −105.049 392.046i −0.130011 0.485206i
\(809\) 138.014 + 79.6822i 0.170598 + 0.0984947i 0.582868 0.812567i \(-0.301931\pi\)
−0.412270 + 0.911062i \(0.635264\pi\)
\(810\) 0 0
\(811\) 741.545 0.914358 0.457179 0.889375i \(-0.348860\pi\)
0.457179 + 0.889375i \(0.348860\pi\)
\(812\) −693.712 78.0346i −0.854325 0.0961018i
\(813\) −1531.04 + 1531.04i −1.88320 + 1.88320i
\(814\) 150.843 87.0890i 0.185310 0.106989i
\(815\) 0 0
\(816\) −104.000 + 180.133i −0.127451 + 0.220752i
\(817\) −65.0866 + 242.906i −0.0796654 + 0.297315i
\(818\) −125.317 + 125.317i −0.153199 + 0.153199i
\(819\) 2032.47 306.725i 2.48165 0.374511i
\(820\) 0 0
\(821\) −788.950 1366.50i −0.960963 1.66444i −0.720092 0.693879i \(-0.755900\pi\)
−0.240871 0.970557i \(-0.577433\pi\)
\(822\) 69.1724 18.5347i 0.0841513 0.0225483i
\(823\) 157.478 + 587.715i 0.191346 + 0.714114i 0.993182 + 0.116570i \(0.0371899\pi\)
−0.801836 + 0.597544i \(0.796143\pi\)
\(824\) −137.659 + 79.4772i −0.167061 + 0.0964529i
\(825\) 0 0
\(826\) −695.586 272.851i −0.842114 0.330328i
\(827\) −1014.44 1014.44i −1.22665 1.22665i −0.965223 0.261426i \(-0.915807\pi\)
−0.261426 0.965223i \(-0.584193\pi\)
\(828\) −657.304 176.124i −0.793846 0.212710i
\(829\) 344.517 + 198.907i 0.415581 + 0.239936i 0.693185 0.720760i \(-0.256207\pi\)
−0.277604 + 0.960696i \(0.589540\pi\)
\(830\) 0 0
\(831\) 42.9979 + 74.4746i 0.0517424 + 0.0896204i
\(832\) 87.6356 + 87.6356i 0.105331 + 0.105331i
\(833\) 225.030 426.154i 0.270145 0.511589i
\(834\) 396.455i 0.475366i
\(835\) 0 0
\(836\) −64.0911 + 111.009i −0.0766640 + 0.132786i
\(837\) −813.404 + 217.951i −0.971809 + 0.260396i
\(838\) 158.827 + 42.5575i 0.189531 + 0.0507846i
\(839\) 1475.70i 1.75888i −0.476011 0.879439i \(-0.657918\pi\)
0.476011 0.879439i \(-0.342082\pi\)
\(840\) 0 0
\(841\) −1645.35 −1.95643
\(842\) 195.622 730.071i 0.232330 0.867068i
\(843\) −414.007 1545.10i −0.491112 1.83285i
\(844\) 307.790 + 177.703i 0.364681 + 0.210548i
\(845\) 0 0
\(846\) −563.453 −0.666021
\(847\) −452.594 + 613.477i −0.534350 + 0.724295i
\(848\) −32.1822 + 32.1822i −0.0379507 + 0.0379507i
\(849\) −725.534 + 418.887i −0.854575 + 0.493389i
\(850\) 0 0
\(851\) −317.905 + 550.627i −0.373566 + 0.647035i
\(852\) −110.406 + 412.042i −0.129585 + 0.483617i
\(853\) −307.404 + 307.404i −0.360380 + 0.360380i −0.863953 0.503573i \(-0.832018\pi\)
0.503573 + 0.863953i \(0.332018\pi\)
\(854\) −635.323 796.372i −0.743938 0.932520i
\(855\) 0 0
\(856\) 84.8395 + 146.946i 0.0991116 + 0.171666i
\(857\) 1162.11 311.386i 1.35602 0.363344i 0.493666 0.869651i \(-0.335656\pi\)
0.862353 + 0.506307i \(0.168990\pi\)
\(858\) 104.250 + 389.066i 0.121503 + 0.453456i
\(859\) −795.008 + 458.998i −0.925504 + 0.534340i −0.885387 0.464855i \(-0.846106\pi\)
−0.0401170 + 0.999195i \(0.512773\pi\)
\(860\) 0 0
\(861\) −174.908 + 139.536i −0.203145 + 0.162063i
\(862\) −477.473 477.473i −0.553913 0.553913i
\(863\) 1226.45 + 328.625i 1.42114 + 0.380794i 0.885889 0.463897i \(-0.153549\pi\)
0.535254 + 0.844691i \(0.320216\pi\)
\(864\) 257.839 + 148.863i 0.298425 + 0.172296i
\(865\) 0 0
\(866\) −542.271 939.241i −0.626179 1.08457i
\(867\) 718.828 + 718.828i 0.829098 + 0.829098i
\(868\) 180.254 + 132.983i 0.207666 + 0.153206i
\(869\) 351.909i 0.404958i
\(870\) 0 0
\(871\) 249.588 432.299i 0.286553 0.496325i
\(872\) −101.833 + 27.2859i −0.116780 + 0.0312912i
\(873\) 1185.15 + 317.559i 1.35756 + 0.363756i
\(874\) 467.909i 0.535365i
\(875\) 0 0
\(876\) −938.725 −1.07160
\(877\) −104.335 + 389.382i −0.118968 + 0.443993i −0.999553 0.0298940i \(-0.990483\pi\)
0.880585 + 0.473888i \(0.157150\pi\)
\(878\) 98.2949 + 366.841i 0.111953 + 0.417815i
\(879\) −648.727 374.542i −0.738028 0.426101i
\(880\) 0 0
\(881\) 338.402 0.384111 0.192055 0.981384i \(-0.438485\pi\)
0.192055 + 0.981384i \(0.438485\pi\)
\(882\) −1161.49 613.323i −1.31688 0.695378i
\(883\) 455.410 455.410i 0.515753 0.515753i −0.400530 0.916283i \(-0.631174\pi\)
0.916283 + 0.400530i \(0.131174\pi\)
\(884\) −263.903 + 152.364i −0.298533 + 0.172358i
\(885\) 0 0
\(886\) 62.3525 107.998i 0.0703753 0.121894i
\(887\) −104.463 + 389.861i −0.117771 + 0.439528i −0.999479 0.0322675i \(-0.989727\pi\)
0.881708 + 0.471795i \(0.156394\pi\)
\(888\) 374.542 374.542i 0.421782 0.421782i
\(889\) 90.2107 229.976i 0.101474 0.258691i
\(890\) 0 0
\(891\) 187.216 + 324.267i 0.210119 + 0.363936i
\(892\) 680.589 182.363i 0.762992 0.204443i
\(893\) −100.275 374.232i −0.112290 0.419072i
\(894\) −1353.96 + 781.711i −1.51450 + 0.874397i
\(895\) 0 0
\(896\) −11.8178 78.3093i −0.0131895 0.0873987i
\(897\) −1039.67 1039.67i −1.15906 1.15906i
\(898\) 137.163 + 36.7526i 0.152742 + 0.0409272i
\(899\) 690.927 + 398.907i 0.768550 + 0.443723i
\(900\) 0 0
\(901\) −55.9524 96.9124i −0.0621003 0.107561i
\(902\) −21.0217 21.0217i −0.0233057 0.0233057i
\(903\) 56.4458 501.792i 0.0625092 0.555694i
\(904\) 474.542i 0.524936i
\(905\) 0 0
\(906\) 605.996 1049.62i 0.668870 1.15852i
\(907\) −589.236 + 157.885i −0.649653 + 0.174074i −0.568572 0.822633i \(-0.692504\pi\)
−0.0810812 + 0.996707i \(0.525837\pi\)
\(908\) 80.1006 + 21.4629i 0.0882165 + 0.0236375i
\(909\) 2719.94i 2.99224i
\(910\) 0 0
\(911\) −716.063 −0.786019 −0.393009 0.919534i \(-0.628566\pi\)
−0.393009 + 0.919534i \(0.628566\pi\)
\(912\) −100.890 + 376.525i −0.110625 + 0.412857i
\(913\) −65.0692 242.841i −0.0712696 0.265982i
\(914\) −852.004 491.905i −0.932171 0.538189i
\(915\) 0 0
\(916\) 630.178 0.687967
\(917\) −291.279 + 394.819i −0.317643 + 0.430555i
\(918\) −517.631 + 517.631i −0.563869 + 0.563869i
\(919\) −222.629 + 128.535i −0.242251 + 0.139864i −0.616211 0.787581i \(-0.711333\pi\)
0.373960 + 0.927445i \(0.378000\pi\)
\(920\) 0 0
\(921\) 906.995 1570.96i 0.984793 1.70571i
\(922\) −70.1435 + 261.779i −0.0760776 + 0.283925i
\(923\) −441.909 + 441.909i −0.478775 + 0.478775i
\(924\) 93.9904 239.612i 0.101721 0.259320i
\(925\) 0 0
\(926\) 268.079 + 464.327i 0.289502 + 0.501433i
\(927\) −1028.92 + 275.699i −1.10995 + 0.297410i
\(928\) −73.0050 272.458i −0.0786692 0.293597i
\(929\) −1104.77 + 637.841i −1.18921 + 0.686588i −0.958126 0.286346i \(-0.907559\pi\)
−0.231080 + 0.972935i \(0.574226\pi\)
\(930\) 0 0
\(931\) 200.650 880.581i 0.215521 0.945845i
\(932\) −162.725 162.725i −0.174597 0.174597i
\(933\) 38.1865 + 10.2320i 0.0409287 + 0.0109668i
\(934\) 236.403 + 136.487i 0.253108 + 0.146132i
\(935\) 0 0
\(936\) 415.271 + 719.271i 0.443666 + 0.768452i
\(937\) 589.180 + 589.180i 0.628794 + 0.628794i 0.947765 0.318970i \(-0.103337\pi\)
−0.318970 + 0.947765i \(0.603337\pi\)
\(938\) −292.340 + 127.610i −0.311663 + 0.136045i
\(939\) 3163.53i 3.36904i
\(940\) 0 0
\(941\) −98.6377 + 170.845i −0.104822 + 0.181557i −0.913666 0.406467i \(-0.866761\pi\)
0.808843 + 0.588024i \(0.200094\pi\)
\(942\) −994.932 + 266.591i −1.05619 + 0.283005i
\(943\) 104.824 + 28.0875i 0.111160 + 0.0297853i
\(944\) 301.909i 0.319819i
\(945\) 0 0
\(946\) 67.0932 0.0709230
\(947\) 400.951 1496.37i 0.423390 1.58011i −0.344023 0.938961i \(-0.611790\pi\)
0.767413 0.641153i \(-0.221544\pi\)
\(948\) −276.980 1033.71i −0.292173 1.09041i
\(949\) −1191.02 687.636i −1.25503 0.724590i
\(950\) 0 0
\(951\) −2153.44 −2.26440
\(952\) 193.504 + 21.7670i 0.203261 + 0.0228645i
\(953\) −1139.41 + 1139.41i −1.19560 + 1.19560i −0.220128 + 0.975471i \(0.570647\pi\)
−0.975471 + 0.220128i \(0.929353\pi\)
\(954\) −264.136 + 152.499i −0.276872 + 0.159852i
\(955\) 0 0
\(956\) 438.725 759.893i 0.458917 0.794868i
\(957\) 237.266 885.490i 0.247927 0.925277i
\(958\) 741.545 741.545i 0.774055 0.774055i
\(959\) −41.8095 52.4079i −0.0435970 0.0546485i
\(960\) 0 0
\(961\) 352.500 + 610.548i 0.366805 + 0.635326i
\(962\) 749.566 200.846i 0.779175 0.208779i
\(963\) 294.300 + 1098.34i 0.305608 + 1.14054i
\(964\) −270.515 + 156.182i −0.280618 + 0.162015i
\(965\) 0 0
\(966\) 140.202 + 929.031i 0.145136 + 0.961729i
\(967\) 184.424 + 184.424i 0.190718 + 0.190718i 0.796006 0.605289i \(-0.206942\pi\)
−0.605289 + 0.796006i \(0.706942\pi\)
\(968\) −297.545 79.7268i −0.307381 0.0823624i
\(969\) −830.040 479.224i −0.856594 0.494555i
\(970\) 0 0
\(971\) −745.089 1290.53i −0.767342 1.32908i −0.938999 0.343919i \(-0.888246\pi\)
0.171658 0.985157i \(-0.445088\pi\)
\(972\) 135.271 + 135.271i 0.139168 + 0.139168i
\(973\) 340.157 148.483i 0.349596 0.152603i
\(974\) 1114.81i 1.14457i
\(975\) 0 0
\(976\) 205.818 356.487i 0.210879 0.365253i
\(977\) −1016.44 + 272.355i −1.04037 + 0.278767i −0.738268 0.674507i \(-0.764356\pi\)
−0.302105 + 0.953275i \(0.597689\pi\)
\(978\) −686.670 183.993i −0.702116 0.188131i
\(979\) 287.659i 0.293830i
\(980\) 0 0
\(981\) −706.495 −0.720178
\(982\) −84.9179 + 316.918i −0.0864744 + 0.322727i
\(983\) −185.170 691.062i −0.188372 0.703014i −0.993884 0.110434i \(-0.964776\pi\)
0.805512 0.592580i \(-0.201891\pi\)
\(984\) −78.2955 45.2039i −0.0795686 0.0459390i
\(985\) 0 0
\(986\) 693.545 0.703392
\(987\) 311.228 + 712.989i 0.315328 + 0.722380i
\(988\) −403.818 + 403.818i −0.408722 + 0.408722i
\(989\) −212.101 + 122.457i −0.214460 + 0.123819i
\(990\) 0 0
\(991\) −646.768 + 1120.24i −0.652642 + 1.13041i 0.329838 + 0.944038i \(0.393006\pi\)
−0.982479 + 0.186371i \(0.940327\pi\)
\(992\) −23.4256 + 87.4256i −0.0236145 + 0.0881307i
\(993\) −884.681 + 884.681i −0.890918 + 0.890918i
\(994\) 394.880 59.5921i 0.397264 0.0599518i
\(995\) 0 0
\(996\) −382.271 662.113i −0.383806 0.664772i
\(997\) 175.157 46.9331i 0.175684 0.0470743i −0.169905 0.985460i \(-0.554346\pi\)
0.345588 + 0.938386i \(0.387679\pi\)
\(998\) −241.052 899.618i −0.241535 0.901421i
\(999\) 1614.43 932.091i 1.61605 0.933024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.p.c.207.1 8
5.2 odd 4 70.3.l.a.53.1 yes 8
5.3 odd 4 inner 350.3.p.c.193.2 8
5.4 even 2 70.3.l.a.67.2 yes 8
7.2 even 3 inner 350.3.p.c.107.2 8
35.2 odd 12 70.3.l.a.23.2 8
35.4 even 6 490.3.f.l.197.2 4
35.9 even 6 70.3.l.a.37.1 yes 8
35.17 even 12 490.3.f.e.393.1 4
35.23 odd 12 inner 350.3.p.c.93.1 8
35.24 odd 6 490.3.f.e.197.1 4
35.32 odd 12 490.3.f.l.393.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.a.23.2 8 35.2 odd 12
70.3.l.a.37.1 yes 8 35.9 even 6
70.3.l.a.53.1 yes 8 5.2 odd 4
70.3.l.a.67.2 yes 8 5.4 even 2
350.3.p.c.93.1 8 35.23 odd 12 inner
350.3.p.c.107.2 8 7.2 even 3 inner
350.3.p.c.193.2 8 5.3 odd 4 inner
350.3.p.c.207.1 8 1.1 even 1 trivial
490.3.f.e.197.1 4 35.24 odd 6
490.3.f.e.393.1 4 35.17 even 12
490.3.f.l.197.2 4 35.4 even 6
490.3.f.l.393.2 4 35.32 odd 12