Properties

Label 350.3.p.c.193.2
Level $350$
Weight $3$
Character 350.193
Analytic conductor $9.537$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,3,Mod(93,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.93"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.p (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,4,0,0,-16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 193.2
Root \(2.15988 - 0.578737i\) of defining polynomial
Character \(\chi\) \(=\) 350.193
Dual form 350.3.p.c.107.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(5.10704 - 1.36843i) q^{3} +(1.73205 + 1.00000i) q^{4} -7.47723 q^{6} +(6.41543 - 2.80041i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(16.4150 - 9.47723i) q^{9} +(-1.73861 + 3.01137i) q^{11} +(10.2141 + 2.73685i) q^{12} +(-10.9545 - 10.9545i) q^{13} +(-9.78866 + 1.47723i) q^{14} +(2.00000 + 3.46410i) q^{16} +(2.54551 + 9.49996i) q^{17} +(-25.8923 + 6.93781i) q^{18} +(15.9623 - 9.21584i) q^{19} +(28.9317 - 23.0809i) q^{21} +(3.47723 - 3.47723i) q^{22} +(4.64598 - 17.3390i) q^{23} +(-12.9509 - 7.47723i) q^{24} +(10.9545 + 18.9737i) q^{26} +(37.2158 - 37.2158i) q^{27} +(13.9123 + 1.56497i) q^{28} +49.8634i q^{29} +(-8.00000 + 13.8564i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-4.75833 + 17.7583i) q^{33} -13.9089i q^{34} +37.9089 q^{36} +(-34.2129 - 9.16731i) q^{37} +(-25.1781 + 6.74646i) q^{38} +(-70.9352 - 40.9545i) q^{39} -6.04555 q^{41} +(-47.9696 + 20.9393i) q^{42} +(9.64752 + 9.64752i) q^{43} +(-6.02273 + 3.47723i) q^{44} +(-12.6931 + 21.9850i) q^{46} +(20.3037 + 5.44036i) q^{47} +(14.9545 + 14.9545i) q^{48} +(33.3154 - 35.9317i) q^{49} +(26.0000 + 45.0333i) q^{51} +(-8.01921 - 29.9281i) q^{52} +(-10.9904 + 2.94488i) q^{53} +(-64.4597 + 37.2158i) q^{54} +(-18.4317 - 7.23003i) q^{56} +(68.9089 - 68.9089i) q^{57} +(18.2513 - 68.1146i) q^{58} +(65.3652 + 37.7386i) q^{59} +(-51.4545 - 89.1217i) q^{61} +(16.0000 - 16.0000i) q^{62} +(78.7693 - 106.769i) q^{63} +8.00000i q^{64} +(13.0000 - 22.5167i) q^{66} +(8.33958 + 31.1237i) q^{67} +(-5.09101 + 18.9999i) q^{68} -94.9089i q^{69} +40.3406 q^{71} +(-51.7845 - 13.8756i) q^{72} +(-85.7485 + 22.9762i) q^{73} +(43.3802 + 25.0455i) q^{74} +36.8634 q^{76} +(-2.72088 + 24.1880i) q^{77} +(81.9089 + 81.9089i) q^{78} +(87.6452 - 50.6020i) q^{79} +(53.8406 - 93.2546i) q^{81} +(8.25837 + 2.21282i) q^{82} +(-51.1247 - 51.1247i) q^{83} +(73.1920 - 11.0455i) q^{84} +(-9.64752 - 16.7100i) q^{86} +(68.2344 + 254.654i) q^{87} +(9.49996 - 2.54551i) q^{88} +(-71.6434 + 41.3634i) q^{89} +(-100.954 - 39.6005i) q^{91} +(25.3861 - 25.3861i) q^{92} +(-21.8948 + 81.7126i) q^{93} +(-25.7441 - 14.8634i) q^{94} +(-14.9545 - 25.9019i) q^{96} +(-45.7723 + 45.7723i) q^{97} +(-58.6616 + 36.8893i) q^{98} +65.9089i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 4 q^{3} - 16 q^{6} + 4 q^{7} - 16 q^{8} + 8 q^{11} + 8 q^{12} + 16 q^{16} + 16 q^{17} - 32 q^{18} + 100 q^{21} - 16 q^{22} + 4 q^{23} + 232 q^{27} + 40 q^{28} - 64 q^{31} + 16 q^{32} + 52 q^{33}+ \cdots + 132 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) 5.10704 1.36843i 1.70235 0.456142i 0.728818 0.684707i \(-0.240070\pi\)
0.973529 + 0.228565i \(0.0734034\pi\)
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 0 0
\(6\) −7.47723 −1.24620
\(7\) 6.41543 2.80041i 0.916489 0.400059i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 16.4150 9.47723i 1.82389 1.05303i
\(10\) 0 0
\(11\) −1.73861 + 3.01137i −0.158056 + 0.273761i −0.934167 0.356835i \(-0.883856\pi\)
0.776112 + 0.630595i \(0.217189\pi\)
\(12\) 10.2141 + 2.73685i 0.851173 + 0.228071i
\(13\) −10.9545 10.9545i −0.842650 0.842650i 0.146553 0.989203i \(-0.453182\pi\)
−0.989203 + 0.146553i \(0.953182\pi\)
\(14\) −9.78866 + 1.47723i −0.699190 + 0.105516i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 2.54551 + 9.49996i 0.149736 + 0.558821i 0.999499 + 0.0316564i \(0.0100782\pi\)
−0.849763 + 0.527165i \(0.823255\pi\)
\(18\) −25.8923 + 6.93781i −1.43846 + 0.385434i
\(19\) 15.9623 9.21584i 0.840121 0.485044i −0.0171843 0.999852i \(-0.505470\pi\)
0.857305 + 0.514808i \(0.172137\pi\)
\(20\) 0 0
\(21\) 28.9317 23.0809i 1.37770 1.09909i
\(22\) 3.47723 3.47723i 0.158056 0.158056i
\(23\) 4.64598 17.3390i 0.201999 0.753872i −0.788344 0.615235i \(-0.789061\pi\)
0.990343 0.138637i \(-0.0442721\pi\)
\(24\) −12.9509 7.47723i −0.539622 0.311551i
\(25\) 0 0
\(26\) 10.9545 + 18.9737i 0.421325 + 0.729756i
\(27\) 37.2158 37.2158i 1.37836 1.37836i
\(28\) 13.9123 + 1.56497i 0.496866 + 0.0558918i
\(29\) 49.8634i 1.71943i 0.510777 + 0.859713i \(0.329358\pi\)
−0.510777 + 0.859713i \(0.670642\pi\)
\(30\) 0 0
\(31\) −8.00000 + 13.8564i −0.258065 + 0.446981i −0.965723 0.259573i \(-0.916418\pi\)
0.707659 + 0.706554i \(0.249751\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) −4.75833 + 17.7583i −0.144192 + 0.538131i
\(34\) 13.9089i 0.409085i
\(35\) 0 0
\(36\) 37.9089 1.05303
\(37\) −34.2129 9.16731i −0.924672 0.247765i −0.235091 0.971973i \(-0.575539\pi\)
−0.689581 + 0.724208i \(0.742205\pi\)
\(38\) −25.1781 + 6.74646i −0.662583 + 0.177538i
\(39\) −70.9352 40.9545i −1.81885 1.05011i
\(40\) 0 0
\(41\) −6.04555 −0.147452 −0.0737262 0.997279i \(-0.523489\pi\)
−0.0737262 + 0.997279i \(0.523489\pi\)
\(42\) −47.9696 + 20.9393i −1.14213 + 0.498555i
\(43\) 9.64752 + 9.64752i 0.224361 + 0.224361i 0.810332 0.585971i \(-0.199287\pi\)
−0.585971 + 0.810332i \(0.699287\pi\)
\(44\) −6.02273 + 3.47723i −0.136880 + 0.0790279i
\(45\) 0 0
\(46\) −12.6931 + 21.9850i −0.275936 + 0.477935i
\(47\) 20.3037 + 5.44036i 0.431994 + 0.115752i 0.468262 0.883590i \(-0.344880\pi\)
−0.0362680 + 0.999342i \(0.511547\pi\)
\(48\) 14.9545 + 14.9545i 0.311551 + 0.311551i
\(49\) 33.3154 35.9317i 0.679906 0.733300i
\(50\) 0 0
\(51\) 26.0000 + 45.0333i 0.509804 + 0.883006i
\(52\) −8.01921 29.9281i −0.154216 0.575541i
\(53\) −10.9904 + 2.94488i −0.207366 + 0.0555637i −0.361007 0.932563i \(-0.617567\pi\)
0.153640 + 0.988127i \(0.450900\pi\)
\(54\) −64.4597 + 37.2158i −1.19370 + 0.689182i
\(55\) 0 0
\(56\) −18.4317 7.23003i −0.329137 0.129108i
\(57\) 68.9089 68.9089i 1.20893 1.20893i
\(58\) 18.2513 68.1146i 0.314677 1.17439i
\(59\) 65.3652 + 37.7386i 1.10788 + 0.639638i 0.938281 0.345875i \(-0.112418\pi\)
0.169604 + 0.985512i \(0.445751\pi\)
\(60\) 0 0
\(61\) −51.4545 89.1217i −0.843516 1.46101i −0.886904 0.461954i \(-0.847149\pi\)
0.0433885 0.999058i \(-0.486185\pi\)
\(62\) 16.0000 16.0000i 0.258065 0.258065i
\(63\) 78.7693 106.769i 1.25031 1.69475i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 13.0000 22.5167i 0.196970 0.341162i
\(67\) 8.33958 + 31.1237i 0.124471 + 0.464533i 0.999820 0.0189583i \(-0.00603497\pi\)
−0.875349 + 0.483492i \(0.839368\pi\)
\(68\) −5.09101 + 18.9999i −0.0748678 + 0.279410i
\(69\) 94.9089i 1.37549i
\(70\) 0 0
\(71\) 40.3406 0.568177 0.284089 0.958798i \(-0.408309\pi\)
0.284089 + 0.958798i \(0.408309\pi\)
\(72\) −51.7845 13.8756i −0.719229 0.192717i
\(73\) −85.7485 + 22.9762i −1.17464 + 0.314743i −0.792797 0.609486i \(-0.791376\pi\)
−0.381840 + 0.924229i \(0.624709\pi\)
\(74\) 43.3802 + 25.0455i 0.586218 + 0.338453i
\(75\) 0 0
\(76\) 36.8634 0.485044
\(77\) −2.72088 + 24.1880i −0.0353361 + 0.314130i
\(78\) 81.9089 + 81.9089i 1.05011 + 1.05011i
\(79\) 87.6452 50.6020i 1.10943 0.640531i 0.170750 0.985314i \(-0.445381\pi\)
0.938682 + 0.344783i \(0.112048\pi\)
\(80\) 0 0
\(81\) 53.8406 93.2546i 0.664699 1.15129i
\(82\) 8.25837 + 2.21282i 0.100712 + 0.0269857i
\(83\) −51.1247 51.1247i −0.615961 0.615961i 0.328532 0.944493i \(-0.393446\pi\)
−0.944493 + 0.328532i \(0.893446\pi\)
\(84\) 73.1920 11.0455i 0.871333 0.131495i
\(85\) 0 0
\(86\) −9.64752 16.7100i −0.112180 0.194302i
\(87\) 68.2344 + 254.654i 0.784303 + 2.92706i
\(88\) 9.49996 2.54551i 0.107954 0.0289262i
\(89\) −71.6434 + 41.3634i −0.804982 + 0.464757i −0.845210 0.534434i \(-0.820525\pi\)
0.0402280 + 0.999191i \(0.487192\pi\)
\(90\) 0 0
\(91\) −100.954 39.6005i −1.10939 0.435170i
\(92\) 25.3861 25.3861i 0.275936 0.275936i
\(93\) −21.8948 + 81.7126i −0.235428 + 0.878631i
\(94\) −25.7441 14.8634i −0.273873 0.158121i
\(95\) 0 0
\(96\) −14.9545 25.9019i −0.155776 0.269811i
\(97\) −45.7723 + 45.7723i −0.471879 + 0.471879i −0.902522 0.430643i \(-0.858287\pi\)
0.430643 + 0.902522i \(0.358287\pi\)
\(98\) −58.6616 + 36.8893i −0.598587 + 0.376422i
\(99\) 65.9089i 0.665746i
\(100\) 0 0
\(101\) −71.7495 + 124.274i −0.710391 + 1.23043i 0.254320 + 0.967120i \(0.418148\pi\)
−0.964710 + 0.263313i \(0.915185\pi\)
\(102\) −19.0333 71.0333i −0.186601 0.696405i
\(103\) −14.5453 + 54.2840i −0.141217 + 0.527029i 0.858678 + 0.512516i \(0.171286\pi\)
−0.999895 + 0.0145128i \(0.995380\pi\)
\(104\) 43.8178i 0.421325i
\(105\) 0 0
\(106\) 16.0911 0.151803
\(107\) −57.9465 15.5267i −0.541556 0.145109i −0.0223366 0.999751i \(-0.507111\pi\)
−0.519219 + 0.854641i \(0.673777\pi\)
\(108\) 101.676 27.2439i 0.941440 0.252258i
\(109\) −32.2796 18.6366i −0.296143 0.170978i 0.344566 0.938762i \(-0.388026\pi\)
−0.640709 + 0.767784i \(0.721360\pi\)
\(110\) 0 0
\(111\) −187.271 −1.68713
\(112\) 22.5318 + 16.6229i 0.201176 + 0.148418i
\(113\) 118.636 + 118.636i 1.04987 + 1.04987i 0.998689 + 0.0511834i \(0.0162993\pi\)
0.0511834 + 0.998689i \(0.483701\pi\)
\(114\) −119.354 + 68.9089i −1.04696 + 0.604464i
\(115\) 0 0
\(116\) −49.8634 + 86.3659i −0.429856 + 0.744533i
\(117\) −283.636 75.9999i −2.42424 0.649572i
\(118\) −75.4772 75.4772i −0.639638 0.639638i
\(119\) 42.9343 + 53.8178i 0.360792 + 0.452250i
\(120\) 0 0
\(121\) 54.4545 + 94.3179i 0.450037 + 0.779487i
\(122\) 37.6673 + 140.576i 0.308748 + 1.15226i
\(123\) −30.8749 + 8.27289i −0.251015 + 0.0672593i
\(124\) −27.7128 + 16.0000i −0.223490 + 0.129032i
\(125\) 0 0
\(126\) −146.681 + 117.018i −1.16414 + 0.928714i
\(127\) −24.9545 + 24.9545i −0.196492 + 0.196492i −0.798494 0.602002i \(-0.794370\pi\)
0.602002 + 0.798494i \(0.294370\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 62.4722 + 36.0683i 0.484280 + 0.279599i
\(130\) 0 0
\(131\) 35.0455 + 60.7007i 0.267523 + 0.463364i 0.968222 0.250094i \(-0.0804614\pi\)
−0.700698 + 0.713458i \(0.747128\pi\)
\(132\) −26.0000 + 26.0000i −0.196970 + 0.196970i
\(133\) 76.5968 103.825i 0.575916 0.780636i
\(134\) 45.5683i 0.340062i
\(135\) 0 0
\(136\) 13.9089 24.0909i 0.102271 0.177139i
\(137\) 2.47882 + 9.25107i 0.0180936 + 0.0675261i 0.974382 0.224898i \(-0.0722048\pi\)
−0.956289 + 0.292424i \(0.905538\pi\)
\(138\) −34.7391 + 129.648i −0.251732 + 0.939478i
\(139\) 53.0217i 0.381451i 0.981643 + 0.190726i \(0.0610841\pi\)
−0.981643 + 0.190726i \(0.938916\pi\)
\(140\) 0 0
\(141\) 111.137 0.788203
\(142\) −55.1063 14.7657i −0.388072 0.103984i
\(143\) 52.0334 13.9423i 0.363870 0.0974987i
\(144\) 65.6601 + 37.9089i 0.455973 + 0.263256i
\(145\) 0 0
\(146\) 125.545 0.859894
\(147\) 120.973 229.094i 0.822946 1.55846i
\(148\) −50.0911 50.0911i −0.338453 0.338453i
\(149\) −181.078 + 104.546i −1.21529 + 0.701648i −0.963907 0.266240i \(-0.914219\pi\)
−0.251383 + 0.967888i \(0.580885\pi\)
\(150\) 0 0
\(151\) −81.0455 + 140.375i −0.536725 + 0.929636i 0.462352 + 0.886696i \(0.347006\pi\)
−0.999078 + 0.0429394i \(0.986328\pi\)
\(152\) −50.3563 13.4929i −0.331291 0.0887692i
\(153\) 131.818 + 131.818i 0.861554 + 0.861554i
\(154\) 12.5702 32.0455i 0.0816248 0.208088i
\(155\) 0 0
\(156\) −81.9089 141.870i −0.525057 0.909426i
\(157\) −35.6538 133.062i −0.227094 0.847526i −0.981555 0.191181i \(-0.938768\pi\)
0.754461 0.656345i \(-0.227898\pi\)
\(158\) −138.247 + 37.0432i −0.874982 + 0.234451i
\(159\) −52.0987 + 30.0792i −0.327665 + 0.189177i
\(160\) 0 0
\(161\) −18.7505 124.248i −0.116463 0.771727i
\(162\) −107.681 + 107.681i −0.664699 + 0.664699i
\(163\) −24.6071 + 91.8348i −0.150964 + 0.563404i 0.848454 + 0.529270i \(0.177534\pi\)
−0.999417 + 0.0341341i \(0.989133\pi\)
\(164\) −10.4712 6.04555i −0.0638488 0.0368631i
\(165\) 0 0
\(166\) 51.1247 + 88.5506i 0.307980 + 0.533438i
\(167\) −133.988 + 133.988i −0.802324 + 0.802324i −0.983458 0.181134i \(-0.942023\pi\)
0.181134 + 0.983458i \(0.442023\pi\)
\(168\) −104.025 11.7016i −0.619197 0.0696526i
\(169\) 71.0000i 0.420118i
\(170\) 0 0
\(171\) 174.681 302.557i 1.02153 1.76934i
\(172\) 7.06247 + 26.3575i 0.0410609 + 0.153241i
\(173\) 0.0666881 0.248884i 0.000385481 0.00143863i −0.965733 0.259538i \(-0.916430\pi\)
0.966118 + 0.258100i \(0.0830963\pi\)
\(174\) 372.840i 2.14276i
\(175\) 0 0
\(176\) −13.9089 −0.0790279
\(177\) 385.465 + 103.285i 2.17777 + 0.583532i
\(178\) 113.007 30.2801i 0.634870 0.170113i
\(179\) −37.7895 21.8178i −0.211115 0.121887i 0.390715 0.920512i \(-0.372228\pi\)
−0.601829 + 0.798625i \(0.705561\pi\)
\(180\) 0 0
\(181\) 3.68116 0.0203379 0.0101689 0.999948i \(-0.496763\pi\)
0.0101689 + 0.999948i \(0.496763\pi\)
\(182\) 123.412 + 91.0472i 0.678085 + 0.500259i
\(183\) −384.737 384.737i −2.10239 2.10239i
\(184\) −43.9701 + 25.3861i −0.238968 + 0.137968i
\(185\) 0 0
\(186\) 59.8178 103.607i 0.321601 0.557029i
\(187\) −33.0335 8.85130i −0.176650 0.0473331i
\(188\) 29.7267 + 29.7267i 0.158121 + 0.158121i
\(189\) 134.536 342.975i 0.711829 1.81468i
\(190\) 0 0
\(191\) −8.96636 15.5302i −0.0469443 0.0813099i 0.841598 0.540104i \(-0.181615\pi\)
−0.888543 + 0.458794i \(0.848282\pi\)
\(192\) 10.9474 + 40.8563i 0.0570178 + 0.212793i
\(193\) 205.399 55.0364i 1.06424 0.285163i 0.316117 0.948720i \(-0.397621\pi\)
0.748125 + 0.663557i \(0.230954\pi\)
\(194\) 79.2799 45.7723i 0.408659 0.235939i
\(195\) 0 0
\(196\) 93.6356 28.9201i 0.477733 0.147552i
\(197\) −41.0911 + 41.0911i −0.208584 + 0.208584i −0.803666 0.595081i \(-0.797120\pi\)
0.595081 + 0.803666i \(0.297120\pi\)
\(198\) 24.1243 90.0332i 0.121840 0.454713i
\(199\) 261.145 + 150.772i 1.31229 + 0.757650i 0.982475 0.186397i \(-0.0596810\pi\)
0.329813 + 0.944046i \(0.393014\pi\)
\(200\) 0 0
\(201\) 85.1812 + 147.538i 0.423787 + 0.734020i
\(202\) 143.499 143.499i 0.710391 0.710391i
\(203\) 139.638 + 319.895i 0.687872 + 1.57584i
\(204\) 104.000i 0.509804i
\(205\) 0 0
\(206\) 39.7386 68.8293i 0.192906 0.334123i
\(207\) −88.0621 328.652i −0.425421 1.58769i
\(208\) 16.0384 59.8562i 0.0771078 0.287770i
\(209\) 64.0911i 0.306656i
\(210\) 0 0
\(211\) −177.703 −0.842194 −0.421097 0.907016i \(-0.638355\pi\)
−0.421097 + 0.907016i \(0.638355\pi\)
\(212\) −21.9808 5.88975i −0.103683 0.0277818i
\(213\) 206.021 55.2031i 0.967235 0.259170i
\(214\) 73.4732 + 42.4198i 0.343333 + 0.198223i
\(215\) 0 0
\(216\) −148.863 −0.689182
\(217\) −12.5198 + 111.298i −0.0576947 + 0.512894i
\(218\) 37.2733 + 37.2733i 0.170978 + 0.170978i
\(219\) −406.480 + 234.681i −1.85607 + 1.07160i
\(220\) 0 0
\(221\) 76.1822 131.951i 0.344716 0.597065i
\(222\) 255.817 + 68.5460i 1.15233 + 0.308766i
\(223\) −249.113 249.113i −1.11710 1.11710i −0.992165 0.124933i \(-0.960129\pi\)
−0.124933 0.992165i \(-0.539871\pi\)
\(224\) −24.6946 30.9545i −0.110244 0.138190i
\(225\) 0 0
\(226\) −118.636 205.483i −0.524936 0.909216i
\(227\) 10.7314 + 40.0503i 0.0472751 + 0.176433i 0.985527 0.169521i \(-0.0542220\pi\)
−0.938252 + 0.345954i \(0.887555\pi\)
\(228\) 188.263 50.4448i 0.825713 0.221249i
\(229\) 272.875 157.545i 1.19159 0.687967i 0.232926 0.972494i \(-0.425170\pi\)
0.958668 + 0.284527i \(0.0918366\pi\)
\(230\) 0 0
\(231\) 19.2039 + 127.253i 0.0831339 + 0.550877i
\(232\) 99.7267 99.7267i 0.429856 0.429856i
\(233\) −29.7807 + 111.143i −0.127814 + 0.477009i −0.999924 0.0123008i \(-0.996084\pi\)
0.872110 + 0.489309i \(0.162751\pi\)
\(234\) 359.635 + 207.636i 1.53690 + 0.887332i
\(235\) 0 0
\(236\) 75.4772 + 130.730i 0.319819 + 0.553942i
\(237\) 378.362 378.362i 1.59647 1.59647i
\(238\) −38.9507 89.2315i −0.163658 0.374922i
\(239\) 438.725i 1.83567i −0.396965 0.917834i \(-0.629936\pi\)
0.396965 0.917834i \(-0.370064\pi\)
\(240\) 0 0
\(241\) 78.0911 135.258i 0.324029 0.561235i −0.657286 0.753641i \(-0.728296\pi\)
0.981315 + 0.192406i \(0.0616290\pi\)
\(242\) −39.8634 148.772i −0.164725 0.614762i
\(243\) 24.7564 92.3920i 0.101878 0.380214i
\(244\) 205.818i 0.843516i
\(245\) 0 0
\(246\) 45.2039 0.183756
\(247\) −275.813 73.9038i −1.11665 0.299206i
\(248\) 43.7128 11.7128i 0.176261 0.0472291i
\(249\) −331.057 191.136i −1.32954 0.767613i
\(250\) 0 0
\(251\) 185.727 0.739947 0.369974 0.929042i \(-0.379367\pi\)
0.369974 + 0.929042i \(0.379367\pi\)
\(252\) 243.202 106.161i 0.965086 0.421272i
\(253\) 44.1366 + 44.1366i 0.174453 + 0.174453i
\(254\) 43.2224 24.9545i 0.170167 0.0982459i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 230.423 + 61.7416i 0.896587 + 0.240240i 0.677550 0.735477i \(-0.263042\pi\)
0.219037 + 0.975717i \(0.429709\pi\)
\(258\) −72.1366 72.1366i −0.279599 0.279599i
\(259\) −245.162 + 36.9979i −0.946573 + 0.142849i
\(260\) 0 0
\(261\) 472.566 + 818.509i 1.81060 + 3.13605i
\(262\) −25.6551 95.7462i −0.0979203 0.365444i
\(263\) −317.275 + 85.0136i −1.20637 + 0.323246i −0.805336 0.592818i \(-0.798015\pi\)
−0.401032 + 0.916064i \(0.631349\pi\)
\(264\) 45.0333 26.0000i 0.170581 0.0984848i
\(265\) 0 0
\(266\) −142.636 + 113.791i −0.536224 + 0.427784i
\(267\) −309.283 + 309.283i −1.15836 + 1.15836i
\(268\) −16.6792 + 62.2475i −0.0622357 + 0.232267i
\(269\) −247.839 143.090i −0.921336 0.531933i −0.0372746 0.999305i \(-0.511868\pi\)
−0.884061 + 0.467372i \(0.845201\pi\)
\(270\) 0 0
\(271\) −204.760 354.655i −0.755573 1.30869i −0.945089 0.326814i \(-0.894025\pi\)
0.189516 0.981878i \(-0.439308\pi\)
\(272\) −27.8178 + 27.8178i −0.102271 + 0.102271i
\(273\) −569.769 64.0925i −2.08707 0.234771i
\(274\) 13.5445i 0.0494325i
\(275\) 0 0
\(276\) 94.9089 164.387i 0.343873 0.595605i
\(277\) 4.20967 + 15.7107i 0.0151974 + 0.0567174i 0.973108 0.230349i \(-0.0739867\pi\)
−0.957911 + 0.287066i \(0.907320\pi\)
\(278\) 19.4073 72.4290i 0.0698104 0.260536i
\(279\) 303.271i 1.08699i
\(280\) 0 0
\(281\) 302.542 1.07666 0.538332 0.842733i \(-0.319055\pi\)
0.538332 + 0.842733i \(0.319055\pi\)
\(282\) −151.815 40.6788i −0.538353 0.144251i
\(283\) 153.054 41.0108i 0.540828 0.144914i 0.0219440 0.999759i \(-0.493014\pi\)
0.518884 + 0.854845i \(0.326348\pi\)
\(284\) 69.8719 + 40.3406i 0.246028 + 0.142044i
\(285\) 0 0
\(286\) −76.1822 −0.266371
\(287\) −38.7848 + 16.9300i −0.135139 + 0.0589897i
\(288\) −75.8178 75.8178i −0.263256 0.263256i
\(289\) 166.512 96.1356i 0.576165 0.332649i
\(290\) 0 0
\(291\) −171.125 + 296.397i −0.588058 + 1.01855i
\(292\) −171.497 45.9525i −0.587318 0.157372i
\(293\) 100.182 + 100.182i 0.341919 + 0.341919i 0.857088 0.515170i \(-0.172271\pi\)
−0.515170 + 0.857088i \(0.672271\pi\)
\(294\) −249.107 + 268.669i −0.847301 + 0.913841i
\(295\) 0 0
\(296\) 50.0911 + 86.7603i 0.169227 + 0.293109i
\(297\) 47.3666 + 176.774i 0.159483 + 0.595200i
\(298\) 285.624 76.5327i 0.958469 0.256821i
\(299\) −240.834 + 139.046i −0.805465 + 0.465035i
\(300\) 0 0
\(301\) 88.9099 + 34.8759i 0.295382 + 0.115867i
\(302\) 162.091 162.091i 0.536725 0.536725i
\(303\) −196.368 + 732.855i −0.648079 + 2.41866i
\(304\) 63.8492 + 36.8634i 0.210030 + 0.121261i
\(305\) 0 0
\(306\) −131.818 228.315i −0.430777 0.746128i
\(307\) 242.602 242.602i 0.790234 0.790234i −0.191298 0.981532i \(-0.561270\pi\)
0.981532 + 0.191298i \(0.0612696\pi\)
\(308\) −28.9007 + 39.1740i −0.0938335 + 0.127188i
\(309\) 297.135i 0.961601i
\(310\) 0 0
\(311\) −3.73861 + 6.47547i −0.0120213 + 0.0208214i −0.871973 0.489553i \(-0.837160\pi\)
0.859952 + 0.510375i \(0.170493\pi\)
\(312\) 59.9615 + 223.779i 0.192184 + 0.717241i
\(313\) 154.861 577.950i 0.494765 1.84649i −0.0365796 0.999331i \(-0.511646\pi\)
0.531344 0.847156i \(-0.321687\pi\)
\(314\) 194.816i 0.620432i
\(315\) 0 0
\(316\) 202.408 0.640531
\(317\) −393.415 105.415i −1.24106 0.332540i −0.422182 0.906511i \(-0.638736\pi\)
−0.818876 + 0.573971i \(0.805402\pi\)
\(318\) 82.1779 22.0195i 0.258421 0.0692437i
\(319\) −150.157 86.6931i −0.470711 0.271765i
\(320\) 0 0
\(321\) −317.182 −0.988107
\(322\) −19.8643 + 176.589i −0.0616902 + 0.548414i
\(323\) 128.182 + 128.182i 0.396849 + 0.396849i
\(324\) 186.509 107.681i 0.575646 0.332349i
\(325\) 0 0
\(326\) 67.2277 116.442i 0.206220 0.357184i
\(327\) −190.356 51.0058i −0.582129 0.155981i
\(328\) 12.0911 + 12.0911i 0.0368631 + 0.0368631i
\(329\) 145.492 21.9565i 0.442226 0.0667372i
\(330\) 0 0
\(331\) −118.317 204.931i −0.357452 0.619126i 0.630082 0.776529i \(-0.283021\pi\)
−0.987534 + 0.157403i \(0.949688\pi\)
\(332\) −37.4259 139.675i −0.112729 0.420709i
\(333\) −648.486 + 173.761i −1.94741 + 0.521806i
\(334\) 232.074 133.988i 0.694833 0.401162i
\(335\) 0 0
\(336\) 137.818 + 54.0605i 0.410172 + 0.160894i
\(337\) −316.271 + 316.271i −0.938490 + 0.938490i −0.998215 0.0597246i \(-0.980978\pi\)
0.0597246 + 0.998215i \(0.480978\pi\)
\(338\) 25.9878 96.9878i 0.0768870 0.286946i
\(339\) 768.221 + 443.533i 2.26614 + 1.30836i
\(340\) 0 0
\(341\) −27.8178 48.1819i −0.0815771 0.141296i
\(342\) −349.362 + 349.362i −1.02153 + 1.02153i
\(343\) 113.109 323.814i 0.329763 0.944064i
\(344\) 38.5901i 0.112180i
\(345\) 0 0
\(346\) −0.182195 + 0.315572i −0.000526576 + 0.000912057i
\(347\) 36.7228 + 137.052i 0.105830 + 0.394961i 0.998438 0.0558716i \(-0.0177938\pi\)
−0.892608 + 0.450833i \(0.851127\pi\)
\(348\) −136.469 + 509.308i −0.392152 + 1.46353i
\(349\) 298.861i 0.856336i −0.903699 0.428168i \(-0.859159\pi\)
0.903699 0.428168i \(-0.140841\pi\)
\(350\) 0 0
\(351\) −815.358 −2.32296
\(352\) 18.9999 + 5.09101i 0.0539770 + 0.0144631i
\(353\) −33.2795 + 8.91723i −0.0942763 + 0.0252613i −0.305649 0.952144i \(-0.598873\pi\)
0.211373 + 0.977406i \(0.432207\pi\)
\(354\) −488.750 282.180i −1.38065 0.797119i
\(355\) 0 0
\(356\) −165.453 −0.464757
\(357\) 292.913 + 216.097i 0.820484 + 0.605314i
\(358\) 43.6356 + 43.6356i 0.121887 + 0.121887i
\(359\) −426.160 + 246.043i −1.18707 + 0.685358i −0.957641 0.287966i \(-0.907021\pi\)
−0.229434 + 0.973324i \(0.573688\pi\)
\(360\) 0 0
\(361\) −10.6366 + 18.4232i −0.0294644 + 0.0510338i
\(362\) −5.02856 1.34740i −0.0138910 0.00372209i
\(363\) 407.168 + 407.168i 1.12168 + 1.12168i
\(364\) −135.258 169.545i −0.371587 0.465782i
\(365\) 0 0
\(366\) 384.737 + 666.383i 1.05119 + 1.82072i
\(367\) 18.8463 + 70.3355i 0.0513524 + 0.191650i 0.986837 0.161717i \(-0.0517033\pi\)
−0.935485 + 0.353367i \(0.885037\pi\)
\(368\) 69.3562 18.5839i 0.188468 0.0504998i
\(369\) −99.2379 + 57.2950i −0.268937 + 0.155271i
\(370\) 0 0
\(371\) −62.2614 + 49.6703i −0.167820 + 0.133882i
\(372\) −119.636 + 119.636i −0.321601 + 0.321601i
\(373\) 89.0434 332.315i 0.238722 0.890924i −0.737713 0.675114i \(-0.764094\pi\)
0.976435 0.215810i \(-0.0692391\pi\)
\(374\) 41.8848 + 24.1822i 0.111991 + 0.0646583i
\(375\) 0 0
\(376\) −29.7267 51.4882i −0.0790604 0.136937i
\(377\) 546.226 546.226i 1.44887 1.44887i
\(378\) −309.317 + 419.269i −0.818299 + 1.10918i
\(379\) 33.5683i 0.0885708i 0.999019 + 0.0442854i \(0.0141011\pi\)
−0.999019 + 0.0442854i \(0.985899\pi\)
\(380\) 0 0
\(381\) −93.2950 + 161.592i −0.244869 + 0.424125i
\(382\) 6.56383 + 24.4965i 0.0171828 + 0.0641271i
\(383\) 186.195 694.888i 0.486148 1.81433i −0.0886883 0.996059i \(-0.528267\pi\)
0.574836 0.818269i \(-0.305066\pi\)
\(384\) 59.8178i 0.155776i
\(385\) 0 0
\(386\) −300.725 −0.779079
\(387\) 249.796 + 66.9326i 0.645468 + 0.172953i
\(388\) −125.052 + 33.5076i −0.322299 + 0.0863598i
\(389\) 459.937 + 265.545i 1.18236 + 0.682634i 0.956558 0.291540i \(-0.0941678\pi\)
0.225798 + 0.974174i \(0.427501\pi\)
\(390\) 0 0
\(391\) 176.547 0.451526
\(392\) −138.494 + 5.23259i −0.353301 + 0.0133484i
\(393\) 262.043 + 262.043i 0.666777 + 0.666777i
\(394\) 71.1719 41.0911i 0.180639 0.104292i
\(395\) 0 0
\(396\) −65.9089 + 114.158i −0.166437 + 0.288277i
\(397\) 259.731 + 69.5948i 0.654235 + 0.175302i 0.570643 0.821198i \(-0.306694\pi\)
0.0835924 + 0.996500i \(0.473361\pi\)
\(398\) −301.545 301.545i −0.757650 0.757650i
\(399\) 249.107 635.053i 0.624327 1.59161i
\(400\) 0 0
\(401\) −276.270 478.514i −0.688953 1.19330i −0.972177 0.234248i \(-0.924737\pi\)
0.283224 0.959054i \(-0.408596\pi\)
\(402\) −62.3569 232.719i −0.155117 0.578904i
\(403\) 239.425 64.1537i 0.594107 0.159190i
\(404\) −248.547 + 143.499i −0.615217 + 0.355195i
\(405\) 0 0
\(406\) −73.6594 488.095i −0.181427 1.20221i
\(407\) 87.0890 87.0890i 0.213978 0.213978i
\(408\) 38.0666 142.067i 0.0933006 0.348203i
\(409\) 108.528 + 62.6584i 0.265348 + 0.153199i 0.626772 0.779203i \(-0.284376\pi\)
−0.361423 + 0.932402i \(0.617709\pi\)
\(410\) 0 0
\(411\) 25.3188 + 43.8535i 0.0616030 + 0.106700i
\(412\) −79.4772 + 79.4772i −0.192906 + 0.192906i
\(413\) 525.029 + 59.0598i 1.27126 + 0.143002i
\(414\) 481.180i 1.16227i
\(415\) 0 0
\(416\) −43.8178 + 75.8947i −0.105331 + 0.182439i
\(417\) 72.5564 + 270.784i 0.173996 + 0.649362i
\(418\) 23.4590 87.5501i 0.0561219 0.209450i
\(419\) 116.269i 0.277492i −0.990328 0.138746i \(-0.955693\pi\)
0.990328 0.138746i \(-0.0443072\pi\)
\(420\) 0 0
\(421\) 534.449 1.26948 0.634738 0.772728i \(-0.281108\pi\)
0.634738 + 0.772728i \(0.281108\pi\)
\(422\) 242.747 + 65.0438i 0.575229 + 0.154132i
\(423\) 384.846 103.119i 0.909801 0.243780i
\(424\) 27.8706 + 16.0911i 0.0657325 + 0.0379507i
\(425\) 0 0
\(426\) −301.636 −0.708065
\(427\) −579.680 427.660i −1.35756 1.00155i
\(428\) −84.8395 84.8395i −0.198223 0.198223i
\(429\) 246.658 142.408i 0.574960 0.331953i
\(430\) 0 0
\(431\) 238.737 413.504i 0.553913 0.959406i −0.444074 0.895990i \(-0.646467\pi\)
0.997987 0.0634155i \(-0.0201994\pi\)
\(432\) 203.351 + 54.4878i 0.470720 + 0.126129i
\(433\) 542.271 + 542.271i 1.25236 + 1.25236i 0.954660 + 0.297699i \(0.0962190\pi\)
0.297699 + 0.954660i \(0.403781\pi\)
\(434\) 57.8402 147.453i 0.133272 0.339754i
\(435\) 0 0
\(436\) −37.2733 64.5592i −0.0854892 0.148072i
\(437\) −85.6333 319.588i −0.195957 0.731322i
\(438\) 641.161 171.799i 1.46384 0.392234i
\(439\) 232.568 134.273i 0.529768 0.305862i −0.211154 0.977453i \(-0.567722\pi\)
0.740922 + 0.671591i \(0.234389\pi\)
\(440\) 0 0
\(441\) 206.341 905.557i 0.467892 2.05342i
\(442\) −152.364 + 152.364i −0.344716 + 0.344716i
\(443\) −22.8226 + 85.1751i −0.0515183 + 0.192269i −0.986889 0.161400i \(-0.948399\pi\)
0.935371 + 0.353668i \(0.115066\pi\)
\(444\) −324.363 187.271i −0.730548 0.421782i
\(445\) 0 0
\(446\) 249.113 + 431.476i 0.558549 + 0.967435i
\(447\) −781.711 + 781.711i −1.74879 + 1.74879i
\(448\) 22.4033 + 51.3234i 0.0500074 + 0.114561i
\(449\) 100.410i 0.223630i −0.993729 0.111815i \(-0.964334\pi\)
0.993729 0.111815i \(-0.0356664\pi\)
\(450\) 0 0
\(451\) 10.5109 18.2054i 0.0233057 0.0403666i
\(452\) 86.8473 + 324.119i 0.192140 + 0.717076i
\(453\) −221.810 + 827.806i −0.489647 + 1.82739i
\(454\) 58.6377i 0.129158i
\(455\) 0 0
\(456\) −275.636 −0.604464
\(457\) −671.954 180.050i −1.47036 0.393982i −0.567305 0.823508i \(-0.692014\pi\)
−0.903055 + 0.429526i \(0.858681\pi\)
\(458\) −430.420 + 115.331i −0.939781 + 0.251814i
\(459\) 448.282 + 258.816i 0.976649 + 0.563869i
\(460\) 0 0
\(461\) −191.636 −0.415695 −0.207848 0.978161i \(-0.566646\pi\)
−0.207848 + 0.978161i \(0.566646\pi\)
\(462\) 20.3446 180.859i 0.0440359 0.391470i
\(463\) −268.079 268.079i −0.579005 0.579005i 0.355624 0.934629i \(-0.384268\pi\)
−0.934629 + 0.355624i \(0.884268\pi\)
\(464\) −172.732 + 99.7267i −0.372267 + 0.214928i
\(465\) 0 0
\(466\) 81.3623 140.924i 0.174597 0.302411i
\(467\) 186.445 + 49.9577i 0.399239 + 0.106976i 0.452851 0.891586i \(-0.350407\pi\)
−0.0536121 + 0.998562i \(0.517073\pi\)
\(468\) −415.271 415.271i −0.887332 0.887332i
\(469\) 140.661 + 176.318i 0.299917 + 0.375944i
\(470\) 0 0
\(471\) −364.170 630.761i −0.773185 1.33920i
\(472\) −55.2532 206.208i −0.117062 0.436881i
\(473\) −45.8255 + 12.2789i −0.0968826 + 0.0259596i
\(474\) −655.343 + 378.362i −1.38258 + 0.798233i
\(475\) 0 0
\(476\) 20.5466 + 136.149i 0.0431651 + 0.286028i
\(477\) −152.499 + 152.499i −0.319704 + 0.319704i
\(478\) −160.584 + 599.309i −0.335951 + 1.25378i
\(479\) −642.196 370.772i −1.34070 0.774055i −0.353792 0.935324i \(-0.615108\pi\)
−0.986910 + 0.161269i \(0.948441\pi\)
\(480\) 0 0
\(481\) 274.360 + 475.206i 0.570396 + 0.987954i
\(482\) −156.182 + 156.182i −0.324029 + 0.324029i
\(483\) −265.784 608.881i −0.550278 1.26062i
\(484\) 217.818i 0.450037i
\(485\) 0 0
\(486\) −67.6356 + 117.148i −0.139168 + 0.241046i
\(487\) 204.025 + 761.430i 0.418942 + 1.56351i 0.776807 + 0.629739i \(0.216838\pi\)
−0.357865 + 0.933773i \(0.616495\pi\)
\(488\) −75.3345 + 281.152i −0.154374 + 0.576132i
\(489\) 502.677i 1.02797i
\(490\) 0 0
\(491\) −232.000 −0.472505 −0.236253 0.971692i \(-0.575919\pi\)
−0.236253 + 0.971692i \(0.575919\pi\)
\(492\) −61.7497 16.5458i −0.125508 0.0336296i
\(493\) −473.700 + 126.927i −0.960851 + 0.257459i
\(494\) 349.716 + 201.909i 0.707928 + 0.408722i
\(495\) 0 0
\(496\) −64.0000 −0.129032
\(497\) 258.802 112.970i 0.520728 0.227304i
\(498\) 382.271 + 382.271i 0.767613 + 0.767613i
\(499\) −570.335 + 329.283i −1.14296 + 0.659886i −0.947161 0.320759i \(-0.896062\pi\)
−0.195795 + 0.980645i \(0.562729\pi\)
\(500\) 0 0
\(501\) −500.930 + 867.636i −0.999859 + 1.73181i
\(502\) −253.707 67.9807i −0.505393 0.135420i
\(503\) −230.055 230.055i −0.457367 0.457367i 0.440424 0.897790i \(-0.354828\pi\)
−0.897790 + 0.440424i \(0.854828\pi\)
\(504\) −371.077 + 56.0000i −0.736264 + 0.111111i
\(505\) 0 0
\(506\) −44.1366 76.4469i −0.0872266 0.151081i
\(507\) 97.1583 + 362.600i 0.191634 + 0.715187i
\(508\) −68.1768 + 18.2679i −0.134206 + 0.0359605i
\(509\) 105.300 60.7950i 0.206876 0.119440i −0.392983 0.919546i \(-0.628557\pi\)
0.599859 + 0.800106i \(0.295223\pi\)
\(510\) 0 0
\(511\) −485.770 + 387.534i −0.950627 + 0.758383i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 251.075 937.026i 0.489425 1.82656i
\(514\) −292.164 168.681i −0.568413 0.328173i
\(515\) 0 0
\(516\) 72.1366 + 124.944i 0.139800 + 0.242140i
\(517\) −51.6832 + 51.6832i −0.0999676 + 0.0999676i
\(518\) 348.440 + 39.1955i 0.672664 + 0.0756670i
\(519\) 1.36232i 0.00262489i
\(520\) 0 0
\(521\) 244.135 422.853i 0.468588 0.811619i −0.530767 0.847518i \(-0.678096\pi\)
0.999355 + 0.0358988i \(0.0114294\pi\)
\(522\) −345.943 1291.08i −0.662725 2.47332i
\(523\) −169.086 + 631.039i −0.323301 + 1.20657i 0.592708 + 0.805417i \(0.298059\pi\)
−0.916009 + 0.401158i \(0.868608\pi\)
\(524\) 140.182i 0.267523i
\(525\) 0 0
\(526\) 464.523 0.883123
\(527\) −151.999 40.7281i −0.288424 0.0772829i
\(528\) −71.0333 + 19.0333i −0.134533 + 0.0360480i
\(529\) 179.070 + 103.386i 0.338507 + 0.195437i
\(530\) 0 0
\(531\) 1430.63 2.69422
\(532\) 236.494 103.233i 0.444538 0.194046i
\(533\) 66.2257 + 66.2257i 0.124251 + 0.124251i
\(534\) 535.694 309.283i 1.00317 0.579182i
\(535\) 0 0
\(536\) 45.5683 78.9267i 0.0850155 0.147251i
\(537\) −222.849 59.7122i −0.414988 0.111196i
\(538\) 286.180 + 286.180i 0.531933 + 0.531933i
\(539\) 50.2809 + 162.796i 0.0932855 + 0.302034i
\(540\) 0 0
\(541\) −221.793 384.157i −0.409968 0.710086i 0.584917 0.811093i \(-0.301127\pi\)
−0.994886 + 0.101007i \(0.967794\pi\)
\(542\) 149.895 + 559.416i 0.276559 + 1.03213i
\(543\) 18.7998 5.03740i 0.0346221 0.00927697i
\(544\) 48.1819 27.8178i 0.0885696 0.0511357i
\(545\) 0 0
\(546\) 754.859 + 296.102i 1.38253 + 0.542311i
\(547\) 686.507 686.507i 1.25504 1.25504i 0.301608 0.953432i \(-0.402477\pi\)
0.953432 0.301608i \(-0.0975232\pi\)
\(548\) −4.95764 + 18.5021i −0.00904678 + 0.0337630i
\(549\) −1689.25 975.291i −3.07696 1.77649i
\(550\) 0 0
\(551\) 459.533 + 795.934i 0.833997 + 1.44453i
\(552\) −189.818 + 189.818i −0.343873 + 0.343873i
\(553\) 420.575 570.076i 0.760533 1.03088i
\(554\) 23.0021i 0.0415200i
\(555\) 0 0
\(556\) −53.0217 + 91.8363i −0.0953628 + 0.165173i
\(557\) −11.7962 44.0239i −0.0211780 0.0790376i 0.954528 0.298121i \(-0.0963599\pi\)
−0.975706 + 0.219084i \(0.929693\pi\)
\(558\) 111.005 414.276i 0.198934 0.742430i
\(559\) 211.366i 0.378115i
\(560\) 0 0
\(561\) −180.816 −0.322310
\(562\) −413.281 110.738i −0.735375 0.197043i
\(563\) −692.031 + 185.429i −1.22919 + 0.329359i −0.814262 0.580497i \(-0.802858\pi\)
−0.414923 + 0.909857i \(0.636191\pi\)
\(564\) 192.494 + 111.137i 0.341302 + 0.197051i
\(565\) 0 0
\(566\) −224.087 −0.395913
\(567\) 84.2589 749.044i 0.148605 1.32107i
\(568\) −80.6812 80.6812i −0.142044 0.142044i
\(569\) 724.073 418.043i 1.27254 0.734699i 0.297071 0.954855i \(-0.403990\pi\)
0.975464 + 0.220157i \(0.0706569\pi\)
\(570\) 0 0
\(571\) −517.327 + 896.036i −0.906001 + 1.56924i −0.0864332 + 0.996258i \(0.527547\pi\)
−0.819568 + 0.572982i \(0.805786\pi\)
\(572\) 104.067 + 27.8846i 0.181935 + 0.0487493i
\(573\) −67.0435 67.0435i −0.117004 0.117004i
\(574\) 59.1778 8.93064i 0.103097 0.0155586i
\(575\) 0 0
\(576\) 75.8178 + 131.320i 0.131628 + 0.227987i
\(577\) −30.9295 115.431i −0.0536040 0.200053i 0.933931 0.357454i \(-0.116355\pi\)
−0.987535 + 0.157401i \(0.949688\pi\)
\(578\) −262.647 + 70.3762i −0.454407 + 0.121758i
\(579\) 973.666 562.146i 1.68163 0.970892i
\(580\) 0 0
\(581\) −471.157 184.817i −0.810942 0.318101i
\(582\) 342.249 342.249i 0.588058 0.588058i
\(583\) 10.2400 38.2162i 0.0175643 0.0655509i
\(584\) 217.449 + 125.545i 0.372345 + 0.214973i
\(585\) 0 0
\(586\) −100.182 173.521i −0.170959 0.296110i
\(587\) 808.313 808.313i 1.37702 1.37702i 0.527416 0.849607i \(-0.323161\pi\)
0.849607 0.527416i \(-0.176839\pi\)
\(588\) 438.626 275.830i 0.745962 0.469098i
\(589\) 294.907i 0.500691i
\(590\) 0 0
\(591\) −153.624 + 266.084i −0.259939 + 0.450227i
\(592\) −36.6692 136.851i −0.0619413 0.231168i
\(593\) 23.1263 86.3085i 0.0389988 0.145546i −0.943681 0.330856i \(-0.892662\pi\)
0.982680 + 0.185311i \(0.0593292\pi\)
\(594\) 258.816i 0.435717i
\(595\) 0 0
\(596\) −418.182 −0.701648
\(597\) 1540.00 + 412.642i 2.57956 + 0.691192i
\(598\) 379.880 101.788i 0.635250 0.170215i
\(599\) −337.198 194.681i −0.562934 0.325010i 0.191388 0.981514i \(-0.438701\pi\)
−0.754322 + 0.656504i \(0.772034\pi\)
\(600\) 0 0
\(601\) 478.638 0.796402 0.398201 0.917298i \(-0.369635\pi\)
0.398201 + 0.917298i \(0.369635\pi\)
\(602\) −108.688 80.1847i −0.180544 0.133197i
\(603\) 431.861 + 431.861i 0.716188 + 0.716188i
\(604\) −280.750 + 162.091i −0.464818 + 0.268363i
\(605\) 0 0
\(606\) 536.487 929.223i 0.885292 1.53337i
\(607\) 618.509 + 165.729i 1.01896 + 0.273030i 0.729369 0.684121i \(-0.239814\pi\)
0.289592 + 0.957150i \(0.406481\pi\)
\(608\) −73.7267 73.7267i −0.121261 0.121261i
\(609\) 1150.89 + 1442.63i 1.88980 + 2.36885i
\(610\) 0 0
\(611\) −162.820 282.012i −0.266481 0.461559i
\(612\) 96.4973 + 360.133i 0.157675 + 0.588453i
\(613\) −1102.44 + 295.398i −1.79843 + 0.481889i −0.993732 0.111792i \(-0.964341\pi\)
−0.804701 + 0.593681i \(0.797674\pi\)
\(614\) −420.199 + 242.602i −0.684363 + 0.395117i
\(615\) 0 0
\(616\) 53.8178 42.9343i 0.0873666 0.0696985i
\(617\) −15.0890 + 15.0890i −0.0244555 + 0.0244555i −0.719229 0.694773i \(-0.755505\pi\)
0.694773 + 0.719229i \(0.255505\pi\)
\(618\) 108.759 405.893i 0.175985 0.656785i
\(619\) 124.687 + 71.9881i 0.201433 + 0.116297i 0.597324 0.802000i \(-0.296231\pi\)
−0.395891 + 0.918298i \(0.629564\pi\)
\(620\) 0 0
\(621\) −472.383 818.191i −0.760681 1.31754i
\(622\) 7.47723 7.47723i 0.0120213 0.0120213i
\(623\) −343.789 + 465.995i −0.551828 + 0.747985i
\(624\) 327.636i 0.525057i
\(625\) 0 0
\(626\) −423.089 + 732.812i −0.675861 + 1.17063i
\(627\) 87.7040 + 327.316i 0.139879 + 0.522035i
\(628\) 71.3075 266.123i 0.113547 0.423763i
\(629\) 348.356i 0.553825i
\(630\) 0 0
\(631\) 395.200 0.626307 0.313154 0.949703i \(-0.398615\pi\)
0.313154 + 0.949703i \(0.398615\pi\)
\(632\) −276.494 74.0864i −0.437491 0.117225i
\(633\) −907.536 + 243.173i −1.43371 + 0.384160i
\(634\) 498.831 + 288.000i 0.786799 + 0.454259i
\(635\) 0 0
\(636\) −120.317 −0.189177
\(637\) −758.564 + 28.6601i −1.19084 + 0.0449923i
\(638\) 173.386 + 173.386i 0.271765 + 0.271765i
\(639\) 662.192 382.317i 1.03629 0.598305i
\(640\) 0 0
\(641\) 50.3416 87.1942i 0.0785361 0.136028i −0.824082 0.566470i \(-0.808309\pi\)
0.902619 + 0.430441i \(0.141642\pi\)
\(642\) 433.279 + 116.097i 0.674889 + 0.180836i
\(643\) −301.770 301.770i −0.469316 0.469316i 0.432377 0.901693i \(-0.357675\pi\)
−0.901693 + 0.432377i \(0.857675\pi\)
\(644\) 91.7712 233.954i 0.142502 0.363283i
\(645\) 0 0
\(646\) −128.182 222.018i −0.198424 0.343681i
\(647\) 138.769 + 517.894i 0.214481 + 0.800454i 0.986349 + 0.164671i \(0.0526562\pi\)
−0.771867 + 0.635784i \(0.780677\pi\)
\(648\) −294.190 + 78.8281i −0.453998 + 0.121648i
\(649\) −227.290 + 131.226i −0.350215 + 0.202197i
\(650\) 0 0
\(651\) 88.3644 + 585.536i 0.135736 + 0.899441i
\(652\) −134.455 + 134.455i −0.206220 + 0.206220i
\(653\) 251.492 938.581i 0.385133 1.43734i −0.452823 0.891600i \(-0.649583\pi\)
0.837957 0.545737i \(-0.183750\pi\)
\(654\) 241.362 + 139.350i 0.369055 + 0.213074i
\(655\) 0 0
\(656\) −12.0911 20.9424i −0.0184316 0.0319244i
\(657\) −1189.81 + 1189.81i −1.81098 + 1.81098i
\(658\) −206.783 23.2607i −0.314260 0.0353506i
\(659\) 735.842i 1.11660i −0.829638 0.558302i \(-0.811453\pi\)
0.829638 0.558302i \(-0.188547\pi\)
\(660\) 0 0
\(661\) −23.0901 + 39.9932i −0.0349320 + 0.0605040i −0.882963 0.469443i \(-0.844455\pi\)
0.848031 + 0.529947i \(0.177788\pi\)
\(662\) 86.6139 + 323.247i 0.130837 + 0.488289i
\(663\) 208.500 778.131i 0.314479 1.17365i
\(664\) 204.499i 0.307980i
\(665\) 0 0
\(666\) 949.449 1.42560
\(667\) 864.583 + 231.664i 1.29623 + 0.347323i
\(668\) −366.062 + 98.0861i −0.547997 + 0.146835i
\(669\) −1613.12 931.336i −2.41124 1.39213i
\(670\) 0 0
\(671\) 357.837 0.533290
\(672\) −168.475 124.293i −0.250707 0.184960i
\(673\) 122.772 + 122.772i 0.182425 + 0.182425i 0.792412 0.609986i \(-0.208825\pi\)
−0.609986 + 0.792412i \(0.708825\pi\)
\(674\) 547.798 316.271i 0.812756 0.469245i
\(675\) 0 0
\(676\) −71.0000 + 122.976i −0.105030 + 0.181917i
\(677\) −333.808 89.4436i −0.493069 0.132118i 0.00371227 0.999993i \(-0.498818\pi\)
−0.496782 + 0.867876i \(0.665485\pi\)
\(678\) −887.065 887.065i −1.30836 1.30836i
\(679\) −165.467 + 421.830i −0.243693 + 0.621251i
\(680\) 0 0
\(681\) 109.612 + 189.853i 0.160957 + 0.278786i
\(682\) 20.3640 + 75.9997i 0.0298593 + 0.111436i
\(683\) 685.231 183.607i 1.00327 0.268824i 0.280453 0.959868i \(-0.409515\pi\)
0.722813 + 0.691043i \(0.242849\pi\)
\(684\) 605.113 349.362i 0.884669 0.510764i
\(685\) 0 0
\(686\) −273.034 + 400.937i −0.398008 + 0.584457i
\(687\) 1178.00 1178.00i 1.71470 1.71470i
\(688\) −14.1249 + 52.7150i −0.0205304 + 0.0766206i
\(689\) 152.654 + 88.1346i 0.221558 + 0.127917i
\(690\) 0 0
\(691\) −572.329 991.302i −0.828261 1.43459i −0.899401 0.437125i \(-0.855997\pi\)
0.0711395 0.997466i \(-0.477336\pi\)
\(692\) 0.364391 0.364391i 0.000526576 0.000526576i
\(693\) 184.572 + 422.834i 0.266338 + 0.610150i
\(694\) 200.657i 0.289132i
\(695\) 0 0
\(696\) 372.840 645.777i 0.535689 0.927841i
\(697\) −15.3890 57.4325i −0.0220789 0.0823995i
\(698\) −109.391 + 408.252i −0.156720 + 0.584888i
\(699\) 608.364i 0.870335i
\(700\) 0 0
\(701\) 496.362 0.708077 0.354039 0.935231i \(-0.384808\pi\)
0.354039 + 0.935231i \(0.384808\pi\)
\(702\) 1113.80 + 298.442i 1.58661 + 0.425131i
\(703\) −630.600 + 168.969i −0.897013 + 0.240354i
\(704\) −24.0909 13.9089i −0.0342201 0.0197570i
\(705\) 0 0
\(706\) 48.7246 0.0690151
\(707\) −112.286 + 998.197i −0.158820 + 1.41188i
\(708\) 564.360 + 564.360i 0.797119 + 0.797119i
\(709\) −282.281 + 162.975i −0.398140 + 0.229866i −0.685681 0.727902i \(-0.740496\pi\)
0.287541 + 0.957768i \(0.407162\pi\)
\(710\) 0 0
\(711\) 959.132 1661.27i 1.34899 2.33652i
\(712\) 226.014 + 60.5602i 0.317435 + 0.0850564i
\(713\) 203.089 + 203.089i 0.284837 + 0.284837i
\(714\) −321.029 402.408i −0.449621 0.563596i
\(715\) 0 0
\(716\) −43.6356 75.5791i −0.0609436 0.105557i
\(717\) −600.363 2240.58i −0.837326 3.12494i
\(718\) 672.203 180.116i 0.936216 0.250858i
\(719\) 543.130 313.576i 0.755396 0.436128i −0.0722443 0.997387i \(-0.523016\pi\)
0.827640 + 0.561259i \(0.189683\pi\)
\(720\) 0 0
\(721\) 58.7029 + 388.988i 0.0814187 + 0.539511i
\(722\) 21.2733 21.2733i 0.0294644 0.0294644i
\(723\) 213.724 797.629i 0.295607 1.10322i
\(724\) 6.37595 + 3.68116i 0.00880656 + 0.00508447i
\(725\) 0 0
\(726\) −407.168 705.236i −0.560838 0.971399i
\(727\) 9.62370 9.62370i 0.0132376 0.0132376i −0.700457 0.713695i \(-0.747020\pi\)
0.713695 + 0.700457i \(0.247020\pi\)
\(728\) 122.708 + 281.110i 0.168555 + 0.386140i
\(729\) 463.404i 0.635670i
\(730\) 0 0
\(731\) −67.0932 + 116.209i −0.0917827 + 0.158972i
\(732\) −281.647 1051.12i −0.384763 1.43596i
\(733\) −56.6180 + 211.301i −0.0772415 + 0.288269i −0.993732 0.111787i \(-0.964343\pi\)
0.916491 + 0.400056i \(0.131009\pi\)
\(734\) 102.978i 0.140297i
\(735\) 0 0
\(736\) −101.545 −0.137968
\(737\) −108.224 28.9986i −0.146844 0.0393468i
\(738\) 156.533 41.9429i 0.212104 0.0568332i
\(739\) 467.750 + 270.055i 0.632949 + 0.365434i 0.781893 0.623412i \(-0.214254\pi\)
−0.148944 + 0.988846i \(0.547587\pi\)
\(740\) 0 0
\(741\) −1509.72 −2.03741
\(742\) 103.231 45.0617i 0.139126 0.0607301i
\(743\) −142.376 142.376i −0.191624 0.191624i 0.604774 0.796397i \(-0.293264\pi\)
−0.796397 + 0.604774i \(0.793264\pi\)
\(744\) 207.215 119.636i 0.278515 0.160801i
\(745\) 0 0
\(746\) −243.271 + 421.358i −0.326101 + 0.564823i
\(747\) −1323.74 354.694i −1.77207 0.474824i
\(748\) −48.3644 48.3644i −0.0646583 0.0646583i
\(749\) −415.233 + 62.6636i −0.554383 + 0.0836630i
\(750\) 0 0
\(751\) 602.043 + 1042.77i 0.801656 + 1.38851i 0.918526 + 0.395361i \(0.129381\pi\)
−0.116870 + 0.993147i \(0.537286\pi\)
\(752\) 21.7615 + 81.2149i 0.0289381 + 0.107999i
\(753\) 948.514 254.153i 1.25965 0.337521i
\(754\) −946.091 + 546.226i −1.25476 + 0.724437i
\(755\) 0 0
\(756\) 575.998 459.515i 0.761902 0.607824i
\(757\) 297.410 297.410i 0.392880 0.392880i −0.482833 0.875713i \(-0.660392\pi\)
0.875713 + 0.482833i \(0.160392\pi\)
\(758\) 12.2869 45.8552i 0.0162096 0.0604950i
\(759\) 285.805 + 165.010i 0.376555 + 0.217404i
\(760\) 0 0
\(761\) 368.271 + 637.864i 0.483931 + 0.838192i 0.999830 0.0184569i \(-0.00587536\pi\)
−0.515899 + 0.856649i \(0.672542\pi\)
\(762\) 186.590 186.590i 0.244869 0.244869i
\(763\) −259.278 29.1658i −0.339814 0.0382251i
\(764\) 35.8654i 0.0469443i
\(765\) 0 0
\(766\) −508.693 + 881.082i −0.664090 + 1.15024i
\(767\) −302.634 1129.45i −0.394569 1.47255i
\(768\) −21.8948 + 81.7126i −0.0285089 + 0.106397i
\(769\) 1006.45i 1.30877i −0.756160 0.654387i \(-0.772927\pi\)
0.756160 0.654387i \(-0.227073\pi\)
\(770\) 0 0
\(771\) 1261.27 1.63588
\(772\) 410.797 + 110.073i 0.532121 + 0.142581i
\(773\) 776.703 208.117i 1.00479 0.269233i 0.281339 0.959608i \(-0.409221\pi\)
0.723451 + 0.690376i \(0.242555\pi\)
\(774\) −316.729 182.863i −0.409210 0.236258i
\(775\) 0 0
\(776\) 183.089 0.235939
\(777\) −1201.42 + 524.437i −1.54624 + 0.674951i
\(778\) −531.089 531.089i −0.682634 0.682634i
\(779\) −96.5009 + 55.7148i −0.123878 + 0.0715209i
\(780\) 0 0
\(781\) −70.1366 + 121.480i −0.0898036 + 0.155544i
\(782\) −241.167 64.6205i −0.308398 0.0826350i
\(783\) 1855.71 + 1855.71i 2.37000 + 2.37000i
\(784\) 191.102 + 43.5445i 0.243752 + 0.0555415i
\(785\) 0 0
\(786\) −262.043 453.873i −0.333389 0.577446i
\(787\) 172.475 + 643.687i 0.219156 + 0.817900i 0.984662 + 0.174472i \(0.0558218\pi\)
−0.765507 + 0.643428i \(0.777512\pi\)
\(788\) −112.263 + 30.0808i −0.142466 + 0.0381736i
\(789\) −1504.00 + 868.335i −1.90621 + 1.10055i
\(790\) 0 0
\(791\) 1093.33 + 428.869i 1.38221 + 0.542186i
\(792\) 131.818 131.818i 0.166437 0.166437i
\(793\) −412.624 + 1539.93i −0.520333 + 1.94191i
\(794\) −329.326 190.137i −0.414769 0.239467i
\(795\) 0 0
\(796\) 301.545 + 522.290i 0.378825 + 0.656144i
\(797\) −202.408 + 202.408i −0.253962 + 0.253962i −0.822593 0.568631i \(-0.807473\pi\)
0.568631 + 0.822593i \(0.307473\pi\)
\(798\) −572.732 + 776.320i −0.717709 + 0.972832i
\(799\) 206.733i 0.258740i
\(800\) 0 0
\(801\) −784.020 + 1357.96i −0.978801 + 1.69533i
\(802\) 202.244 + 754.784i 0.252174 + 0.941127i
\(803\) 79.8936 298.167i 0.0994939 0.371316i
\(804\) 340.725i 0.423787i
\(805\) 0 0
\(806\) −350.542 −0.434916
\(807\) −1461.53 391.617i −1.81107 0.485275i
\(808\) 392.046 105.049i 0.485206 0.130011i
\(809\) −138.014 79.6822i −0.170598 0.0984947i 0.412270 0.911062i \(-0.364736\pi\)
−0.582868 + 0.812567i \(0.698069\pi\)
\(810\) 0 0
\(811\) 741.545 0.914358 0.457179 0.889375i \(-0.348860\pi\)
0.457179 + 0.889375i \(0.348860\pi\)
\(812\) −78.0346 + 693.712i −0.0961018 + 0.854325i
\(813\) −1531.04 1531.04i −1.88320 1.88320i
\(814\) −150.843 + 87.0890i −0.185310 + 0.106989i
\(815\) 0 0
\(816\) −104.000 + 180.133i −0.127451 + 0.220752i
\(817\) 242.906 + 65.0866i 0.297315 + 0.0796654i
\(818\) −125.317 125.317i −0.153199 0.153199i
\(819\) −2032.47 + 306.725i −2.48165 + 0.374511i
\(820\) 0 0
\(821\) −788.950 1366.50i −0.960963 1.66444i −0.720092 0.693879i \(-0.755900\pi\)
−0.240871 0.970557i \(-0.577433\pi\)
\(822\) −18.5347 69.1724i −0.0225483 0.0841513i
\(823\) −587.715 + 157.478i −0.714114 + 0.191346i −0.597544 0.801836i \(-0.703857\pi\)
−0.116570 + 0.993182i \(0.537190\pi\)
\(824\) 137.659 79.4772i 0.167061 0.0964529i
\(825\) 0 0
\(826\) −695.586 272.851i −0.842114 0.330328i
\(827\) −1014.44 + 1014.44i −1.22665 + 1.22665i −0.261426 + 0.965223i \(0.584193\pi\)
−0.965223 + 0.261426i \(0.915807\pi\)
\(828\) 176.124 657.304i 0.212710 0.793846i
\(829\) −344.517 198.907i −0.415581 0.239936i 0.277604 0.960696i \(-0.410460\pi\)
−0.693185 + 0.720760i \(0.743793\pi\)
\(830\) 0 0
\(831\) 42.9979 + 74.4746i 0.0517424 + 0.0896204i
\(832\) 87.6356 87.6356i 0.105331 0.105331i
\(833\) 426.154 + 225.030i 0.511589 + 0.270145i
\(834\) 396.455i 0.475366i
\(835\) 0 0
\(836\) −64.0911 + 111.009i −0.0766640 + 0.132786i
\(837\) 217.951 + 813.404i 0.260396 + 0.971809i
\(838\) −42.5575 + 158.827i −0.0507846 + 0.189531i
\(839\) 1475.70i 1.75888i 0.476011 + 0.879439i \(0.342082\pi\)
−0.476011 + 0.879439i \(0.657918\pi\)
\(840\) 0 0
\(841\) −1645.35 −1.95643
\(842\) −730.071 195.622i −0.867068 0.232330i
\(843\) 1545.10 414.007i 1.83285 0.491112i
\(844\) −307.790 177.703i −0.364681 0.210548i
\(845\) 0 0
\(846\) −563.453 −0.666021
\(847\) 613.477 + 452.594i 0.724295 + 0.534350i
\(848\) −32.1822 32.1822i −0.0379507 0.0379507i
\(849\) 725.534 418.887i 0.854575 0.493389i
\(850\) 0 0
\(851\) −317.905 + 550.627i −0.373566 + 0.647035i
\(852\) 412.042 + 110.406i 0.483617 + 0.129585i
\(853\) −307.404 307.404i −0.360380 0.360380i 0.503573 0.863953i \(-0.332018\pi\)
−0.863953 + 0.503573i \(0.832018\pi\)
\(854\) 635.323 + 796.372i 0.743938 + 0.932520i
\(855\) 0 0
\(856\) 84.8395 + 146.946i 0.0991116 + 0.171666i
\(857\) −311.386 1162.11i −0.363344 1.35602i −0.869651 0.493666i \(-0.835656\pi\)
0.506307 0.862353i \(-0.331010\pi\)
\(858\) −389.066 + 104.250i −0.453456 + 0.121503i
\(859\) 795.008 458.998i 0.925504 0.534340i 0.0401170 0.999195i \(-0.487227\pi\)
0.885387 + 0.464855i \(0.153894\pi\)
\(860\) 0 0
\(861\) −174.908 + 139.536i −0.203145 + 0.162063i
\(862\) −477.473 + 477.473i −0.553913 + 0.553913i
\(863\) −328.625 + 1226.45i −0.380794 + 1.42114i 0.463897 + 0.885889i \(0.346451\pi\)
−0.844691 + 0.535254i \(0.820216\pi\)
\(864\) −257.839 148.863i −0.298425 0.172296i
\(865\) 0 0
\(866\) −542.271 939.241i −0.626179 1.08457i
\(867\) 718.828 718.828i 0.829098 0.829098i
\(868\) −132.983 + 180.254i −0.153206 + 0.207666i
\(869\) 351.909i 0.404958i
\(870\) 0 0
\(871\) 249.588 432.299i 0.286553 0.496325i
\(872\) 27.2859 + 101.833i 0.0312912 + 0.116780i
\(873\) −317.559 + 1185.15i −0.363756 + 1.35756i
\(874\) 467.909i 0.535365i
\(875\) 0 0
\(876\) −938.725 −1.07160
\(877\) 389.382 + 104.335i 0.443993 + 0.118968i 0.473888 0.880585i \(-0.342850\pi\)
−0.0298940 + 0.999553i \(0.509517\pi\)
\(878\) −366.841 + 98.2949i −0.417815 + 0.111953i
\(879\) 648.727 + 374.542i 0.738028 + 0.426101i
\(880\) 0 0
\(881\) 338.402 0.384111 0.192055 0.981384i \(-0.438485\pi\)
0.192055 + 0.981384i \(0.438485\pi\)
\(882\) −613.323 + 1161.49i −0.695378 + 1.31688i
\(883\) 455.410 + 455.410i 0.515753 + 0.515753i 0.916283 0.400530i \(-0.131174\pi\)
−0.400530 + 0.916283i \(0.631174\pi\)
\(884\) 263.903 152.364i 0.298533 0.172358i
\(885\) 0 0
\(886\) 62.3525 107.998i 0.0703753 0.121894i
\(887\) 389.861 + 104.463i 0.439528 + 0.117771i 0.471795 0.881708i \(-0.343606\pi\)
−0.0322675 + 0.999479i \(0.510273\pi\)
\(888\) 374.542 + 374.542i 0.421782 + 0.421782i
\(889\) −90.2107 + 229.976i −0.101474 + 0.258691i
\(890\) 0 0
\(891\) 187.216 + 324.267i 0.210119 + 0.363936i
\(892\) −182.363 680.589i −0.204443 0.762992i
\(893\) 374.232 100.275i 0.419072 0.112290i
\(894\) 1353.96 781.711i 1.51450 0.874397i
\(895\) 0 0
\(896\) −11.8178 78.3093i −0.0131895 0.0873987i
\(897\) −1039.67 + 1039.67i −1.15906 + 1.15906i
\(898\) −36.7526 + 137.163i −0.0409272 + 0.152742i
\(899\) −690.927 398.907i −0.768550 0.443723i
\(900\) 0 0
\(901\) −55.9524 96.9124i −0.0621003 0.107561i
\(902\) −21.0217 + 21.0217i −0.0233057 + 0.0233057i
\(903\) 501.792 + 56.4458i 0.555694 + 0.0625092i
\(904\) 474.542i 0.524936i
\(905\) 0 0
\(906\) 605.996 1049.62i 0.668870 1.15852i
\(907\) 157.885 + 589.236i 0.174074 + 0.649653i 0.996707 + 0.0810812i \(0.0258373\pi\)
−0.822633 + 0.568572i \(0.807496\pi\)
\(908\) −21.4629 + 80.1006i −0.0236375 + 0.0882165i
\(909\) 2719.94i 2.99224i
\(910\) 0 0
\(911\) −716.063 −0.786019 −0.393009 0.919534i \(-0.628566\pi\)
−0.393009 + 0.919534i \(0.628566\pi\)
\(912\) 376.525 + 100.890i 0.412857 + 0.110625i
\(913\) 242.841 65.0692i 0.265982 0.0712696i
\(914\) 852.004 + 491.905i 0.932171 + 0.538189i
\(915\) 0 0
\(916\) 630.178 0.687967
\(917\) 394.819 + 291.279i 0.430555 + 0.317643i
\(918\) −517.631 517.631i −0.563869 0.563869i
\(919\) 222.629 128.535i 0.242251 0.139864i −0.373960 0.927445i \(-0.622000\pi\)
0.616211 + 0.787581i \(0.288667\pi\)
\(920\) 0 0
\(921\) 906.995 1570.96i 0.984793 1.70571i
\(922\) 261.779 + 70.1435i 0.283925 + 0.0760776i
\(923\) −441.909 441.909i −0.478775 0.478775i
\(924\) −93.9904 + 239.612i −0.101721 + 0.259320i
\(925\) 0 0
\(926\) 268.079 + 464.327i 0.289502 + 0.501433i
\(927\) 275.699 + 1028.92i 0.297410 + 1.10995i
\(928\) 272.458 73.0050i 0.293597 0.0786692i
\(929\) 1104.77 637.841i 1.18921 0.686588i 0.231080 0.972935i \(-0.425774\pi\)
0.958126 + 0.286346i \(0.0924408\pi\)
\(930\) 0 0
\(931\) 200.650 880.581i 0.215521 0.945845i
\(932\) −162.725 + 162.725i −0.174597 + 0.174597i
\(933\) −10.2320 + 38.1865i −0.0109668 + 0.0409287i
\(934\) −236.403 136.487i −0.253108 0.146132i
\(935\) 0 0
\(936\) 415.271 + 719.271i 0.443666 + 0.768452i
\(937\) 589.180 589.180i 0.628794 0.628794i −0.318970 0.947765i \(-0.603337\pi\)
0.947765 + 0.318970i \(0.103337\pi\)
\(938\) −127.610 292.340i −0.136045 0.311663i
\(939\) 3163.53i 3.36904i
\(940\) 0 0
\(941\) −98.6377 + 170.845i −0.104822 + 0.181557i −0.913666 0.406467i \(-0.866761\pi\)
0.808843 + 0.588024i \(0.200094\pi\)
\(942\) 266.591 + 994.932i 0.283005 + 1.05619i
\(943\) −28.0875 + 104.824i −0.0297853 + 0.111160i
\(944\) 301.909i 0.319819i
\(945\) 0 0
\(946\) 67.0932 0.0709230
\(947\) −1496.37 400.951i −1.58011 0.423390i −0.641153 0.767413i \(-0.721544\pi\)
−0.938961 + 0.344023i \(0.888210\pi\)
\(948\) 1033.71 276.980i 1.09041 0.292173i
\(949\) 1191.02 + 687.636i 1.25503 + 0.724590i
\(950\) 0 0
\(951\) −2153.44 −2.26440
\(952\) 21.7670 193.504i 0.0228645 0.203261i
\(953\) −1139.41 1139.41i −1.19560 1.19560i −0.975471 0.220128i \(-0.929353\pi\)
−0.220128 0.975471i \(-0.570647\pi\)
\(954\) 264.136 152.499i 0.276872 0.159852i
\(955\) 0 0
\(956\) 438.725 759.893i 0.458917 0.794868i
\(957\) −885.490 237.266i −0.925277 0.247927i
\(958\) 741.545 + 741.545i 0.774055 + 0.774055i
\(959\) 41.8095 + 52.4079i 0.0435970 + 0.0546485i
\(960\) 0 0
\(961\) 352.500 + 610.548i 0.366805 + 0.635326i
\(962\) −200.846 749.566i −0.208779 0.779175i
\(963\) −1098.34 + 294.300i −1.14054 + 0.305608i
\(964\) 270.515 156.182i 0.280618 0.162015i
\(965\) 0 0
\(966\) 140.202 + 929.031i 0.145136 + 0.961729i
\(967\) 184.424 184.424i 0.190718 0.190718i −0.605289 0.796006i \(-0.706942\pi\)
0.796006 + 0.605289i \(0.206942\pi\)
\(968\) 79.7268 297.545i 0.0823624 0.307381i
\(969\) 830.040 + 479.224i 0.856594 + 0.494555i
\(970\) 0 0
\(971\) −745.089 1290.53i −0.767342 1.32908i −0.938999 0.343919i \(-0.888246\pi\)
0.171658 0.985157i \(-0.445088\pi\)
\(972\) 135.271 135.271i 0.139168 0.139168i
\(973\) 148.483 + 340.157i 0.152603 + 0.349596i
\(974\) 1114.81i 1.14457i
\(975\) 0 0
\(976\) 205.818 356.487i 0.210879 0.365253i
\(977\) 272.355 + 1016.44i 0.278767 + 1.04037i 0.953275 + 0.302105i \(0.0976894\pi\)
−0.674507 + 0.738268i \(0.735644\pi\)
\(978\) 183.993 686.670i 0.188131 0.702116i
\(979\) 287.659i 0.293830i
\(980\) 0 0
\(981\) −706.495 −0.720178
\(982\) 316.918 + 84.9179i 0.322727 + 0.0864744i
\(983\) 691.062 185.170i 0.703014 0.188372i 0.110434 0.993884i \(-0.464776\pi\)
0.592580 + 0.805512i \(0.298109\pi\)
\(984\) 78.2955 + 45.2039i 0.0795686 + 0.0459390i
\(985\) 0 0
\(986\) 693.545 0.703392
\(987\) 712.989 311.228i 0.722380 0.315328i
\(988\) −403.818 403.818i −0.408722 0.408722i
\(989\) 212.101 122.457i 0.214460 0.123819i
\(990\) 0 0
\(991\) −646.768 + 1120.24i −0.652642 + 1.13041i 0.329838 + 0.944038i \(0.393006\pi\)
−0.982479 + 0.186371i \(0.940327\pi\)
\(992\) 87.4256 + 23.4256i 0.0881307 + 0.0236145i
\(993\) −884.681 884.681i −0.890918 0.890918i
\(994\) −394.880 + 59.5921i −0.397264 + 0.0599518i
\(995\) 0 0
\(996\) −382.271 662.113i −0.383806 0.664772i
\(997\) −46.9331 175.157i −0.0470743 0.175684i 0.938386 0.345588i \(-0.112321\pi\)
−0.985460 + 0.169905i \(0.945654\pi\)
\(998\) 899.618 241.052i 0.901421 0.241535i
\(999\) −1614.43 + 932.091i −1.61605 + 0.933024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.p.c.193.2 8
5.2 odd 4 inner 350.3.p.c.207.1 8
5.3 odd 4 70.3.l.a.67.2 yes 8
5.4 even 2 70.3.l.a.53.1 yes 8
7.2 even 3 inner 350.3.p.c.93.1 8
35.2 odd 12 inner 350.3.p.c.107.2 8
35.3 even 12 490.3.f.e.197.1 4
35.4 even 6 490.3.f.l.393.2 4
35.9 even 6 70.3.l.a.23.2 8
35.18 odd 12 490.3.f.l.197.2 4
35.23 odd 12 70.3.l.a.37.1 yes 8
35.24 odd 6 490.3.f.e.393.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.a.23.2 8 35.9 even 6
70.3.l.a.37.1 yes 8 35.23 odd 12
70.3.l.a.53.1 yes 8 5.4 even 2
70.3.l.a.67.2 yes 8 5.3 odd 4
350.3.p.c.93.1 8 7.2 even 3 inner
350.3.p.c.107.2 8 35.2 odd 12 inner
350.3.p.c.193.2 8 1.1 even 1 trivial
350.3.p.c.207.1 8 5.2 odd 4 inner
490.3.f.e.197.1 4 35.3 even 12
490.3.f.e.393.1 4 35.24 odd 6
490.3.f.l.197.2 4 35.18 odd 12
490.3.f.l.393.2 4 35.4 even 6