Properties

Label 490.3.f.e.197.1
Level $490$
Weight $3$
Character 490.197
Analytic conductor $13.352$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [490,3,Mod(197,490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(490, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("490.197"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 490 = 2 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 490.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,-4,0,12,8,0,8,0,-28,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.3515329537\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{30})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 197.1
Root \(-2.73861 + 2.73861i\) of defining polynomial
Character \(\chi\) \(=\) 490.197
Dual form 490.3.f.e.393.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +(-3.73861 + 3.73861i) q^{3} +2.00000i q^{4} +(3.00000 - 4.00000i) q^{5} +7.47723 q^{6} +(2.00000 - 2.00000i) q^{8} -18.9545i q^{9} +(-7.00000 + 1.00000i) q^{10} +3.47723 q^{11} +(-7.47723 - 7.47723i) q^{12} +(-10.9545 + 10.9545i) q^{13} +(3.73861 + 26.1703i) q^{15} -4.00000 q^{16} +(6.95445 + 6.95445i) q^{17} +(-18.9545 + 18.9545i) q^{18} +18.4317i q^{19} +(8.00000 + 6.00000i) q^{20} +(-3.47723 - 3.47723i) q^{22} +(-12.6931 + 12.6931i) q^{23} +14.9545i q^{24} +(-7.00000 - 24.0000i) q^{25} +21.9089 q^{26} +(37.2158 + 37.2158i) q^{27} -49.8634i q^{29} +(22.4317 - 29.9089i) q^{30} -16.0000 q^{31} +(4.00000 + 4.00000i) q^{32} +(-13.0000 + 13.0000i) q^{33} -13.9089i q^{34} +37.9089 q^{36} +(-25.0455 - 25.0455i) q^{37} +(18.4317 - 18.4317i) q^{38} -81.9089i q^{39} +(-2.00000 - 14.0000i) q^{40} +6.04555 q^{41} +(-9.64752 + 9.64752i) q^{43} +6.95445i q^{44} +(-75.8178 - 56.8634i) q^{45} +25.3861 q^{46} +(-14.8634 - 14.8634i) q^{47} +(14.9545 - 14.9545i) q^{48} +(-17.0000 + 31.0000i) q^{50} -52.0000 q^{51} +(-21.9089 - 21.9089i) q^{52} +(-8.04555 + 8.04555i) q^{53} -74.4317i q^{54} +(10.4317 - 13.9089i) q^{55} +(-68.9089 - 68.9089i) q^{57} +(-49.8634 + 49.8634i) q^{58} -75.4772i q^{59} +(-52.3406 + 7.47723i) q^{60} -102.909 q^{61} +(16.0000 + 16.0000i) q^{62} -8.00000i q^{64} +(10.9545 + 76.6812i) q^{65} +26.0000 q^{66} +(-22.7842 - 22.7842i) q^{67} +(-13.9089 + 13.9089i) q^{68} -94.9089i q^{69} +40.3406 q^{71} +(-37.9089 - 37.9089i) q^{72} +(62.7723 - 62.7723i) q^{73} +50.0911i q^{74} +(115.897 + 63.5564i) q^{75} -36.8634 q^{76} +(-81.9089 + 81.9089i) q^{78} -101.204i q^{79} +(-12.0000 + 16.0000i) q^{80} -107.681 q^{81} +(-6.04555 - 6.04555i) q^{82} +(-51.1247 + 51.1247i) q^{83} +(48.6812 - 6.95445i) q^{85} +19.2950 q^{86} +(186.420 + 186.420i) q^{87} +(6.95445 - 6.95445i) q^{88} -82.7267i q^{89} +(18.9545 + 132.681i) q^{90} +(-25.3861 - 25.3861i) q^{92} +(59.8178 - 59.8178i) q^{93} +29.7267i q^{94} +(73.7267 + 55.2950i) q^{95} -29.9089 q^{96} +(-45.7723 - 45.7723i) q^{97} -65.9089i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} + 12 q^{5} + 8 q^{6} + 8 q^{8} - 28 q^{10} - 8 q^{11} - 8 q^{12} + 4 q^{15} - 16 q^{16} - 16 q^{17} - 32 q^{18} + 32 q^{20} + 8 q^{22} + 4 q^{23} - 28 q^{25} + 116 q^{27} + 24 q^{30}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/490\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) −3.73861 + 3.73861i −1.24620 + 1.24620i −0.288821 + 0.957383i \(0.593263\pi\)
−0.957383 + 0.288821i \(0.906737\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 3.00000 4.00000i 0.600000 0.800000i
\(6\) 7.47723 1.24620
\(7\) 0 0
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 18.9545i 2.10605i
\(10\) −7.00000 + 1.00000i −0.700000 + 0.100000i
\(11\) 3.47723 0.316111 0.158056 0.987430i \(-0.449477\pi\)
0.158056 + 0.987430i \(0.449477\pi\)
\(12\) −7.47723 7.47723i −0.623102 0.623102i
\(13\) −10.9545 + 10.9545i −0.842650 + 0.842650i −0.989203 0.146553i \(-0.953182\pi\)
0.146553 + 0.989203i \(0.453182\pi\)
\(14\) 0 0
\(15\) 3.73861 + 26.1703i 0.249241 + 1.74469i
\(16\) −4.00000 −0.250000
\(17\) 6.95445 + 6.95445i 0.409085 + 0.409085i 0.881420 0.472334i \(-0.156588\pi\)
−0.472334 + 0.881420i \(0.656588\pi\)
\(18\) −18.9545 + 18.9545i −1.05303 + 1.05303i
\(19\) 18.4317i 0.970088i 0.874490 + 0.485044i \(0.161196\pi\)
−0.874490 + 0.485044i \(0.838804\pi\)
\(20\) 8.00000 + 6.00000i 0.400000 + 0.300000i
\(21\) 0 0
\(22\) −3.47723 3.47723i −0.158056 0.158056i
\(23\) −12.6931 + 12.6931i −0.551872 + 0.551872i −0.926981 0.375109i \(-0.877605\pi\)
0.375109 + 0.926981i \(0.377605\pi\)
\(24\) 14.9545i 0.623102i
\(25\) −7.00000 24.0000i −0.280000 0.960000i
\(26\) 21.9089 0.842650
\(27\) 37.2158 + 37.2158i 1.37836 + 1.37836i
\(28\) 0 0
\(29\) 49.8634i 1.71943i −0.510777 0.859713i \(-0.670642\pi\)
0.510777 0.859713i \(-0.329358\pi\)
\(30\) 22.4317 29.9089i 0.747723 0.996963i
\(31\) −16.0000 −0.516129 −0.258065 0.966128i \(-0.583085\pi\)
−0.258065 + 0.966128i \(0.583085\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) −13.0000 + 13.0000i −0.393939 + 0.393939i
\(34\) 13.9089i 0.409085i
\(35\) 0 0
\(36\) 37.9089 1.05303
\(37\) −25.0455 25.0455i −0.676907 0.676907i 0.282392 0.959299i \(-0.408872\pi\)
−0.959299 + 0.282392i \(0.908872\pi\)
\(38\) 18.4317 18.4317i 0.485044 0.485044i
\(39\) 81.9089i 2.10023i
\(40\) −2.00000 14.0000i −0.0500000 0.350000i
\(41\) 6.04555 0.147452 0.0737262 0.997279i \(-0.476511\pi\)
0.0737262 + 0.997279i \(0.476511\pi\)
\(42\) 0 0
\(43\) −9.64752 + 9.64752i −0.224361 + 0.224361i −0.810332 0.585971i \(-0.800713\pi\)
0.585971 + 0.810332i \(0.300713\pi\)
\(44\) 6.95445i 0.158056i
\(45\) −75.8178 56.8634i −1.68484 1.26363i
\(46\) 25.3861 0.551872
\(47\) −14.8634 14.8634i −0.316242 0.316242i 0.531080 0.847322i \(-0.321786\pi\)
−0.847322 + 0.531080i \(0.821786\pi\)
\(48\) 14.9545 14.9545i 0.311551 0.311551i
\(49\) 0 0
\(50\) −17.0000 + 31.0000i −0.340000 + 0.620000i
\(51\) −52.0000 −1.01961
\(52\) −21.9089 21.9089i −0.421325 0.421325i
\(53\) −8.04555 + 8.04555i −0.151803 + 0.151803i −0.778923 0.627120i \(-0.784234\pi\)
0.627120 + 0.778923i \(0.284234\pi\)
\(54\) 74.4317i 1.37836i
\(55\) 10.4317 13.9089i 0.189667 0.252889i
\(56\) 0 0
\(57\) −68.9089 68.9089i −1.20893 1.20893i
\(58\) −49.8634 + 49.8634i −0.859713 + 0.859713i
\(59\) 75.4772i 1.27928i −0.768677 0.639638i \(-0.779084\pi\)
0.768677 0.639638i \(-0.220916\pi\)
\(60\) −52.3406 + 7.47723i −0.872343 + 0.124620i
\(61\) −102.909 −1.68703 −0.843516 0.537105i \(-0.819518\pi\)
−0.843516 + 0.537105i \(0.819518\pi\)
\(62\) 16.0000 + 16.0000i 0.258065 + 0.258065i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 10.9545 + 76.6812i 0.168530 + 1.17971i
\(66\) 26.0000 0.393939
\(67\) −22.7842 22.7842i −0.340062 0.340062i 0.516328 0.856391i \(-0.327298\pi\)
−0.856391 + 0.516328i \(0.827298\pi\)
\(68\) −13.9089 + 13.9089i −0.204543 + 0.204543i
\(69\) 94.9089i 1.37549i
\(70\) 0 0
\(71\) 40.3406 0.568177 0.284089 0.958798i \(-0.408309\pi\)
0.284089 + 0.958798i \(0.408309\pi\)
\(72\) −37.9089 37.9089i −0.526513 0.526513i
\(73\) 62.7723 62.7723i 0.859894 0.859894i −0.131431 0.991325i \(-0.541957\pi\)
0.991325 + 0.131431i \(0.0419573\pi\)
\(74\) 50.0911i 0.676907i
\(75\) 115.897 + 63.5564i 1.54529 + 0.847419i
\(76\) −36.8634 −0.485044
\(77\) 0 0
\(78\) −81.9089 + 81.9089i −1.05011 + 1.05011i
\(79\) 101.204i 1.28106i −0.767932 0.640531i \(-0.778714\pi\)
0.767932 0.640531i \(-0.221286\pi\)
\(80\) −12.0000 + 16.0000i −0.150000 + 0.200000i
\(81\) −107.681 −1.32940
\(82\) −6.04555 6.04555i −0.0737262 0.0737262i
\(83\) −51.1247 + 51.1247i −0.615961 + 0.615961i −0.944493 0.328532i \(-0.893446\pi\)
0.328532 + 0.944493i \(0.393446\pi\)
\(84\) 0 0
\(85\) 48.6812 6.95445i 0.572720 0.0818171i
\(86\) 19.2950 0.224361
\(87\) 186.420 + 186.420i 2.14276 + 2.14276i
\(88\) 6.95445 6.95445i 0.0790279 0.0790279i
\(89\) 82.7267i 0.929514i −0.885438 0.464757i \(-0.846142\pi\)
0.885438 0.464757i \(-0.153858\pi\)
\(90\) 18.9545 + 132.681i 0.210605 + 1.47424i
\(91\) 0 0
\(92\) −25.3861 25.3861i −0.275936 0.275936i
\(93\) 59.8178 59.8178i 0.643202 0.643202i
\(94\) 29.7267i 0.316242i
\(95\) 73.7267 + 55.2950i 0.776071 + 0.582053i
\(96\) −29.9089 −0.311551
\(97\) −45.7723 45.7723i −0.471879 0.471879i 0.430643 0.902522i \(-0.358287\pi\)
−0.902522 + 0.430643i \(0.858287\pi\)
\(98\) 0 0
\(99\) 65.9089i 0.665746i
\(100\) 48.0000 14.0000i 0.480000 0.140000i
\(101\) −143.499 −1.42078 −0.710391 0.703807i \(-0.751482\pi\)
−0.710391 + 0.703807i \(0.751482\pi\)
\(102\) 52.0000 + 52.0000i 0.509804 + 0.509804i
\(103\) −39.7386 + 39.7386i −0.385812 + 0.385812i −0.873191 0.487379i \(-0.837953\pi\)
0.487379 + 0.873191i \(0.337953\pi\)
\(104\) 43.8178i 0.421325i
\(105\) 0 0
\(106\) 16.0911 0.151803
\(107\) −42.4198 42.4198i −0.396446 0.396446i 0.480531 0.876978i \(-0.340444\pi\)
−0.876978 + 0.480531i \(0.840444\pi\)
\(108\) −74.4317 + 74.4317i −0.689182 + 0.689182i
\(109\) 37.2733i 0.341957i −0.985275 0.170978i \(-0.945307\pi\)
0.985275 0.170978i \(-0.0546928\pi\)
\(110\) −24.3406 + 3.47723i −0.221278 + 0.0316111i
\(111\) 187.271 1.68713
\(112\) 0 0
\(113\) −118.636 + 118.636i −1.04987 + 1.04987i −0.0511834 + 0.998689i \(0.516299\pi\)
−0.998689 + 0.0511834i \(0.983701\pi\)
\(114\) 137.818i 1.20893i
\(115\) 12.6931 + 88.8514i 0.110374 + 0.772621i
\(116\) 99.7267 0.859713
\(117\) 207.636 + 207.636i 1.77466 + 1.77466i
\(118\) −75.4772 + 75.4772i −0.639638 + 0.639638i
\(119\) 0 0
\(120\) 59.8178 + 44.8634i 0.498482 + 0.373861i
\(121\) −108.909 −0.900074
\(122\) 102.909 + 102.909i 0.843516 + 0.843516i
\(123\) −22.6020 + 22.6020i −0.183756 + 0.183756i
\(124\) 32.0000i 0.258065i
\(125\) −117.000 44.0000i −0.936000 0.352000i
\(126\) 0 0
\(127\) 24.9545 + 24.9545i 0.196492 + 0.196492i 0.798494 0.602002i \(-0.205630\pi\)
−0.602002 + 0.798494i \(0.705630\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 72.1366i 0.559199i
\(130\) 65.7267 87.6356i 0.505590 0.674120i
\(131\) 70.0911 0.535047 0.267523 0.963551i \(-0.413795\pi\)
0.267523 + 0.963551i \(0.413795\pi\)
\(132\) −26.0000 26.0000i −0.196970 0.196970i
\(133\) 0 0
\(134\) 45.5683i 0.340062i
\(135\) 260.511 37.2158i 1.92971 0.275673i
\(136\) 27.8178 0.204543
\(137\) −6.77226 6.77226i −0.0494325 0.0494325i 0.681958 0.731391i \(-0.261128\pi\)
−0.731391 + 0.681958i \(0.761128\pi\)
\(138\) −94.9089 + 94.9089i −0.687746 + 0.687746i
\(139\) 53.0217i 0.381451i 0.981643 + 0.190726i \(0.0610841\pi\)
−0.981643 + 0.190726i \(0.938916\pi\)
\(140\) 0 0
\(141\) 111.137 0.788203
\(142\) −40.3406 40.3406i −0.284089 0.284089i
\(143\) −38.0911 + 38.0911i −0.266371 + 0.266371i
\(144\) 75.8178i 0.526513i
\(145\) −199.453 149.590i −1.37554 1.03166i
\(146\) −125.545 −0.859894
\(147\) 0 0
\(148\) 50.0911 50.0911i 0.338453 0.338453i
\(149\) 209.091i 1.40330i 0.712524 + 0.701648i \(0.247552\pi\)
−0.712524 + 0.701648i \(0.752448\pi\)
\(150\) −52.3406 179.453i −0.348937 1.19636i
\(151\) 162.091 1.07345 0.536725 0.843757i \(-0.319661\pi\)
0.536725 + 0.843757i \(0.319661\pi\)
\(152\) 36.8634 + 36.8634i 0.242522 + 0.242522i
\(153\) 131.818 131.818i 0.861554 0.861554i
\(154\) 0 0
\(155\) −48.0000 + 64.0000i −0.309677 + 0.412903i
\(156\) 163.818 1.05011
\(157\) −97.4079 97.4079i −0.620432 0.620432i 0.325210 0.945642i \(-0.394565\pi\)
−0.945642 + 0.325210i \(0.894565\pi\)
\(158\) −101.204 + 101.204i −0.640531 + 0.640531i
\(159\) 60.1584i 0.378355i
\(160\) 28.0000 4.00000i 0.175000 0.0250000i
\(161\) 0 0
\(162\) 107.681 + 107.681i 0.664699 + 0.664699i
\(163\) 67.2277 67.2277i 0.412440 0.412440i −0.470148 0.882588i \(-0.655799\pi\)
0.882588 + 0.470148i \(0.155799\pi\)
\(164\) 12.0911i 0.0737262i
\(165\) 13.0000 + 91.0000i 0.0787879 + 0.551515i
\(166\) 102.249 0.615961
\(167\) −133.988 133.988i −0.802324 0.802324i 0.181134 0.983458i \(-0.442023\pi\)
−0.983458 + 0.181134i \(0.942023\pi\)
\(168\) 0 0
\(169\) 71.0000i 0.420118i
\(170\) −55.6356 41.7267i −0.327268 0.245451i
\(171\) 349.362 2.04305
\(172\) −19.2950 19.2950i −0.112180 0.112180i
\(173\) 0.182195 0.182195i 0.00105315 0.00105315i −0.706580 0.707633i \(-0.749763\pi\)
0.707633 + 0.706580i \(0.249763\pi\)
\(174\) 372.840i 2.14276i
\(175\) 0 0
\(176\) −13.9089 −0.0790279
\(177\) 282.180 + 282.180i 1.59424 + 1.59424i
\(178\) −82.7267 + 82.7267i −0.464757 + 0.464757i
\(179\) 43.6356i 0.243774i −0.992544 0.121887i \(-0.961105\pi\)
0.992544 0.121887i \(-0.0388946\pi\)
\(180\) 113.727 151.636i 0.631815 0.842420i
\(181\) −3.68116 −0.0203379 −0.0101689 0.999948i \(-0.503237\pi\)
−0.0101689 + 0.999948i \(0.503237\pi\)
\(182\) 0 0
\(183\) 384.737 384.737i 2.10239 2.10239i
\(184\) 50.7723i 0.275936i
\(185\) −175.319 + 25.0455i −0.947669 + 0.135381i
\(186\) −119.636 −0.643202
\(187\) 24.1822 + 24.1822i 0.129317 + 0.129317i
\(188\) 29.7267 29.7267i 0.158121 0.158121i
\(189\) 0 0
\(190\) −18.4317 129.022i −0.0970088 0.679062i
\(191\) 17.9327 0.0938886 0.0469443 0.998898i \(-0.485052\pi\)
0.0469443 + 0.998898i \(0.485052\pi\)
\(192\) 29.9089 + 29.9089i 0.155776 + 0.155776i
\(193\) 150.362 150.362i 0.779079 0.779079i −0.200595 0.979674i \(-0.564288\pi\)
0.979674 + 0.200595i \(0.0642875\pi\)
\(194\) 91.5445i 0.471879i
\(195\) −327.636 245.727i −1.68018 1.26014i
\(196\) 0 0
\(197\) 41.0911 + 41.0911i 0.208584 + 0.208584i 0.803666 0.595081i \(-0.202880\pi\)
−0.595081 + 0.803666i \(0.702880\pi\)
\(198\) −65.9089 + 65.9089i −0.332873 + 0.332873i
\(199\) 301.545i 1.51530i −0.652662 0.757650i \(-0.726348\pi\)
0.652662 0.757650i \(-0.273652\pi\)
\(200\) −62.0000 34.0000i −0.310000 0.170000i
\(201\) 170.362 0.847574
\(202\) 143.499 + 143.499i 0.710391 + 0.710391i
\(203\) 0 0
\(204\) 104.000i 0.509804i
\(205\) 18.1366 24.1822i 0.0884714 0.117962i
\(206\) 79.4772 0.385812
\(207\) 240.590 + 240.590i 1.16227 + 1.16227i
\(208\) 43.8178 43.8178i 0.210663 0.210663i
\(209\) 64.0911i 0.306656i
\(210\) 0 0
\(211\) −177.703 −0.842194 −0.421097 0.907016i \(-0.638355\pi\)
−0.421097 + 0.907016i \(0.638355\pi\)
\(212\) −16.0911 16.0911i −0.0759014 0.0759014i
\(213\) −150.818 + 150.818i −0.708065 + 0.708065i
\(214\) 84.8395i 0.396446i
\(215\) 9.64752 + 67.5326i 0.0448722 + 0.314105i
\(216\) 148.863 0.689182
\(217\) 0 0
\(218\) −37.2733 + 37.2733i −0.170978 + 0.170978i
\(219\) 469.362i 2.14321i
\(220\) 27.8178 + 20.8634i 0.126445 + 0.0948334i
\(221\) −152.364 −0.689432
\(222\) −187.271 187.271i −0.843564 0.843564i
\(223\) −249.113 + 249.113i −1.11710 + 1.11710i −0.124933 + 0.992165i \(0.539871\pi\)
−0.992165 + 0.124933i \(0.960129\pi\)
\(224\) 0 0
\(225\) −454.907 + 132.681i −2.02181 + 0.589694i
\(226\) 237.271 1.04987
\(227\) 29.3188 + 29.3188i 0.129158 + 0.129158i 0.768731 0.639573i \(-0.220889\pi\)
−0.639573 + 0.768731i \(0.720889\pi\)
\(228\) 137.818 137.818i 0.604464 0.604464i
\(229\) 315.089i 1.37593i 0.725742 + 0.687967i \(0.241497\pi\)
−0.725742 + 0.687967i \(0.758503\pi\)
\(230\) 76.1584 101.545i 0.331123 0.441498i
\(231\) 0 0
\(232\) −99.7267 99.7267i −0.429856 0.429856i
\(233\) 81.3623 81.3623i 0.349194 0.349194i −0.510615 0.859809i \(-0.670582\pi\)
0.859809 + 0.510615i \(0.170582\pi\)
\(234\) 415.271i 1.77466i
\(235\) −104.043 + 14.8634i −0.442738 + 0.0632483i
\(236\) 150.954 0.639638
\(237\) 378.362 + 378.362i 1.59647 + 1.59647i
\(238\) 0 0
\(239\) 438.725i 1.83567i 0.396965 + 0.917834i \(0.370064\pi\)
−0.396965 + 0.917834i \(0.629936\pi\)
\(240\) −14.9545 104.681i −0.0623102 0.436171i
\(241\) 156.182 0.648059 0.324029 0.946047i \(-0.394962\pi\)
0.324029 + 0.946047i \(0.394962\pi\)
\(242\) 108.909 + 108.909i 0.450037 + 0.450037i
\(243\) 67.6356 67.6356i 0.278336 0.278336i
\(244\) 205.818i 0.843516i
\(245\) 0 0
\(246\) 45.2039 0.183756
\(247\) −201.909 201.909i −0.817445 0.817445i
\(248\) −32.0000 + 32.0000i −0.129032 + 0.129032i
\(249\) 382.271i 1.53523i
\(250\) 73.0000 + 161.000i 0.292000 + 0.644000i
\(251\) −185.727 −0.739947 −0.369974 0.929042i \(-0.620633\pi\)
−0.369974 + 0.929042i \(0.620633\pi\)
\(252\) 0 0
\(253\) −44.1366 + 44.1366i −0.174453 + 0.174453i
\(254\) 49.9089i 0.196492i
\(255\) −156.000 + 208.000i −0.611765 + 0.815686i
\(256\) 16.0000 0.0625000
\(257\) −168.681 168.681i −0.656347 0.656347i 0.298167 0.954514i \(-0.403625\pi\)
−0.954514 + 0.298167i \(0.903625\pi\)
\(258\) −72.1366 + 72.1366i −0.279599 + 0.279599i
\(259\) 0 0
\(260\) −153.362 + 21.9089i −0.589855 + 0.0842650i
\(261\) −945.132 −3.62120
\(262\) −70.0911 70.0911i −0.267523 0.267523i
\(263\) −232.261 + 232.261i −0.883123 + 0.883123i −0.993851 0.110728i \(-0.964682\pi\)
0.110728 + 0.993851i \(0.464682\pi\)
\(264\) 52.0000i 0.196970i
\(265\) 8.04555 + 56.3188i 0.0303606 + 0.212524i
\(266\) 0 0
\(267\) 309.283 + 309.283i 1.15836 + 1.15836i
\(268\) 45.5683 45.5683i 0.170031 0.170031i
\(269\) 286.180i 1.06387i 0.846786 + 0.531933i \(0.178534\pi\)
−0.846786 + 0.531933i \(0.821466\pi\)
\(270\) −297.727 223.295i −1.10269 0.827019i
\(271\) −409.521 −1.51115 −0.755573 0.655064i \(-0.772642\pi\)
−0.755573 + 0.655064i \(0.772642\pi\)
\(272\) −27.8178 27.8178i −0.102271 0.102271i
\(273\) 0 0
\(274\) 13.5445i 0.0494325i
\(275\) −24.3406 83.4534i −0.0885112 0.303467i
\(276\) 189.818 0.687746
\(277\) −11.5010 11.5010i −0.0415200 0.0415200i 0.686042 0.727562i \(-0.259347\pi\)
−0.727562 + 0.686042i \(0.759347\pi\)
\(278\) 53.0217 53.0217i 0.190726 0.190726i
\(279\) 303.271i 1.08699i
\(280\) 0 0
\(281\) 302.542 1.07666 0.538332 0.842733i \(-0.319055\pi\)
0.538332 + 0.842733i \(0.319055\pi\)
\(282\) −111.137 111.137i −0.394102 0.394102i
\(283\) −112.043 + 112.043i −0.395913 + 0.395913i −0.876789 0.480876i \(-0.840319\pi\)
0.480876 + 0.876789i \(0.340319\pi\)
\(284\) 80.6812i 0.284089i
\(285\) −482.362 + 68.9089i −1.69250 + 0.241786i
\(286\) 76.1822 0.266371
\(287\) 0 0
\(288\) 75.8178 75.8178i 0.263256 0.263256i
\(289\) 192.271i 0.665298i
\(290\) 49.8634 + 349.043i 0.171943 + 1.20360i
\(291\) 342.249 1.17612
\(292\) 125.545 + 125.545i 0.429947 + 0.429947i
\(293\) 100.182 100.182i 0.341919 0.341919i −0.515170 0.857088i \(-0.672271\pi\)
0.857088 + 0.515170i \(0.172271\pi\)
\(294\) 0 0
\(295\) −301.909 226.432i −1.02342 0.767565i
\(296\) −100.182 −0.338453
\(297\) 129.408 + 129.408i 0.435717 + 0.435717i
\(298\) 209.091 209.091i 0.701648 0.701648i
\(299\) 278.091i 0.930071i
\(300\) −127.113 + 231.794i −0.423709 + 0.772647i
\(301\) 0 0
\(302\) −162.091 162.091i −0.536725 0.536725i
\(303\) 536.487 536.487i 1.77058 1.77058i
\(304\) 73.7267i 0.242522i
\(305\) −308.727 + 411.636i −1.01222 + 1.34962i
\(306\) −263.636 −0.861554
\(307\) 242.602 + 242.602i 0.790234 + 0.790234i 0.981532 0.191298i \(-0.0612696\pi\)
−0.191298 + 0.981532i \(0.561270\pi\)
\(308\) 0 0
\(309\) 297.135i 0.961601i
\(310\) 112.000 16.0000i 0.361290 0.0516129i
\(311\) −7.47723 −0.0240425 −0.0120213 0.999928i \(-0.503827\pi\)
−0.0120213 + 0.999928i \(0.503827\pi\)
\(312\) −163.818 163.818i −0.525057 0.525057i
\(313\) 423.089 423.089i 1.35172 1.35172i 0.467987 0.883736i \(-0.344980\pi\)
0.883736 0.467987i \(-0.155020\pi\)
\(314\) 194.816i 0.620432i
\(315\) 0 0
\(316\) 202.408 0.640531
\(317\) −288.000 288.000i −0.908517 0.908517i 0.0876353 0.996153i \(-0.472069\pi\)
−0.996153 + 0.0876353i \(0.972069\pi\)
\(318\) −60.1584 + 60.1584i −0.189177 + 0.189177i
\(319\) 173.386i 0.543530i
\(320\) −32.0000 24.0000i −0.100000 0.0750000i
\(321\) 317.182 0.988107
\(322\) 0 0
\(323\) −128.182 + 128.182i −0.396849 + 0.396849i
\(324\) 215.362i 0.664699i
\(325\) 339.588 + 186.226i 1.04489 + 0.573002i
\(326\) −134.455 −0.412440
\(327\) 139.350 + 139.350i 0.426148 + 0.426148i
\(328\) 12.0911 12.0911i 0.0368631 0.0368631i
\(329\) 0 0
\(330\) 78.0000 104.000i 0.236364 0.315152i
\(331\) 236.634 0.714905 0.357452 0.933931i \(-0.383645\pi\)
0.357452 + 0.933931i \(0.383645\pi\)
\(332\) −102.249 102.249i −0.307980 0.307980i
\(333\) −474.725 + 474.725i −1.42560 + 1.42560i
\(334\) 267.976i 0.802324i
\(335\) −159.489 + 22.7842i −0.476087 + 0.0680124i
\(336\) 0 0
\(337\) 316.271 + 316.271i 0.938490 + 0.938490i 0.998215 0.0597246i \(-0.0190223\pi\)
−0.0597246 + 0.998215i \(0.519022\pi\)
\(338\) −71.0000 + 71.0000i −0.210059 + 0.210059i
\(339\) 887.065i 2.61671i
\(340\) 13.9089 + 97.3623i 0.0409085 + 0.286360i
\(341\) −55.6356 −0.163154
\(342\) −349.362 349.362i −1.02153 1.02153i
\(343\) 0 0
\(344\) 38.5901i 0.112180i
\(345\) −379.636 284.727i −1.10039 0.825295i
\(346\) −0.364391 −0.00105315
\(347\) −100.329 100.329i −0.289132 0.289132i 0.547605 0.836737i \(-0.315540\pi\)
−0.836737 + 0.547605i \(0.815540\pi\)
\(348\) −372.840 + 372.840i −1.07138 + 1.07138i
\(349\) 298.861i 0.856336i −0.903699 0.428168i \(-0.859159\pi\)
0.903699 0.428168i \(-0.140841\pi\)
\(350\) 0 0
\(351\) −815.358 −2.32296
\(352\) 13.9089 + 13.9089i 0.0395139 + 0.0395139i
\(353\) 24.3623 24.3623i 0.0690151 0.0690151i −0.671757 0.740772i \(-0.734460\pi\)
0.740772 + 0.671757i \(0.234460\pi\)
\(354\) 564.360i 1.59424i
\(355\) 121.022 161.362i 0.340906 0.454542i
\(356\) 165.453 0.464757
\(357\) 0 0
\(358\) −43.6356 + 43.6356i −0.121887 + 0.121887i
\(359\) 492.087i 1.37072i 0.728206 + 0.685358i \(0.240354\pi\)
−0.728206 + 0.685358i \(0.759646\pi\)
\(360\) −265.362 + 37.9089i −0.737118 + 0.105303i
\(361\) 21.2733 0.0589288
\(362\) 3.68116 + 3.68116i 0.0101689 + 0.0101689i
\(363\) 407.168 407.168i 1.12168 1.12168i
\(364\) 0 0
\(365\) −62.7723 439.406i −0.171979 1.20385i
\(366\) −769.473 −2.10239
\(367\) 51.4891 + 51.4891i 0.140297 + 0.140297i 0.773767 0.633470i \(-0.218370\pi\)
−0.633470 + 0.773767i \(0.718370\pi\)
\(368\) 50.7723 50.7723i 0.137968 0.137968i
\(369\) 114.590i 0.310542i
\(370\) 200.364 + 150.273i 0.541525 + 0.406144i
\(371\) 0 0
\(372\) 119.636 + 119.636i 0.321601 + 0.321601i
\(373\) −243.271 + 243.271i −0.652202 + 0.652202i −0.953523 0.301321i \(-0.902572\pi\)
0.301321 + 0.953523i \(0.402572\pi\)
\(374\) 48.3644i 0.129317i
\(375\) 601.917 272.919i 1.60511 0.727783i
\(376\) −59.4534 −0.158121
\(377\) 546.226 + 546.226i 1.44887 + 1.44887i
\(378\) 0 0
\(379\) 33.5683i 0.0885708i −0.999019 0.0442854i \(-0.985899\pi\)
0.999019 0.0442854i \(-0.0141011\pi\)
\(380\) −110.590 + 147.453i −0.291026 + 0.388035i
\(381\) −186.590 −0.489738
\(382\) −17.9327 17.9327i −0.0469443 0.0469443i
\(383\) 508.693 508.693i 1.32818 1.32818i 0.421223 0.906957i \(-0.361601\pi\)
0.906957 0.421223i \(-0.138399\pi\)
\(384\) 59.8178i 0.155776i
\(385\) 0 0
\(386\) −300.725 −0.779079
\(387\) 182.863 + 182.863i 0.472515 + 0.472515i
\(388\) 91.5445 91.5445i 0.235939 0.235939i
\(389\) 531.089i 1.36527i 0.730761 + 0.682634i \(0.239166\pi\)
−0.730761 + 0.682634i \(0.760834\pi\)
\(390\) 81.9089 + 573.362i 0.210023 + 1.47016i
\(391\) −176.547 −0.451526
\(392\) 0 0
\(393\) −262.043 + 262.043i −0.666777 + 0.666777i
\(394\) 82.1822i 0.208584i
\(395\) −404.816 303.612i −1.02485 0.768637i
\(396\) 131.818 0.332873
\(397\) −190.137 190.137i −0.478934 0.478934i 0.425857 0.904791i \(-0.359973\pi\)
−0.904791 + 0.425857i \(0.859973\pi\)
\(398\) −301.545 + 301.545i −0.757650 + 0.757650i
\(399\) 0 0
\(400\) 28.0000 + 96.0000i 0.0700000 + 0.240000i
\(401\) 552.540 1.37791 0.688953 0.724806i \(-0.258071\pi\)
0.688953 + 0.724806i \(0.258071\pi\)
\(402\) −170.362 170.362i −0.423787 0.423787i
\(403\) 175.271 175.271i 0.434916 0.434916i
\(404\) 286.998i 0.710391i
\(405\) −323.043 + 430.725i −0.797638 + 1.06352i
\(406\) 0 0
\(407\) −87.0890 87.0890i −0.213978 0.213978i
\(408\) −104.000 + 104.000i −0.254902 + 0.254902i
\(409\) 125.317i 0.306398i −0.988195 0.153199i \(-0.951042\pi\)
0.988195 0.153199i \(-0.0489575\pi\)
\(410\) −42.3188 + 6.04555i −0.103217 + 0.0147452i
\(411\) 50.6377 0.123206
\(412\) −79.4772 79.4772i −0.192906 0.192906i
\(413\) 0 0
\(414\) 481.180i 1.16227i
\(415\) 51.1247 + 357.873i 0.123192 + 0.862345i
\(416\) −87.6356 −0.210663
\(417\) −198.228 198.228i −0.475366 0.475366i
\(418\) 64.0911 64.0911i 0.153328 0.153328i
\(419\) 116.269i 0.277492i −0.990328 0.138746i \(-0.955693\pi\)
0.990328 0.138746i \(-0.0443072\pi\)
\(420\) 0 0
\(421\) 534.449 1.26948 0.634738 0.772728i \(-0.281108\pi\)
0.634738 + 0.772728i \(0.281108\pi\)
\(422\) 177.703 + 177.703i 0.421097 + 0.421097i
\(423\) −281.727 + 281.727i −0.666021 + 0.666021i
\(424\) 32.1822i 0.0759014i
\(425\) 118.226 215.588i 0.278178 0.507266i
\(426\) 301.636 0.708065
\(427\) 0 0
\(428\) 84.8395 84.8395i 0.198223 0.198223i
\(429\) 284.816i 0.663906i
\(430\) 57.8851 77.1801i 0.134616 0.179489i
\(431\) −477.473 −1.10783 −0.553913 0.832575i \(-0.686866\pi\)
−0.553913 + 0.832575i \(0.686866\pi\)
\(432\) −148.863 148.863i −0.344591 0.344591i
\(433\) 542.271 542.271i 1.25236 1.25236i 0.297699 0.954660i \(-0.403781\pi\)
0.954660 0.297699i \(-0.0962190\pi\)
\(434\) 0 0
\(435\) 1304.94 186.420i 2.99986 0.428551i
\(436\) 74.5466 0.170978
\(437\) −233.954 233.954i −0.535365 0.535365i
\(438\) 469.362 469.362i 1.07160 1.07160i
\(439\) 268.547i 0.611723i 0.952076 + 0.305862i \(0.0989445\pi\)
−0.952076 + 0.305862i \(0.901055\pi\)
\(440\) −6.95445 48.6812i −0.0158056 0.110639i
\(441\) 0 0
\(442\) 152.364 + 152.364i 0.344716 + 0.344716i
\(443\) 62.3525 62.3525i 0.140751 0.140751i −0.633221 0.773971i \(-0.718267\pi\)
0.773971 + 0.633221i \(0.218267\pi\)
\(444\) 374.542i 0.843564i
\(445\) −330.907 248.180i −0.743611 0.557708i
\(446\) 498.226 1.11710
\(447\) −781.711 781.711i −1.74879 1.74879i
\(448\) 0 0
\(449\) 100.410i 0.223630i 0.993729 + 0.111815i \(0.0356664\pi\)
−0.993729 + 0.111815i \(0.964334\pi\)
\(450\) 587.588 + 322.226i 1.30575 + 0.716057i
\(451\) 21.0217 0.0466114
\(452\) −237.271 237.271i −0.524936 0.524936i
\(453\) −605.996 + 605.996i −1.33774 + 1.33774i
\(454\) 58.6377i 0.129158i
\(455\) 0 0
\(456\) −275.636 −0.604464
\(457\) −491.905 491.905i −1.07638 1.07638i −0.996831 0.0795469i \(-0.974653\pi\)
−0.0795469 0.996831i \(-0.525347\pi\)
\(458\) 315.089 315.089i 0.687967 0.687967i
\(459\) 517.631i 1.12774i
\(460\) −177.703 + 25.3861i −0.386311 + 0.0551872i
\(461\) 191.636 0.415695 0.207848 0.978161i \(-0.433354\pi\)
0.207848 + 0.978161i \(0.433354\pi\)
\(462\) 0 0
\(463\) 268.079 268.079i 0.579005 0.579005i −0.355624 0.934629i \(-0.615732\pi\)
0.934629 + 0.355624i \(0.115732\pi\)
\(464\) 199.453i 0.429856i
\(465\) −59.8178 418.725i −0.128640 0.900483i
\(466\) −162.725 −0.349194
\(467\) −136.487 136.487i −0.292264 0.292264i 0.545710 0.837974i \(-0.316260\pi\)
−0.837974 + 0.545710i \(0.816260\pi\)
\(468\) −415.271 + 415.271i −0.887332 + 0.887332i
\(469\) 0 0
\(470\) 118.907 + 89.1801i 0.252993 + 0.189745i
\(471\) 728.341 1.54637
\(472\) −150.954 150.954i −0.319819 0.319819i
\(473\) −33.5466 + 33.5466i −0.0709230 + 0.0709230i
\(474\) 756.725i 1.59647i
\(475\) 442.360 129.022i 0.931285 0.271625i
\(476\) 0 0
\(477\) 152.499 + 152.499i 0.319704 + 0.319704i
\(478\) 438.725 438.725i 0.917834 0.917834i
\(479\) 741.545i 1.54811i 0.633119 + 0.774055i \(0.281775\pi\)
−0.633119 + 0.774055i \(0.718225\pi\)
\(480\) −89.7267 + 119.636i −0.186931 + 0.249241i
\(481\) 548.720 1.14079
\(482\) −156.182 156.182i −0.324029 0.324029i
\(483\) 0 0
\(484\) 217.818i 0.450037i
\(485\) −320.406 + 45.7723i −0.660630 + 0.0943758i
\(486\) −135.271 −0.278336
\(487\) −557.406 557.406i −1.14457 1.14457i −0.987604 0.156966i \(-0.949829\pi\)
−0.156966 0.987604i \(-0.550171\pi\)
\(488\) −205.818 + 205.818i −0.421758 + 0.421758i
\(489\) 502.677i 1.02797i
\(490\) 0 0
\(491\) −232.000 −0.472505 −0.236253 0.971692i \(-0.575919\pi\)
−0.236253 + 0.971692i \(0.575919\pi\)
\(492\) −45.2039 45.2039i −0.0918779 0.0918779i
\(493\) 346.772 346.772i 0.703392 0.703392i
\(494\) 403.818i 0.817445i
\(495\) −263.636 197.727i −0.532597 0.399448i
\(496\) 64.0000 0.129032
\(497\) 0 0
\(498\) −382.271 + 382.271i −0.767613 + 0.767613i
\(499\) 658.566i 1.31977i 0.751366 + 0.659886i \(0.229395\pi\)
−0.751366 + 0.659886i \(0.770605\pi\)
\(500\) 88.0000 234.000i 0.176000 0.468000i
\(501\) 1001.86 1.99972
\(502\) 185.727 + 185.727i 0.369974 + 0.369974i
\(503\) −230.055 + 230.055i −0.457367 + 0.457367i −0.897790 0.440424i \(-0.854828\pi\)
0.440424 + 0.897790i \(0.354828\pi\)
\(504\) 0 0
\(505\) −430.497 + 573.996i −0.852469 + 1.13663i
\(506\) 88.2733 0.174453
\(507\) 265.442 + 265.442i 0.523553 + 0.523553i
\(508\) −49.9089 + 49.9089i −0.0982459 + 0.0982459i
\(509\) 121.590i 0.238880i 0.992841 + 0.119440i \(0.0381100\pi\)
−0.992841 + 0.119440i \(0.961890\pi\)
\(510\) 364.000 52.0000i 0.713725 0.101961i
\(511\) 0 0
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −685.950 + 685.950i −1.33714 + 1.33714i
\(514\) 337.362i 0.656347i
\(515\) 39.7386 + 278.170i 0.0771624 + 0.540136i
\(516\) 144.273 0.279599
\(517\) −51.6832 51.6832i −0.0999676 0.0999676i
\(518\) 0 0
\(519\) 1.36232i 0.00262489i
\(520\) 175.271 + 131.453i 0.337060 + 0.252795i
\(521\) 488.269 0.937177 0.468588 0.883417i \(-0.344763\pi\)
0.468588 + 0.883417i \(0.344763\pi\)
\(522\) 945.132 + 945.132i 1.81060 + 1.81060i
\(523\) −461.952 + 461.952i −0.883274 + 0.883274i −0.993866 0.110592i \(-0.964725\pi\)
0.110592 + 0.993866i \(0.464725\pi\)
\(524\) 140.182i 0.267523i
\(525\) 0 0
\(526\) 464.523 0.883123
\(527\) −111.271 111.271i −0.211141 0.211141i
\(528\) 52.0000 52.0000i 0.0984848 0.0984848i
\(529\) 206.772i 0.390874i
\(530\) 48.2733 64.3644i 0.0910817 0.121442i
\(531\) −1430.63 −2.69422
\(532\) 0 0
\(533\) −66.2257 + 66.2257i −0.124251 + 0.124251i
\(534\) 618.566i 1.15836i
\(535\) −296.938 + 42.4198i −0.555025 + 0.0792893i
\(536\) −91.1366 −0.170031
\(537\) 163.137 + 163.137i 0.303793 + 0.303793i
\(538\) 286.180 286.180i 0.531933 0.531933i
\(539\) 0 0
\(540\) 74.4317 + 521.022i 0.137836 + 0.964855i
\(541\) 443.586 0.819937 0.409968 0.912100i \(-0.365540\pi\)
0.409968 + 0.912100i \(0.365540\pi\)
\(542\) 409.521 + 409.521i 0.755573 + 0.755573i
\(543\) 13.7624 13.7624i 0.0253452 0.0253452i
\(544\) 55.6356i 0.102271i
\(545\) −149.093 111.820i −0.273565 0.205174i
\(546\) 0 0
\(547\) −686.507 686.507i −1.25504 1.25504i −0.953432 0.301608i \(-0.902477\pi\)
−0.301608 0.953432i \(-0.597523\pi\)
\(548\) 13.5445 13.5445i 0.0247163 0.0247163i
\(549\) 1950.58i 3.55297i
\(550\) −59.1128 + 107.794i −0.107478 + 0.195989i
\(551\) 919.065 1.66799
\(552\) −189.818 189.818i −0.343873 0.343873i
\(553\) 0 0
\(554\) 23.0021i 0.0415200i
\(555\) 561.814 749.085i 1.01228 1.34970i
\(556\) −106.043 −0.190726
\(557\) 32.2277 + 32.2277i 0.0578595 + 0.0578595i 0.735444 0.677585i \(-0.236973\pi\)
−0.677585 + 0.735444i \(0.736973\pi\)
\(558\) 303.271 303.271i 0.543497 0.543497i
\(559\) 211.366i 0.378115i
\(560\) 0 0
\(561\) −180.816 −0.322310
\(562\) −302.542 302.542i −0.538332 0.538332i
\(563\) 506.602 506.602i 0.899826 0.899826i −0.0955945 0.995420i \(-0.530475\pi\)
0.995420 + 0.0955945i \(0.0304752\pi\)
\(564\) 222.273i 0.394102i
\(565\) 118.636 + 830.449i 0.209975 + 1.46982i
\(566\) 224.087 0.395913
\(567\) 0 0
\(568\) 80.6812 80.6812i 0.142044 0.142044i
\(569\) 836.087i 1.46940i −0.678394 0.734699i \(-0.737324\pi\)
0.678394 0.734699i \(-0.262676\pi\)
\(570\) 551.271 + 413.453i 0.967142 + 0.725357i
\(571\) 1034.65 1.81200 0.906001 0.423275i \(-0.139120\pi\)
0.906001 + 0.423275i \(0.139120\pi\)
\(572\) −76.1822 76.1822i −0.133186 0.133186i
\(573\) −67.0435 + 67.0435i −0.117004 + 0.117004i
\(574\) 0 0
\(575\) 393.485 + 215.782i 0.684322 + 0.375273i
\(576\) −151.636 −0.263256
\(577\) −84.5010 84.5010i −0.146449 0.146449i 0.630081 0.776530i \(-0.283022\pi\)
−0.776530 + 0.630081i \(0.783022\pi\)
\(578\) −192.271 + 192.271i −0.332649 + 0.332649i
\(579\) 1124.29i 1.94178i
\(580\) 299.180 398.907i 0.515828 0.687770i
\(581\) 0 0
\(582\) −342.249 342.249i −0.588058 0.588058i
\(583\) −27.9762 + 27.9762i −0.0479866 + 0.0479866i
\(584\) 251.089i 0.429947i
\(585\) 1453.45 207.636i 2.48453 0.354933i
\(586\) −200.364 −0.341919
\(587\) 808.313 + 808.313i 1.37702 + 1.37702i 0.849607 + 0.527416i \(0.176839\pi\)
0.527416 + 0.849607i \(0.323161\pi\)
\(588\) 0 0
\(589\) 294.907i 0.500691i
\(590\) 75.4772 + 528.341i 0.127928 + 0.895493i
\(591\) −307.247 −0.519877
\(592\) 100.182 + 100.182i 0.169227 + 0.169227i
\(593\) 63.1822 63.1822i 0.106547 0.106547i −0.651824 0.758370i \(-0.725996\pi\)
0.758370 + 0.651824i \(0.225996\pi\)
\(594\) 258.816i 0.435717i
\(595\) 0 0
\(596\) −418.182 −0.701648
\(597\) 1127.36 + 1127.36i 1.88837 + 1.88837i
\(598\) −278.091 + 278.091i −0.465035 + 0.465035i
\(599\) 389.362i 0.650021i −0.945710 0.325010i \(-0.894632\pi\)
0.945710 0.325010i \(-0.105368\pi\)
\(600\) 358.907 104.681i 0.598178 0.174469i
\(601\) −478.638 −0.796402 −0.398201 0.917298i \(-0.630365\pi\)
−0.398201 + 0.917298i \(0.630365\pi\)
\(602\) 0 0
\(603\) −431.861 + 431.861i −0.716188 + 0.716188i
\(604\) 324.182i 0.536725i
\(605\) −326.727 + 435.636i −0.540044 + 0.720059i
\(606\) −1072.97 −1.77058
\(607\) −452.780 452.780i −0.745931 0.745931i 0.227781 0.973712i \(-0.426853\pi\)
−0.973712 + 0.227781i \(0.926853\pi\)
\(608\) −73.7267 + 73.7267i −0.121261 + 0.121261i
\(609\) 0 0
\(610\) 720.362 102.909i 1.18092 0.168703i
\(611\) 325.640 0.532962
\(612\) 263.636 + 263.636i 0.430777 + 0.430777i
\(613\) −807.041 + 807.041i −1.31654 + 1.31654i −0.400051 + 0.916493i \(0.631008\pi\)
−0.916493 + 0.400051i \(0.868992\pi\)
\(614\) 485.204i 0.790234i
\(615\) 22.6020 + 158.214i 0.0367512 + 0.257258i
\(616\) 0 0
\(617\) 15.0890 + 15.0890i 0.0244555 + 0.0244555i 0.719229 0.694773i \(-0.244495\pi\)
−0.694773 + 0.719229i \(0.744495\pi\)
\(618\) −297.135 + 297.135i −0.480800 + 0.480800i
\(619\) 143.976i 0.232595i −0.993214 0.116297i \(-0.962897\pi\)
0.993214 0.116297i \(-0.0371026\pi\)
\(620\) −128.000 96.0000i −0.206452 0.154839i
\(621\) −944.766 −1.52136
\(622\) 7.47723 + 7.47723i 0.0120213 + 0.0120213i
\(623\) 0 0
\(624\) 327.636i 0.525057i
\(625\) −527.000 + 336.000i −0.843200 + 0.537600i
\(626\) −846.178 −1.35172
\(627\) −239.612 239.612i −0.382156 0.382156i
\(628\) 194.816 194.816i 0.310216 0.310216i
\(629\) 348.356i 0.553825i
\(630\) 0 0
\(631\) 395.200 0.626307 0.313154 0.949703i \(-0.398615\pi\)
0.313154 + 0.949703i \(0.398615\pi\)
\(632\) −202.408 202.408i −0.320266 0.320266i
\(633\) 664.362 664.362i 1.04955 1.04955i
\(634\) 576.000i 0.908517i
\(635\) 174.681 24.9545i 0.275088 0.0392983i
\(636\) 120.317 0.189177
\(637\) 0 0
\(638\) −173.386 + 173.386i −0.271765 + 0.271765i
\(639\) 764.634i 1.19661i
\(640\) 8.00000 + 56.0000i 0.0125000 + 0.0875000i
\(641\) −100.683 −0.157072 −0.0785361 0.996911i \(-0.525025\pi\)
−0.0785361 + 0.996911i \(0.525025\pi\)
\(642\) −317.182 317.182i −0.494053 0.494053i
\(643\) −301.770 + 301.770i −0.469316 + 0.469316i −0.901693 0.432377i \(-0.857675\pi\)
0.432377 + 0.901693i \(0.357675\pi\)
\(644\) 0 0
\(645\) −288.547 216.410i −0.447359 0.335519i
\(646\) 256.364 0.396849
\(647\) 379.125 + 379.125i 0.585973 + 0.585973i 0.936538 0.350565i \(-0.114010\pi\)
−0.350565 + 0.936538i \(0.614010\pi\)
\(648\) −215.362 + 215.362i −0.332349 + 0.332349i
\(649\) 262.451i 0.404393i
\(650\) −153.362 525.814i −0.235942 0.808944i
\(651\) 0 0
\(652\) 134.455 + 134.455i 0.206220 + 0.206220i
\(653\) −687.089 + 687.089i −1.05220 + 1.05220i −0.0536436 + 0.998560i \(0.517083\pi\)
−0.998560 + 0.0536436i \(0.982917\pi\)
\(654\) 278.701i 0.426148i
\(655\) 210.273 280.364i 0.321028 0.428037i
\(656\) −24.1822 −0.0368631
\(657\) −1189.81 1189.81i −1.81098 1.81098i
\(658\) 0 0
\(659\) 735.842i 1.11660i 0.829638 + 0.558302i \(0.188547\pi\)
−0.829638 + 0.558302i \(0.811453\pi\)
\(660\) −182.000 + 26.0000i −0.275758 + 0.0393939i
\(661\) −46.1801 −0.0698640 −0.0349320 0.999390i \(-0.511121\pi\)
−0.0349320 + 0.999390i \(0.511121\pi\)
\(662\) −236.634 236.634i −0.357452 0.357452i
\(663\) 569.631 569.631i 0.859173 0.859173i
\(664\) 204.499i 0.307980i
\(665\) 0 0
\(666\) 949.449 1.42560
\(667\) 632.919 + 632.919i 0.948904 + 0.948904i
\(668\) 267.976 267.976i 0.401162 0.401162i
\(669\) 1862.67i 2.78426i
\(670\) 182.273 + 136.705i 0.272050 + 0.204037i
\(671\) −357.837 −0.533290
\(672\) 0 0
\(673\) −122.772 + 122.772i −0.182425 + 0.182425i −0.792412 0.609986i \(-0.791175\pi\)
0.609986 + 0.792412i \(0.291175\pi\)
\(674\) 632.542i 0.938490i
\(675\) 632.669 1153.69i 0.937288 1.70917i
\(676\) 142.000 0.210059
\(677\) 244.364 + 244.364i 0.360952 + 0.360952i 0.864163 0.503211i \(-0.167848\pi\)
−0.503211 + 0.864163i \(0.667848\pi\)
\(678\) −887.065 + 887.065i −1.30836 + 1.30836i
\(679\) 0 0
\(680\) 83.4534 111.271i 0.122726 0.163634i
\(681\) −219.224 −0.321914
\(682\) 55.6356 + 55.6356i 0.0815771 + 0.0815771i
\(683\) 501.624 501.624i 0.734442 0.734442i −0.237055 0.971496i \(-0.576182\pi\)
0.971496 + 0.237055i \(0.0761820\pi\)
\(684\) 698.725i 1.02153i
\(685\) −47.4058 + 6.77226i −0.0692055 + 0.00988650i
\(686\) 0 0
\(687\) −1178.00 1178.00i −1.71470 1.71470i
\(688\) 38.5901 38.5901i 0.0560902 0.0560902i
\(689\) 176.269i 0.255833i
\(690\) 94.9089 + 664.362i 0.137549 + 0.962844i
\(691\) −1144.66 −1.65652 −0.828261 0.560342i \(-0.810670\pi\)
−0.828261 + 0.560342i \(0.810670\pi\)
\(692\) 0.364391 + 0.364391i 0.000526576 + 0.000526576i
\(693\) 0 0
\(694\) 200.657i 0.289132i
\(695\) 212.087 + 159.065i 0.305161 + 0.228871i
\(696\) 745.679 1.07138
\(697\) 42.0435 + 42.0435i 0.0603206 + 0.0603206i
\(698\) −298.861 + 298.861i −0.428168 + 0.428168i
\(699\) 608.364i 0.870335i
\(700\) 0 0
\(701\) 496.362 0.708077 0.354039 0.935231i \(-0.384808\pi\)
0.354039 + 0.935231i \(0.384808\pi\)
\(702\) 815.358 + 815.358i 1.16148 + 1.16148i
\(703\) 461.631 461.631i 0.656659 0.656659i
\(704\) 27.8178i 0.0395139i
\(705\) 333.410 444.547i 0.472922 0.630563i
\(706\) −48.7246 −0.0690151
\(707\) 0 0
\(708\) −564.360 + 564.360i −0.797119 + 0.797119i
\(709\) 325.950i 0.459732i 0.973222 + 0.229866i \(0.0738289\pi\)
−0.973222 + 0.229866i \(0.926171\pi\)
\(710\) −282.384 + 40.3406i −0.397724 + 0.0568177i
\(711\) −1918.26 −2.69798
\(712\) −165.453 165.453i −0.232378 0.232378i
\(713\) 203.089 203.089i 0.284837 0.284837i
\(714\) 0 0
\(715\) 38.0911 + 266.638i 0.0532743 + 0.372920i
\(716\) 87.2712 0.121887
\(717\) −1640.22 1640.22i −2.28762 2.28762i
\(718\) 492.087 492.087i 0.685358 0.685358i
\(719\) 627.152i 0.872256i 0.899885 + 0.436128i \(0.143651\pi\)
−0.899885 + 0.436128i \(0.856349\pi\)
\(720\) 303.271 + 227.453i 0.421210 + 0.315908i
\(721\) 0 0
\(722\) −21.2733 21.2733i −0.0294644 0.0294644i
\(723\) −583.905 + 583.905i −0.807614 + 0.807614i
\(724\) 7.36232i 0.0101689i
\(725\) −1196.72 + 349.043i −1.65065 + 0.481439i
\(726\) −814.336 −1.12168
\(727\) 9.62370 + 9.62370i 0.0132376 + 0.0132376i 0.713695 0.700457i \(-0.247020\pi\)
−0.700457 + 0.713695i \(0.747020\pi\)
\(728\) 0 0
\(729\) 463.404i 0.635670i
\(730\) −376.634 + 502.178i −0.515936 + 0.687915i
\(731\) −134.186 −0.183565
\(732\) 769.473 + 769.473i 1.05119 + 1.05119i
\(733\) −154.683 + 154.683i −0.211028 + 0.211028i −0.804704 0.593676i \(-0.797676\pi\)
0.593676 + 0.804704i \(0.297676\pi\)
\(734\) 102.978i 0.140297i
\(735\) 0 0
\(736\) −101.545 −0.137968
\(737\) −79.2257 79.2257i −0.107498 0.107498i
\(738\) −114.590 + 114.590i −0.155271 + 0.155271i
\(739\) 540.111i 0.730867i 0.930837 + 0.365434i \(0.119079\pi\)
−0.930837 + 0.365434i \(0.880921\pi\)
\(740\) −50.0911 350.638i −0.0676907 0.473835i
\(741\) 1509.72 2.03741
\(742\) 0 0
\(743\) 142.376 142.376i 0.191624 0.191624i −0.604774 0.796397i \(-0.706736\pi\)
0.796397 + 0.604774i \(0.206736\pi\)
\(744\) 239.271i 0.321601i
\(745\) 836.364 + 627.273i 1.12264 + 0.841978i
\(746\) 486.542 0.652202
\(747\) 969.041 + 969.041i 1.29724 + 1.29724i
\(748\) −48.3644 + 48.3644i −0.0646583 + 0.0646583i
\(749\) 0 0
\(750\) −874.835 328.998i −1.16645 0.438664i
\(751\) −1204.09 −1.60331 −0.801656 0.597786i \(-0.796047\pi\)
−0.801656 + 0.597786i \(0.796047\pi\)
\(752\) 59.4534 + 59.4534i 0.0790604 + 0.0790604i
\(753\) 694.360 694.360i 0.922125 0.922125i
\(754\) 1092.45i 1.44887i
\(755\) 486.273 648.364i 0.644071 0.858761i
\(756\) 0 0
\(757\) −297.410 297.410i −0.392880 0.392880i 0.482833 0.875713i \(-0.339608\pi\)
−0.875713 + 0.482833i \(0.839608\pi\)
\(758\) −33.5683 + 33.5683i −0.0442854 + 0.0442854i
\(759\) 330.020i 0.434809i
\(760\) 258.043 36.8634i 0.339531 0.0485044i
\(761\) 736.542 0.967861 0.483931 0.875106i \(-0.339209\pi\)
0.483931 + 0.875106i \(0.339209\pi\)
\(762\) 186.590 + 186.590i 0.244869 + 0.244869i
\(763\) 0 0
\(764\) 35.8654i 0.0469443i
\(765\) −131.818 922.725i −0.172311 1.20618i
\(766\) −1017.39 −1.32818
\(767\) 826.812 + 826.812i 1.07798 + 1.07798i
\(768\) −59.8178 + 59.8178i −0.0778878 + 0.0778878i
\(769\) 1006.45i 1.30877i −0.756160 0.654387i \(-0.772927\pi\)
0.756160 0.654387i \(-0.227073\pi\)
\(770\) 0 0
\(771\) 1261.27 1.63588
\(772\) 300.725 + 300.725i 0.389540 + 0.389540i
\(773\) −568.586 + 568.586i −0.735557 + 0.735557i −0.971715 0.236157i \(-0.924112\pi\)
0.236157 + 0.971715i \(0.424112\pi\)
\(774\) 365.727i 0.472515i
\(775\) 112.000 + 384.000i 0.144516 + 0.495484i
\(776\) −183.089 −0.235939
\(777\) 0 0
\(778\) 531.089 531.089i 0.682634 0.682634i
\(779\) 111.430i 0.143042i
\(780\) 491.453 655.271i 0.630068 0.840091i
\(781\) 140.273 0.179607
\(782\) 176.547 + 176.547i 0.225763 + 0.225763i
\(783\) 1855.71 1855.71i 2.37000 2.37000i
\(784\) 0 0
\(785\) −681.855 + 97.4079i −0.868605 + 0.124086i
\(786\) 524.087 0.666777
\(787\) 471.212 + 471.212i 0.598744 + 0.598744i 0.939978 0.341234i \(-0.110845\pi\)
−0.341234 + 0.939978i \(0.610845\pi\)
\(788\) −82.1822 + 82.1822i −0.104292 + 0.104292i
\(789\) 1736.67i 2.20110i
\(790\) 101.204 + 708.428i 0.128106 + 0.896744i
\(791\) 0 0
\(792\) −131.818 131.818i −0.166437 0.166437i
\(793\) 1127.31 1127.31i 1.42158 1.42158i
\(794\) 380.273i 0.478934i
\(795\) −240.634 180.475i −0.302684 0.227013i
\(796\) 603.089 0.757650
\(797\) −202.408 202.408i −0.253962 0.253962i 0.568631 0.822593i \(-0.307473\pi\)
−0.822593 + 0.568631i \(0.807473\pi\)
\(798\) 0 0
\(799\) 206.733i 0.258740i
\(800\) 68.0000 124.000i 0.0850000 0.155000i
\(801\) −1568.04 −1.95760
\(802\) −552.540 552.540i −0.688953 0.688953i
\(803\) 218.273 218.273i 0.271822 0.271822i
\(804\) 340.725i 0.423787i
\(805\) 0 0
\(806\) −350.542 −0.434916
\(807\) −1069.92 1069.92i −1.32580 1.32580i
\(808\) −286.998 + 286.998i −0.355195 + 0.355195i
\(809\) 159.364i 0.196989i −0.995138 0.0984947i \(-0.968597\pi\)
0.995138 0.0984947i \(-0.0314027\pi\)
\(810\) 753.768 107.681i 0.930578 0.132940i
\(811\) −741.545 −0.914358 −0.457179 0.889375i \(-0.651140\pi\)
−0.457179 + 0.889375i \(0.651140\pi\)
\(812\) 0 0
\(813\) 1531.04 1531.04i 1.88320 1.88320i
\(814\) 174.178i 0.213978i
\(815\) −67.2277 470.594i −0.0824880 0.577416i
\(816\) 208.000 0.254902
\(817\) −177.820 177.820i −0.217650 0.217650i
\(818\) −125.317 + 125.317i −0.153199 + 0.153199i
\(819\) 0 0
\(820\) 48.3644 + 36.2733i 0.0589810 + 0.0442357i
\(821\) 1577.90 1.92193 0.960963 0.276678i \(-0.0892336\pi\)
0.960963 + 0.276678i \(0.0892336\pi\)
\(822\) −50.6377 50.6377i −0.0616030 0.0616030i
\(823\) −430.238 + 430.238i −0.522767 + 0.522767i −0.918406 0.395639i \(-0.870523\pi\)
0.395639 + 0.918406i \(0.370523\pi\)
\(824\) 158.954i 0.192906i
\(825\) 403.000 + 221.000i 0.488485 + 0.267879i
\(826\) 0 0
\(827\) 1014.44 + 1014.44i 1.22665 + 1.22665i 0.965223 + 0.261426i \(0.0841929\pi\)
0.261426 + 0.965223i \(0.415807\pi\)
\(828\) −481.180 + 481.180i −0.581135 + 0.581135i
\(829\) 397.814i 0.479872i 0.970789 + 0.239936i \(0.0771264\pi\)
−0.970789 + 0.239936i \(0.922874\pi\)
\(830\) 306.748 408.998i 0.369576 0.492769i
\(831\) 85.9959 0.103485
\(832\) 87.6356 + 87.6356i 0.105331 + 0.105331i
\(833\) 0 0
\(834\) 396.455i 0.475366i
\(835\) −937.917 + 133.988i −1.12325 + 0.160465i
\(836\) −128.182 −0.153328
\(837\) −595.453 595.453i −0.711414 0.711414i
\(838\) −116.269 + 116.269i −0.138746 + 0.138746i
\(839\) 1475.70i 1.75888i 0.476011 + 0.879439i \(0.342082\pi\)
−0.476011 + 0.879439i \(0.657918\pi\)
\(840\) 0 0
\(841\) −1645.35 −1.95643
\(842\) −534.449 534.449i −0.634738 0.634738i
\(843\) −1131.09 + 1131.09i −1.34174 + 1.34174i
\(844\) 355.406i 0.421097i
\(845\) −284.000 213.000i −0.336095 0.252071i
\(846\) 563.453 0.666021
\(847\) 0 0
\(848\) 32.1822 32.1822i 0.0379507 0.0379507i
\(849\) 837.774i 0.986778i
\(850\) −333.814 + 97.3623i −0.392722 + 0.114544i
\(851\) 635.810 0.747132
\(852\) −301.636 301.636i −0.354032 0.354032i
\(853\) −307.404 + 307.404i −0.360380 + 0.360380i −0.863953 0.503573i \(-0.832018\pi\)
0.503573 + 0.863953i \(0.332018\pi\)
\(854\) 0 0
\(855\) 1048.09 1397.45i 1.22583 1.63444i
\(856\) −169.679 −0.198223
\(857\) −850.723 850.723i −0.992675 0.992675i 0.00729827 0.999973i \(-0.497677\pi\)
−0.999973 + 0.00729827i \(0.997677\pi\)
\(858\) −284.816 + 284.816i −0.331953 + 0.331953i
\(859\) 917.996i 1.06868i 0.845270 + 0.534340i \(0.179440\pi\)
−0.845270 + 0.534340i \(0.820560\pi\)
\(860\) −135.065 + 19.2950i −0.157053 + 0.0224361i
\(861\) 0 0
\(862\) 477.473 + 477.473i 0.553913 + 0.553913i
\(863\) 897.821 897.821i 1.04035 1.04035i 0.0411983 0.999151i \(-0.486882\pi\)
0.999151 0.0411983i \(-0.0131175\pi\)
\(864\) 297.727i 0.344591i
\(865\) −0.182195 1.27537i −0.000210631 0.00147441i
\(866\) −1084.54 −1.25236
\(867\) 718.828 + 718.828i 0.829098 + 0.829098i
\(868\) 0 0
\(869\) 351.909i 0.404958i
\(870\) −1491.36 1118.52i −1.71420 1.28565i
\(871\) 499.176 0.573107
\(872\) −74.5466 74.5466i −0.0854892 0.0854892i
\(873\) −867.588 + 867.588i −0.993801 + 0.993801i
\(874\) 467.909i 0.535365i
\(875\) 0 0
\(876\) −938.725 −1.07160
\(877\) 285.048 + 285.048i 0.325026 + 0.325026i 0.850691 0.525666i \(-0.176184\pi\)
−0.525666 + 0.850691i \(0.676184\pi\)
\(878\) 268.547 268.547i 0.305862 0.305862i
\(879\) 749.085i 0.852201i
\(880\) −41.7267 + 55.6356i −0.0474167 + 0.0632223i
\(881\) −338.402 −0.384111 −0.192055 0.981384i \(-0.561515\pi\)
−0.192055 + 0.981384i \(0.561515\pi\)
\(882\) 0 0
\(883\) −455.410 + 455.410i −0.515753 + 0.515753i −0.916283 0.400530i \(-0.868826\pi\)
0.400530 + 0.916283i \(0.368826\pi\)
\(884\) 304.729i 0.344716i
\(885\) 1975.26 282.180i 2.23193 0.318848i
\(886\) −124.705 −0.140751
\(887\) −285.398 285.398i −0.321757 0.321757i 0.527684 0.849441i \(-0.323060\pi\)
−0.849441 + 0.527684i \(0.823060\pi\)
\(888\) 374.542 374.542i 0.421782 0.421782i
\(889\) 0 0
\(890\) 82.7267 + 579.087i 0.0929514 + 0.650659i
\(891\) −374.432 −0.420238
\(892\) −498.226 498.226i −0.558549 0.558549i
\(893\) 273.957 273.957i 0.306782 0.306782i
\(894\) 1563.42i 1.74879i
\(895\) −174.542 130.907i −0.195019 0.146265i
\(896\) 0 0
\(897\) 1039.67 + 1039.67i 1.15906 + 1.15906i
\(898\) 100.410 100.410i 0.111815 0.111815i
\(899\) 797.814i 0.887446i
\(900\) −265.362 909.814i −0.294847 1.01090i
\(901\) −111.905 −0.124201
\(902\) −21.0217 21.0217i −0.0233057 0.0233057i
\(903\) 0 0
\(904\) 474.542i 0.524936i
\(905\) −11.0435 + 14.7246i −0.0122027 + 0.0162703i
\(906\) 1211.99 1.33774
\(907\) −431.350 431.350i −0.475579 0.475579i 0.428135 0.903715i \(-0.359171\pi\)
−0.903715 + 0.428135i \(0.859171\pi\)
\(908\) −58.6377 + 58.6377i −0.0645789 + 0.0645789i
\(909\) 2719.94i 2.99224i
\(910\) 0 0
\(911\) −716.063 −0.786019 −0.393009 0.919534i \(-0.628566\pi\)
−0.393009 + 0.919534i \(0.628566\pi\)
\(912\) 275.636 + 275.636i 0.302232 + 0.302232i
\(913\) −177.772 + 177.772i −0.194712 + 0.194712i
\(914\) 983.810i 1.07638i
\(915\) −384.737 2693.16i −0.420477 2.94334i
\(916\) −630.178 −0.687967
\(917\) 0 0
\(918\) 517.631 517.631i 0.563869 0.563869i
\(919\) 257.069i 0.279727i −0.990171 0.139864i \(-0.955334\pi\)
0.990171 0.139864i \(-0.0446664\pi\)
\(920\) 203.089 + 152.317i 0.220749 + 0.165562i
\(921\) −1813.99 −1.96959
\(922\) −191.636 191.636i −0.207848 0.207848i
\(923\) −441.909 + 441.909i −0.478775 + 0.478775i
\(924\) 0 0
\(925\) −425.774 + 776.412i −0.460297 + 0.839364i
\(926\) −536.158 −0.579005
\(927\) 753.224 + 753.224i 0.812539 + 0.812539i
\(928\) 199.453 199.453i 0.214928 0.214928i
\(929\) 1275.68i 1.37318i 0.727046 + 0.686588i \(0.240893\pi\)
−0.727046 + 0.686588i \(0.759107\pi\)
\(930\) −358.907 + 478.542i −0.385921 + 0.514562i
\(931\) 0 0
\(932\) 162.725 + 162.725i 0.174597 + 0.174597i
\(933\) 27.9545 27.9545i 0.0299619 0.0299619i
\(934\) 272.974i 0.292264i
\(935\) 169.275 24.1822i 0.181043 0.0258633i
\(936\) 830.542 0.887332
\(937\) 589.180 + 589.180i 0.628794 + 0.628794i 0.947765 0.318970i \(-0.103337\pi\)
−0.318970 + 0.947765i \(0.603337\pi\)
\(938\) 0 0
\(939\) 3163.53i 3.36904i
\(940\) −29.7267 208.087i −0.0316242 0.221369i
\(941\) −197.275 −0.209644 −0.104822 0.994491i \(-0.533427\pi\)
−0.104822 + 0.994491i \(0.533427\pi\)
\(942\) −728.341 728.341i −0.773185 0.773185i
\(943\) −76.7365 + 76.7365i −0.0813749 + 0.0813749i
\(944\) 301.909i 0.319819i
\(945\) 0 0
\(946\) 67.0932 0.0709230
\(947\) −1095.42 1095.42i −1.15672 1.15672i −0.985176 0.171548i \(-0.945123\pi\)
−0.171548 0.985176i \(-0.554877\pi\)
\(948\) −756.725 + 756.725i −0.798233 + 0.798233i
\(949\) 1375.27i 1.44918i
\(950\) −571.382 313.339i −0.601455 0.329830i
\(951\) 2153.44 2.26440
\(952\) 0 0
\(953\) 1139.41 1139.41i 1.19560 1.19560i 0.220128 0.975471i \(-0.429353\pi\)
0.975471 0.220128i \(-0.0706475\pi\)
\(954\) 304.998i 0.319704i
\(955\) 53.7981 71.7309i 0.0563331 0.0751108i
\(956\) −877.449 −0.917834
\(957\) 648.224 + 648.224i 0.677350 + 0.677350i
\(958\) 741.545 741.545i 0.774055 0.774055i
\(959\) 0 0
\(960\) 209.362 29.9089i 0.218086 0.0311551i
\(961\) −705.000 −0.733611
\(962\) −548.720 548.720i −0.570396 0.570396i
\(963\) −804.043 + 804.043i −0.834936 + 0.834936i
\(964\) 312.364i 0.324029i
\(965\) −150.362 1052.54i −0.155816 1.09071i
\(966\) 0 0
\(967\) −184.424 184.424i −0.190718 0.190718i 0.605289 0.796006i \(-0.293058\pi\)
−0.796006 + 0.605289i \(0.793058\pi\)
\(968\) −217.818 + 217.818i −0.225018 + 0.225018i
\(969\) 958.447i 0.989110i
\(970\) 366.178 + 274.634i 0.377503 + 0.283127i
\(971\) −1490.18 −1.53468 −0.767342 0.641238i \(-0.778421\pi\)
−0.767342 + 0.641238i \(0.778421\pi\)
\(972\) 135.271 + 135.271i 0.139168 + 0.139168i
\(973\) 0 0
\(974\) 1114.81i 1.14457i
\(975\) −1965.81 + 573.362i −2.01622 + 0.588064i
\(976\) 411.636 0.421758
\(977\) −744.089 744.089i −0.761606 0.761606i 0.215007 0.976613i \(-0.431023\pi\)
−0.976613 + 0.215007i \(0.931023\pi\)
\(978\) 502.677 502.677i 0.513985 0.513985i
\(979\) 287.659i 0.293830i
\(980\) 0 0
\(981\) −706.495 −0.720178
\(982\) 232.000 + 232.000i 0.236253 + 0.236253i
\(983\) −505.893 + 505.893i −0.514642 + 0.514642i −0.915945 0.401303i \(-0.868557\pi\)
0.401303 + 0.915945i \(0.368557\pi\)
\(984\) 90.4079i 0.0918779i
\(985\) 287.638 41.0911i 0.292018 0.0417169i
\(986\) −693.545 −0.703392
\(987\) 0 0
\(988\) 403.818 403.818i 0.408722 0.408722i
\(989\) 244.913i 0.247637i
\(990\) 65.9089 + 461.362i 0.0665746 + 0.466023i
\(991\) 1293.54 1.30528 0.652642 0.757667i \(-0.273661\pi\)
0.652642 + 0.757667i \(0.273661\pi\)
\(992\) −64.0000 64.0000i −0.0645161 0.0645161i
\(993\) −884.681 + 884.681i −0.890918 + 0.890918i
\(994\) 0 0
\(995\) −1206.18 904.634i −1.21224 0.909179i
\(996\) 764.542 0.767613
\(997\) −128.224 128.224i −0.128609 0.128609i 0.639872 0.768481i \(-0.278987\pi\)
−0.768481 + 0.639872i \(0.778987\pi\)
\(998\) 658.566 658.566i 0.659886 0.659886i
\(999\) 1864.18i 1.86605i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 490.3.f.e.197.1 4
5.3 odd 4 inner 490.3.f.e.393.1 4
7.3 odd 6 70.3.l.a.37.1 yes 8
7.5 odd 6 70.3.l.a.67.2 yes 8
7.6 odd 2 490.3.f.l.197.2 4
35.3 even 12 70.3.l.a.23.2 8
35.12 even 12 350.3.p.c.193.2 8
35.13 even 4 490.3.f.l.393.2 4
35.17 even 12 350.3.p.c.93.1 8
35.19 odd 6 350.3.p.c.207.1 8
35.24 odd 6 350.3.p.c.107.2 8
35.33 even 12 70.3.l.a.53.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.l.a.23.2 8 35.3 even 12
70.3.l.a.37.1 yes 8 7.3 odd 6
70.3.l.a.53.1 yes 8 35.33 even 12
70.3.l.a.67.2 yes 8 7.5 odd 6
350.3.p.c.93.1 8 35.17 even 12
350.3.p.c.107.2 8 35.24 odd 6
350.3.p.c.193.2 8 35.12 even 12
350.3.p.c.207.1 8 35.19 odd 6
490.3.f.e.197.1 4 1.1 even 1 trivial
490.3.f.e.393.1 4 5.3 odd 4 inner
490.3.f.l.197.2 4 7.6 odd 2
490.3.f.l.393.2 4 35.13 even 4