L(s) = 1 | + (−1 − i)2-s + (−3.73 + 3.73i)3-s + 2i·4-s + (3 − 4i)5-s + 7.47·6-s + (2 − 2i)8-s − 18.9i·9-s + (−7 + i)10-s + 3.47·11-s + (−7.47 − 7.47i)12-s + (−10.9 + 10.9i)13-s + (3.73 + 26.1i)15-s − 4·16-s + (6.95 + 6.95i)17-s + (−18.9 + 18.9i)18-s + 18.4i·19-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (−1.24 + 1.24i)3-s + 0.5i·4-s + (0.600 − 0.800i)5-s + 1.24·6-s + (0.250 − 0.250i)8-s − 2.10i·9-s + (−0.700 + 0.100i)10-s + 0.316·11-s + (−0.623 − 0.623i)12-s + (−0.842 + 0.842i)13-s + (0.249 + 1.74i)15-s − 0.250·16-s + (0.409 + 0.409i)17-s + (−1.05 + 1.05i)18-s + 0.970i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.767 + 0.640i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 490 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.767 + 0.640i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.1712231897\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1712231897\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 5 | \( 1 + (-3 + 4i)T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (3.73 - 3.73i)T - 9iT^{2} \) |
| 11 | \( 1 - 3.47T + 121T^{2} \) |
| 13 | \( 1 + (10.9 - 10.9i)T - 169iT^{2} \) |
| 17 | \( 1 + (-6.95 - 6.95i)T + 289iT^{2} \) |
| 19 | \( 1 - 18.4iT - 361T^{2} \) |
| 23 | \( 1 + (12.6 - 12.6i)T - 529iT^{2} \) |
| 29 | \( 1 + 49.8iT - 841T^{2} \) |
| 31 | \( 1 + 16T + 961T^{2} \) |
| 37 | \( 1 + (25.0 + 25.0i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 6.04T + 1.68e3T^{2} \) |
| 43 | \( 1 + (9.64 - 9.64i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (14.8 + 14.8i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (8.04 - 8.04i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 + 75.4iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 102.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (22.7 + 22.7i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 40.3T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-62.7 + 62.7i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 101. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (51.1 - 51.1i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 82.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (45.7 + 45.7i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23592316675081181816036625345, −9.686241079437798066626982724062, −9.169402302029237100627710168291, −7.896167868346834304438700710581, −6.37500043865595902803334369624, −5.57202092966158737238999378700, −4.58063735207043144001683556442, −3.78160876599562539243999209117, −1.75954229800915925366326563156, −0.10029048112416828042656591394,
1.35195332892823977321699934573, 2.70086385774676791611979642291, 5.07241651970182195789650281594, 5.71346043167155381061514741347, 6.78080273201788085263547500799, 7.06960964583235375055663609220, 8.043808604735607361952876748434, 9.380924478198620335290432780380, 10.43936571747847349494356145905, 10.94369584187482920210086806826