Properties

Label 70.3.l
Level $70$
Weight $3$
Character orbit 70.l
Rep. character $\chi_{70}(23,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $32$
Newform subspaces $3$
Sturm bound $36$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 70 = 2 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 70.l (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 3 \)
Sturm bound: \(36\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(70, [\chi])\).

Total New Old
Modular forms 112 32 80
Cusp forms 80 32 48
Eisenstein series 32 0 32

Trace form

\( 32 q + 4 q^{5} - 16 q^{6} - 4 q^{7} - 16 q^{10} + 32 q^{11} - 72 q^{15} + 64 q^{16} + 92 q^{17} - 32 q^{18} - 24 q^{21} - 96 q^{22} + 72 q^{23} - 4 q^{25} - 32 q^{26} - 288 q^{27} - 64 q^{28} - 96 q^{30}+ \cdots - 224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(70, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
70.3.l.a 70.l 35.l $8$ $1.907$ 8.0.3317760000.2 None 70.3.l.a \(4\) \(-4\) \(12\) \(-4\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\beta _{2}-\beta _{4})q^{2}+(-\beta _{2}+2\beta _{3}-\beta _{4}+\cdots)q^{3}+\cdots\)
70.3.l.b 70.l 35.l $8$ $1.907$ 8.0.303595776.1 None 70.3.l.b \(4\) \(2\) \(-6\) \(-12\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\beta _{3}+\beta _{4})q^{2}+(-\beta _{1}+\beta _{2}-\beta _{4}+\cdots)q^{3}+\cdots\)
70.3.l.c 70.l 35.l $16$ $1.907$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 70.3.l.c \(-8\) \(2\) \(-2\) \(12\) $\mathrm{SU}(2)[C_{12}]$ \(q+(-1-\beta _{4}+\beta _{8})q^{2}+(-\beta _{3}-\beta _{10}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(70, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(70, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 2}\)