gp: [N,k,chi] = [70,3,Mod(23,70)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(70, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([9, 4]))
N = Newforms(chi, 3, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("70.23");
S:= CuspForms(chi, 3);
N := Newforms(S);
Newform invariants
sage: traces = [8,4,-4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − 25 x 4 + 625 x^{8} - 25x^{4} + 625 x 8 − 2 5 x 4 + 6 2 5
x^8 - 25*x^4 + 625
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 2 ) / 5 ( \nu^{2} ) / 5 ( ν 2 ) / 5
(v^2) / 5
β 3 \beta_{3} β 3 = = =
( ν 3 ) / 5 ( \nu^{3} ) / 5 ( ν 3 ) / 5
(v^3) / 5
β 4 \beta_{4} β 4 = = =
( ν 4 ) / 25 ( \nu^{4} ) / 25 ( ν 4 ) / 2 5
(v^4) / 25
β 5 \beta_{5} β 5 = = =
( ν 5 ) / 25 ( \nu^{5} ) / 25 ( ν 5 ) / 2 5
(v^5) / 25
β 6 \beta_{6} β 6 = = =
( ν 6 ) / 125 ( \nu^{6} ) / 125 ( ν 6 ) / 1 2 5
(v^6) / 125
β 7 \beta_{7} β 7 = = =
( ν 7 ) / 125 ( \nu^{7} ) / 125 ( ν 7 ) / 1 2 5
(v^7) / 125
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
5 β 2 5\beta_{2} 5 β 2
5*b2
ν 3 \nu^{3} ν 3 = = =
5 β 3 5\beta_{3} 5 β 3
5*b3
ν 4 \nu^{4} ν 4 = = =
25 β 4 25\beta_{4} 2 5 β 4
25*b4
ν 5 \nu^{5} ν 5 = = =
25 β 5 25\beta_{5} 2 5 β 5
25*b5
ν 6 \nu^{6} ν 6 = = =
125 β 6 125\beta_{6} 1 2 5 β 6
125*b6
ν 7 \nu^{7} ν 7 = = =
125 β 7 125\beta_{7} 1 2 5 β 7
125*b7
Character values
We give the values of χ \chi χ on generators for ( Z / 70 Z ) × \left(\mathbb{Z}/70\mathbb{Z}\right)^\times ( Z / 7 0 Z ) × .
n n n
31 31 3 1
57 57 5 7
χ ( n ) \chi(n) χ ( n )
− 1 + β 4 -1 + \beta_{4} − 1 + β 4
β 6 \beta_{6} β 6
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 8 + 4 T 3 7 + 8 T 3 6 + 136 T 3 5 + 103 T 3 4 − 1768 T 3 3 + 1352 T 3 2 − 8788 T 3 + 28561 T_{3}^{8} + 4T_{3}^{7} + 8T_{3}^{6} + 136T_{3}^{5} + 103T_{3}^{4} - 1768T_{3}^{3} + 1352T_{3}^{2} - 8788T_{3} + 28561 T 3 8 + 4 T 3 7 + 8 T 3 6 + 1 3 6 T 3 5 + 1 0 3 T 3 4 − 1 7 6 8 T 3 3 + 1 3 5 2 T 3 2 − 8 7 8 8 T 3 + 2 8 5 6 1
T3^8 + 4*T3^7 + 8*T3^6 + 136*T3^5 + 103*T3^4 - 1768*T3^3 + 1352*T3^2 - 8788*T3 + 28561
acting on S 3 n e w ( 70 , [ χ ] ) S_{3}^{\mathrm{new}}(70, [\chi]) S 3 n e w ( 7 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 4 − 2 T 3 + 2 T 2 + ⋯ + 4 ) 2 (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} ( T 4 − 2 T 3 + 2 T 2 + ⋯ + 4 ) 2
(T^4 - 2*T^3 + 2*T^2 - 4*T + 4)^2
3 3 3
T 8 + 4 T 7 + ⋯ + 28561 T^{8} + 4 T^{7} + \cdots + 28561 T 8 + 4 T 7 + ⋯ + 2 8 5 6 1
T^8 + 4*T^7 + 8*T^6 + 136*T^5 + 103*T^4 - 1768*T^3 + 1352*T^2 - 8788*T + 28561
5 5 5
( T 4 − 6 T 3 + ⋯ + 625 ) 2 (T^{4} - 6 T^{3} + \cdots + 625)^{2} ( T 4 − 6 T 3 + ⋯ + 6 2 5 ) 2
(T^4 - 6*T^3 + 11*T^2 - 150*T + 625)^2
7 7 7
T 8 + 4 T 7 + ⋯ + 5764801 T^{8} + 4 T^{7} + \cdots + 5764801 T 8 + 4 T 7 + ⋯ + 5 7 6 4 8 0 1
T^8 + 4*T^7 + 8*T^6 - 336*T^5 - 3577*T^4 - 16464*T^3 + 19208*T^2 + 470596*T + 5764801
11 11 1 1
( T 4 − 4 T 3 + ⋯ + 676 ) 2 (T^{4} - 4 T^{3} + \cdots + 676)^{2} ( T 4 − 4 T 3 + ⋯ + 6 7 6 ) 2
(T^4 - 4*T^3 + 42*T^2 + 104*T + 676)^2
13 13 1 3
( T 4 + 57600 ) 2 (T^{4} + 57600)^{2} ( T 4 + 5 7 6 0 0 ) 2
(T^4 + 57600)^2
17 17 1 7
T 8 + ⋯ + 1871773696 T^{8} + \cdots + 1871773696 T 8 + ⋯ + 1 8 7 1 7 7 3 6 9 6
T^8 + 16*T^7 + 128*T^6 + 8704*T^5 + 26368*T^4 - 1810432*T^3 + 5537792*T^2 - 143982592*T + 1871773696
19 19 1 9
T 8 + ⋯ + 5006411536 T^{8} + \cdots + 5006411536 T 8 + ⋯ + 5 0 0 6 4 1 1 5 3 6
T^8 - 548*T^6 + 229548*T^4 - 38774288*T^2 + 5006411536
23 23 2 3
T 8 + ⋯ + 19356878641 T^{8} + \cdots + 19356878641 T 8 + ⋯ + 1 9 3 5 6 8 7 8 6 4 1
T^8 + 4*T^7 + 8*T^6 + 3016*T^5 - 133097*T^4 - 1124968*T^3 + 1113032*T^2 - 207580468*T + 19356878641
29 29 2 9
( T 4 + 2738 T 2 + 625681 ) 2 (T^{4} + 2738 T^{2} + 625681)^{2} ( T 4 + 2 7 3 8 T 2 + 6 2 5 6 8 1 ) 2
(T^4 + 2738*T^2 + 625681)^2
31 31 3 1
( T 2 + 16 T + 256 ) 4 (T^{2} + 16 T + 256)^{4} ( T 2 + 1 6 T + 2 5 6 ) 4
(T^2 + 16*T + 256)^4
37 37 3 7
T 8 + ⋯ + 30601961865216 T^{8} + \cdots + 30601961865216 T 8 + ⋯ + 3 0 6 0 1 9 6 1 8 6 5 2 1 6
T^8 - 144*T^7 + 10368*T^6 - 815616*T^5 + 53192448*T^4 - 1918328832*T^3 + 57354780672*T^2 - 1873589501952*T + 30601961865216
41 41 4 1
( T 2 + 34 T + 169 ) 4 (T^{2} + 34 T + 169)^{4} ( T 2 + 3 4 T + 1 6 9 ) 4
(T^2 + 34*T + 169)^4
43 43 4 3
( T 4 − 60 T 3 + ⋯ + 585225 ) 2 (T^{4} - 60 T^{3} + \cdots + 585225)^{2} ( T 4 − 6 0 T 3 + ⋯ + 5 8 5 2 2 5 ) 2
(T^4 - 60*T^3 + 1800*T^2 + 45900*T + 585225)^2
47 47 4 7
T 8 + ⋯ + 5226454388736 T^{8} + \cdots + 5226454388736 T 8 + ⋯ + 5 2 2 6 4 5 4 3 8 8 7 3 6
T^8 - 72*T^7 + 2592*T^6 - 404352*T^5 + 12270528*T^4 + 611380224*T^3 + 5925685248*T^2 + 248878780416*T + 5226454388736
53 53 5 3
T 8 + ⋯ + 53974440976 T^{8} + \cdots + 53974440976 T 8 + ⋯ + 5 3 9 7 4 4 4 0 9 7 6
T^8 - 76*T^7 + 2888*T^6 - 146224*T^5 + 5324188*T^4 - 70479968*T^3 + 670951712*T^2 - 8510492768*T + 53974440976
59 59 5 9
T 8 + ⋯ + 562491345610000 T^{8} + \cdots + 562491345610000 T 8 + ⋯ + 5 6 2 4 9 1 3 4 5 6 1 0 0 0 0
T^8 - 9860*T^6 + 73502700*T^4 - 233848634000*T^2 + 562491345610000
61 61 6 1
( T 4 + 162 T 3 + ⋯ + 36978561 ) 2 (T^{4} + 162 T^{3} + \cdots + 36978561)^{2} ( T 4 + 1 6 2 T 3 + ⋯ + 3 6 9 7 8 5 6 1 ) 2
(T^4 + 162*T^3 + 20163*T^2 + 985122*T + 36978561)^2
67 67 6 7
T 8 + ⋯ + 10197605570161 T^{8} + \cdots + 10197605570161 T 8 + ⋯ + 1 0 1 9 7 6 0 5 5 7 0 1 6 1
T^8 - 124*T^7 + 7688*T^6 - 510136*T^5 + 28435063*T^4 - 911613032*T^3 + 24550620872*T^2 - 707612249972*T + 10197605570161
71 71 7 1
( T 2 − 4 T − 1466 ) 4 (T^{2} - 4 T - 1466)^{4} ( T 2 − 4 T − 1 4 6 6 ) 4
(T^2 - 4*T - 1466)^4
73 73 7 3
T 8 + ⋯ + 11 ⋯ 56 T^{8} + \cdots + 11\!\cdots\!56 T 8 + ⋯ + 1 1 ⋯ 5 6
T^8 - 32*T^7 + 512*T^6 - 392192*T^5 - 28205312*T^4 + 2302951424*T^3 + 17653956608*T^2 + 6479002075136*T + 1188896880787456
79 79 7 9
T 8 + ⋯ + 302373843210000 T^{8} + \cdots + 302373843210000 T 8 + ⋯ + 3 0 2 3 7 3 8 4 3 2 1 0 0 0 0
T^8 - 11940*T^6 + 125174700*T^4 - 207623466000*T^2 + 302373843210000
83 83 8 3
( T 4 − 84 T 3 + ⋯ + 870489 ) 2 (T^{4} - 84 T^{3} + \cdots + 870489)^{2} ( T 4 − 8 4 T 3 + ⋯ + 8 7 0 4 8 9 ) 2
(T^4 - 84*T^3 + 3528*T^2 + 78372*T + 870489)^2
89 89 8 9
T 8 + ⋯ + 264028733579521 T^{8} + \cdots + 264028733579521 T 8 + ⋯ + 2 6 4 0 2 8 7 3 3 5 7 9 5 2 1
T^8 - 9218*T^6 + 68722563*T^4 - 149782922498*T^2 + 264028733579521
97 97 9 7
( T 4 + 36 T 3 + ⋯ + 34082244 ) 2 (T^{4} + 36 T^{3} + \cdots + 34082244)^{2} ( T 4 + 3 6 T 3 + ⋯ + 3 4 0 8 2 2 4 4 ) 2
(T^4 + 36*T^3 + 648*T^2 - 210168*T + 34082244)^2
show more
show less