Properties

Label 70.3.l.a
Level 7070
Weight 33
Character orbit 70.l
Analytic conductor 1.9071.907
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [70,3,Mod(23,70)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(70, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("70.23"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 70=257 70 = 2 \cdot 5 \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 70.l (of order 1212, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.907361850521.90736185052
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ12)\Q(\zeta_{12})
Coefficient field: 8.0.3317760000.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x825x4+625 x^{8} - 25x^{4} + 625 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4+β2+1)q2+(β7+β6+β2)q3+(2β6+2β2)q4+(3β44β2+3)q5+(2β7+β5+β3+2)q6++(8β744β6++4β1)q99+O(q100) q + ( - \beta_{4} + \beta_{2} + 1) q^{2} + ( - \beta_{7} + \beta_{6} + \cdots - \beta_{2}) q^{3} + ( - 2 \beta_{6} + 2 \beta_{2}) q^{4} + ( - 3 \beta_{4} - 4 \beta_{2} + 3) q^{5} + ( - 2 \beta_{7} + \beta_{5} + \beta_{3} + \cdots - 2) q^{6}+ \cdots + (8 \beta_{7} - 44 \beta_{6} + \cdots + 4 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q24q3+12q516q64q7+16q828q10+8q118q12+8q15+16q1616q17+32q1864q20+100q21+16q224q23+28q25+132q98+O(q100) 8 q + 4 q^{2} - 4 q^{3} + 12 q^{5} - 16 q^{6} - 4 q^{7} + 16 q^{8} - 28 q^{10} + 8 q^{11} - 8 q^{12} + 8 q^{15} + 16 q^{16} - 16 q^{17} + 32 q^{18} - 64 q^{20} + 100 q^{21} + 16 q^{22} - 4 q^{23} + 28 q^{25}+ \cdots - 132 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x825x4+625 x^{8} - 25x^{4} + 625 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/5 ( \nu^{2} ) / 5 Copy content Toggle raw display
β3\beta_{3}== (ν3)/5 ( \nu^{3} ) / 5 Copy content Toggle raw display
β4\beta_{4}== (ν4)/25 ( \nu^{4} ) / 25 Copy content Toggle raw display
β5\beta_{5}== (ν5)/25 ( \nu^{5} ) / 25 Copy content Toggle raw display
β6\beta_{6}== (ν6)/125 ( \nu^{6} ) / 125 Copy content Toggle raw display
β7\beta_{7}== (ν7)/125 ( \nu^{7} ) / 125 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 5β2 5\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 5β3 5\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== 25β4 25\beta_{4} Copy content Toggle raw display
ν5\nu^{5}== 25β5 25\beta_{5} Copy content Toggle raw display
ν6\nu^{6}== 125β6 125\beta_{6} Copy content Toggle raw display
ν7\nu^{7}== 125β7 125\beta_{7} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/70Z)×\left(\mathbb{Z}/70\mathbb{Z}\right)^\times.

nn 3131 5757
χ(n)\chi(n) 1+β4-1 + \beta_{4} β6\beta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
23.1
0.578737 2.15988i
−0.578737 + 2.15988i
−2.15988 0.578737i
2.15988 + 0.578737i
−2.15988 + 0.578737i
2.15988 0.578737i
0.578737 + 2.15988i
−0.578737 2.15988i
−0.366025 1.36603i −0.636376 + 2.37499i −1.73205 + 1.00000i 4.96410 0.598076i 3.47723 6.99656 0.219274i 2.00000 + 2.00000i 2.55863 + 1.47723i −2.63397 6.56218i
23.2 −0.366025 1.36603i 1.36843 5.10704i −1.73205 + 1.00000i 4.96410 0.598076i −7.47723 −2.80041 + 6.41543i 2.00000 + 2.00000i −16.4150 9.47723i −2.63397 6.56218i
37.1 1.36603 0.366025i −5.10704 1.36843i 1.73205 1.00000i −1.96410 4.59808i −7.47723 −6.41543 2.80041i 2.00000 2.00000i 16.4150 + 9.47723i −4.36603 5.56218i
37.2 1.36603 0.366025i 2.37499 + 0.636376i 1.73205 1.00000i −1.96410 4.59808i 3.47723 0.219274 + 6.99656i 2.00000 2.00000i −2.55863 1.47723i −4.36603 5.56218i
53.1 1.36603 + 0.366025i −5.10704 + 1.36843i 1.73205 + 1.00000i −1.96410 + 4.59808i −7.47723 −6.41543 + 2.80041i 2.00000 + 2.00000i 16.4150 9.47723i −4.36603 + 5.56218i
53.2 1.36603 + 0.366025i 2.37499 0.636376i 1.73205 + 1.00000i −1.96410 + 4.59808i 3.47723 0.219274 6.99656i 2.00000 + 2.00000i −2.55863 + 1.47723i −4.36603 + 5.56218i
67.1 −0.366025 + 1.36603i −0.636376 2.37499i −1.73205 1.00000i 4.96410 + 0.598076i 3.47723 6.99656 + 0.219274i 2.00000 2.00000i 2.55863 1.47723i −2.63397 + 6.56218i
67.2 −0.366025 + 1.36603i 1.36843 + 5.10704i −1.73205 1.00000i 4.96410 + 0.598076i −7.47723 −2.80041 6.41543i 2.00000 2.00000i −16.4150 + 9.47723i −2.63397 + 6.56218i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 23.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
7.c even 3 1 inner
35.l odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 70.3.l.a 8
5.b even 2 1 350.3.p.c 8
5.c odd 4 1 inner 70.3.l.a 8
5.c odd 4 1 350.3.p.c 8
7.c even 3 1 inner 70.3.l.a 8
7.c even 3 1 490.3.f.l 4
7.d odd 6 1 490.3.f.e 4
35.j even 6 1 350.3.p.c 8
35.k even 12 1 490.3.f.e 4
35.l odd 12 1 inner 70.3.l.a 8
35.l odd 12 1 350.3.p.c 8
35.l odd 12 1 490.3.f.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.3.l.a 8 1.a even 1 1 trivial
70.3.l.a 8 5.c odd 4 1 inner
70.3.l.a 8 7.c even 3 1 inner
70.3.l.a 8 35.l odd 12 1 inner
350.3.p.c 8 5.b even 2 1
350.3.p.c 8 5.c odd 4 1
350.3.p.c 8 35.j even 6 1
350.3.p.c 8 35.l odd 12 1
490.3.f.e 4 7.d odd 6 1
490.3.f.e 4 35.k even 12 1
490.3.f.l 4 7.c even 3 1
490.3.f.l 4 35.l odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T38+4T37+8T36+136T35+103T341768T33+1352T328788T3+28561 T_{3}^{8} + 4T_{3}^{7} + 8T_{3}^{6} + 136T_{3}^{5} + 103T_{3}^{4} - 1768T_{3}^{3} + 1352T_{3}^{2} - 8788T_{3} + 28561 acting on S3new(70,[χ])S_{3}^{\mathrm{new}}(70, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T42T3+2T2++4)2 (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
33 T8+4T7++28561 T^{8} + 4 T^{7} + \cdots + 28561 Copy content Toggle raw display
55 (T46T3++625)2 (T^{4} - 6 T^{3} + \cdots + 625)^{2} Copy content Toggle raw display
77 T8+4T7++5764801 T^{8} + 4 T^{7} + \cdots + 5764801 Copy content Toggle raw display
1111 (T44T3++676)2 (T^{4} - 4 T^{3} + \cdots + 676)^{2} Copy content Toggle raw display
1313 (T4+57600)2 (T^{4} + 57600)^{2} Copy content Toggle raw display
1717 T8++1871773696 T^{8} + \cdots + 1871773696 Copy content Toggle raw display
1919 T8++5006411536 T^{8} + \cdots + 5006411536 Copy content Toggle raw display
2323 T8++19356878641 T^{8} + \cdots + 19356878641 Copy content Toggle raw display
2929 (T4+2738T2+625681)2 (T^{4} + 2738 T^{2} + 625681)^{2} Copy content Toggle raw display
3131 (T2+16T+256)4 (T^{2} + 16 T + 256)^{4} Copy content Toggle raw display
3737 T8++30601961865216 T^{8} + \cdots + 30601961865216 Copy content Toggle raw display
4141 (T2+34T+169)4 (T^{2} + 34 T + 169)^{4} Copy content Toggle raw display
4343 (T460T3++585225)2 (T^{4} - 60 T^{3} + \cdots + 585225)^{2} Copy content Toggle raw display
4747 T8++5226454388736 T^{8} + \cdots + 5226454388736 Copy content Toggle raw display
5353 T8++53974440976 T^{8} + \cdots + 53974440976 Copy content Toggle raw display
5959 T8++562491345610000 T^{8} + \cdots + 562491345610000 Copy content Toggle raw display
6161 (T4+162T3++36978561)2 (T^{4} + 162 T^{3} + \cdots + 36978561)^{2} Copy content Toggle raw display
6767 T8++10197605570161 T^{8} + \cdots + 10197605570161 Copy content Toggle raw display
7171 (T24T1466)4 (T^{2} - 4 T - 1466)^{4} Copy content Toggle raw display
7373 T8++11 ⁣ ⁣56 T^{8} + \cdots + 11\!\cdots\!56 Copy content Toggle raw display
7979 T8++302373843210000 T^{8} + \cdots + 302373843210000 Copy content Toggle raw display
8383 (T484T3++870489)2 (T^{4} - 84 T^{3} + \cdots + 870489)^{2} Copy content Toggle raw display
8989 T8++264028733579521 T^{8} + \cdots + 264028733579521 Copy content Toggle raw display
9797 (T4+36T3++34082244)2 (T^{4} + 36 T^{3} + \cdots + 34082244)^{2} Copy content Toggle raw display
show more
show less