Properties

Label 2-70-35.32-c2-0-3
Degree $2$
Conductor $70$
Sign $0.997 - 0.0770i$
Analytic cond. $1.90736$
Root an. cond. $1.38107$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.366 + 1.36i)2-s + (−0.636 − 2.37i)3-s + (−1.73 − i)4-s + (4.96 + 0.598i)5-s + 3.47·6-s + (6.99 + 0.219i)7-s + (2 − 1.99i)8-s + (2.55 − 1.47i)9-s + (−2.63 + 6.56i)10-s + (3.73 − 6.47i)11-s + (−1.27 + 4.74i)12-s + (−10.9 + 10.9i)13-s + (−2.86 + 9.47i)14-s + (−1.73 − 12.1i)15-s + (1.99 + 3.46i)16-s + (−20.4 + 5.47i)17-s + ⋯
L(s)  = 1  + (−0.183 + 0.683i)2-s + (−0.212 − 0.791i)3-s + (−0.433 − 0.250i)4-s + (0.992 + 0.119i)5-s + 0.579·6-s + (0.999 + 0.0313i)7-s + (0.250 − 0.249i)8-s + (0.284 − 0.164i)9-s + (−0.263 + 0.656i)10-s + (0.339 − 0.588i)11-s + (−0.106 + 0.395i)12-s + (−0.842 + 0.842i)13-s + (−0.204 + 0.676i)14-s + (−0.115 − 0.811i)15-s + (0.124 + 0.216i)16-s + (−1.20 + 0.321i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0770i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.997 - 0.0770i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $0.997 - 0.0770i$
Analytic conductor: \(1.90736\)
Root analytic conductor: \(1.38107\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{70} (67, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 70,\ (\ :1),\ 0.997 - 0.0770i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.24426 + 0.0480322i\)
\(L(\frac12)\) \(\approx\) \(1.24426 + 0.0480322i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.366 - 1.36i)T \)
5 \( 1 + (-4.96 - 0.598i)T \)
7 \( 1 + (-6.99 - 0.219i)T \)
good3 \( 1 + (0.636 + 2.37i)T + (-7.79 + 4.5i)T^{2} \)
11 \( 1 + (-3.73 + 6.47i)T + (-60.5 - 104. i)T^{2} \)
13 \( 1 + (10.9 - 10.9i)T - 169iT^{2} \)
17 \( 1 + (20.4 - 5.47i)T + (250. - 144.5i)T^{2} \)
19 \( 1 + (-12.4 + 7.21i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (20.0 + 5.37i)T + (458. + 264.5i)T^{2} \)
29 \( 1 - 15.8iT - 841T^{2} \)
31 \( 1 + (8 - 13.8i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (17.1 - 64.1i)T + (-1.18e3 - 684.5i)T^{2} \)
41 \( 1 + 27.9T + 1.68e3T^{2} \)
43 \( 1 + (-39.6 + 39.6i)T - 1.84e3iT^{2} \)
47 \( 1 + (18.6 - 69.4i)T + (-1.91e3 - 1.10e3i)T^{2} \)
53 \( 1 + (10.9 + 40.9i)T + (-2.43e3 + 1.40e3i)T^{2} \)
59 \( 1 + (55.8 + 32.2i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (29.5 + 51.1i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-53.5 + 14.3i)T + (3.88e3 - 2.24e3i)T^{2} \)
71 \( 1 + 36.3T + 5.04e3T^{2} \)
73 \( 1 + (-17.1 - 63.8i)T + (-4.61e3 + 2.66e3i)T^{2} \)
79 \( 1 + (-35.6 + 20.6i)T + (3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 + (9.12 - 9.12i)T - 6.88e3iT^{2} \)
89 \( 1 + (42.1 - 24.3i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (63.7 + 63.7i)T + 9.40e3iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23348619267203529656316594567, −13.72107805600083302100546001788, −12.42713066026873927546774841568, −11.17706095552423433688680668143, −9.718980437988453329421945142102, −8.568813757014022683560833467011, −7.14046707587119366902327529667, −6.26892697657306487656914490794, −4.79932166277065310412927456234, −1.72104592906587766781228842942, 2.04742508486996127144459820720, 4.37327180362109069719018696304, 5.41807094129309623284154270673, 7.55698888888795034959258547836, 9.168835925990677561861756122743, 10.02703586460510369447354420912, 10.85576958668356754369023114462, 12.09605353999749198079920329151, 13.30749151670037891899117624814, 14.37558238200573244656256250578

Graph of the $Z$-function along the critical line