Properties

Label 666.2.bs.b.557.6
Level $666$
Weight $2$
Character 666.557
Analytic conductor $5.318$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [666,2,Mod(17,666)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("666.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(666, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([18, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 557.6
Character \(\chi\) \(=\) 666.557
Dual form 666.2.bs.b.611.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0871557 - 0.996195i) q^{2} +(-0.984808 - 0.173648i) q^{4} +(-0.700099 - 0.326462i) q^{5} +(4.53856 - 1.65190i) q^{7} +(-0.258819 + 0.965926i) q^{8} +(-0.386237 + 0.668982i) q^{10} +(2.42393 + 4.19837i) q^{11} +(-2.50551 - 3.57824i) q^{13} +(-1.25005 - 4.66526i) q^{14} +(0.939693 + 0.342020i) q^{16} +(-1.37892 + 1.96930i) q^{17} +(5.73695 - 0.501918i) q^{19} +(0.632774 + 0.443073i) q^{20} +(4.39365 - 2.04879i) q^{22} +(5.80632 - 1.55580i) q^{23} +(-2.83038 - 3.37311i) q^{25} +(-3.78299 + 2.18411i) q^{26} +(-4.75646 + 0.838692i) q^{28} +(-1.94369 - 0.520811i) q^{29} +(-2.21486 - 2.21486i) q^{31} +(0.422618 - 0.906308i) q^{32} +(1.84162 + 1.54530i) q^{34} +(-3.71672 - 0.325171i) q^{35} +(2.35421 + 5.60872i) q^{37} -5.75886i q^{38} +(0.496537 - 0.591749i) q^{40} +(1.55885 - 8.84070i) q^{41} +(5.76488 - 5.76488i) q^{43} +(-1.65806 - 4.55550i) q^{44} +(-1.04383 - 5.91983i) q^{46} +(-8.09588 - 4.67416i) q^{47} +(12.5074 - 10.4950i) q^{49} +(-3.60696 + 2.52562i) q^{50} +(1.84609 + 3.95896i) q^{52} +(-0.878899 + 2.41476i) q^{53} +(-0.326385 - 3.73059i) q^{55} +(0.420948 + 4.81146i) q^{56} +(-0.688233 + 1.89090i) q^{58} +(-3.50297 - 7.51215i) q^{59} +(-3.07615 + 2.15394i) q^{61} +(-2.39947 + 2.01339i) q^{62} +(-0.866025 - 0.500000i) q^{64} +(0.585948 + 3.32308i) q^{65} +(4.27780 + 11.7532i) q^{67} +(1.69993 - 1.69993i) q^{68} +(-0.647868 + 3.67424i) q^{70} +(-6.82252 + 8.13076i) q^{71} +5.96741i q^{73} +(5.79256 - 1.85642i) q^{74} +(-5.73695 - 0.501918i) q^{76} +(17.9364 + 15.0505i) q^{77} +(-5.34136 + 11.4546i) q^{79} +(-0.546222 - 0.546222i) q^{80} +(-8.67120 - 2.32344i) q^{82} +(7.54117 - 1.32971i) q^{83} +(1.60828 - 0.928540i) q^{85} +(-5.24050 - 6.24539i) q^{86} +(-4.68267 + 1.25472i) q^{88} +(8.54762 - 3.98582i) q^{89} +(-17.2823 - 12.1012i) q^{91} +(-5.98827 + 0.523906i) q^{92} +(-5.36197 + 7.65769i) q^{94} +(-4.18029 - 1.52150i) q^{95} +(-0.616938 - 2.30244i) q^{97} +(-9.36496 - 13.3745i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 12 q^{13} + 24 q^{19} + 12 q^{22} + 48 q^{31} + 72 q^{34} + 24 q^{37} + 72 q^{43} + 60 q^{46} + 12 q^{52} - 60 q^{55} + 12 q^{58} - 120 q^{61} + 36 q^{67} + 12 q^{70} - 24 q^{76} + 60 q^{79} + 96 q^{82}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0871557 0.996195i 0.0616284 0.704416i
\(3\) 0 0
\(4\) −0.984808 0.173648i −0.492404 0.0868241i
\(5\) −0.700099 0.326462i −0.313094 0.145998i 0.259719 0.965684i \(-0.416370\pi\)
−0.572813 + 0.819686i \(0.694148\pi\)
\(6\) 0 0
\(7\) 4.53856 1.65190i 1.71541 0.624360i 0.717988 0.696055i \(-0.245063\pi\)
0.997427 + 0.0716957i \(0.0228410\pi\)
\(8\) −0.258819 + 0.965926i −0.0915064 + 0.341506i
\(9\) 0 0
\(10\) −0.386237 + 0.668982i −0.122139 + 0.211551i
\(11\) 2.42393 + 4.19837i 0.730842 + 1.26586i 0.956524 + 0.291654i \(0.0942057\pi\)
−0.225682 + 0.974201i \(0.572461\pi\)
\(12\) 0 0
\(13\) −2.50551 3.57824i −0.694904 0.992425i −0.999206 0.0398497i \(-0.987312\pi\)
0.304302 0.952576i \(-0.401577\pi\)
\(14\) −1.25005 4.66526i −0.334091 1.24684i
\(15\) 0 0
\(16\) 0.939693 + 0.342020i 0.234923 + 0.0855050i
\(17\) −1.37892 + 1.96930i −0.334436 + 0.477624i −0.950786 0.309848i \(-0.899722\pi\)
0.616350 + 0.787472i \(0.288611\pi\)
\(18\) 0 0
\(19\) 5.73695 0.501918i 1.31615 0.115148i 0.592641 0.805467i \(-0.298085\pi\)
0.723505 + 0.690319i \(0.242530\pi\)
\(20\) 0.632774 + 0.443073i 0.141493 + 0.0990741i
\(21\) 0 0
\(22\) 4.39365 2.04879i 0.936729 0.436804i
\(23\) 5.80632 1.55580i 1.21070 0.324407i 0.403665 0.914907i \(-0.367736\pi\)
0.807037 + 0.590500i \(0.201070\pi\)
\(24\) 0 0
\(25\) −2.83038 3.37311i −0.566075 0.674622i
\(26\) −3.78299 + 2.18411i −0.741906 + 0.428340i
\(27\) 0 0
\(28\) −4.75646 + 0.838692i −0.898886 + 0.158498i
\(29\) −1.94369 0.520811i −0.360934 0.0967121i 0.0737944 0.997273i \(-0.476489\pi\)
−0.434729 + 0.900561i \(0.643156\pi\)
\(30\) 0 0
\(31\) −2.21486 2.21486i −0.397800 0.397800i 0.479656 0.877456i \(-0.340761\pi\)
−0.877456 + 0.479656i \(0.840761\pi\)
\(32\) 0.422618 0.906308i 0.0747091 0.160214i
\(33\) 0 0
\(34\) 1.84162 + 1.54530i 0.315836 + 0.265017i
\(35\) −3.71672 0.325171i −0.628241 0.0549640i
\(36\) 0 0
\(37\) 2.35421 + 5.60872i 0.387029 + 0.922067i
\(38\) 5.75886i 0.934211i
\(39\) 0 0
\(40\) 0.496537 0.591749i 0.0785094 0.0935638i
\(41\) 1.55885 8.84070i 0.243452 1.38069i −0.580608 0.814183i \(-0.697185\pi\)
0.824060 0.566502i \(-0.191704\pi\)
\(42\) 0 0
\(43\) 5.76488 5.76488i 0.879136 0.879136i −0.114309 0.993445i \(-0.536465\pi\)
0.993445 + 0.114309i \(0.0364654\pi\)
\(44\) −1.65806 4.55550i −0.249963 0.686767i
\(45\) 0 0
\(46\) −1.04383 5.91983i −0.153904 0.872831i
\(47\) −8.09588 4.67416i −1.18091 0.681796i −0.224681 0.974432i \(-0.572134\pi\)
−0.956224 + 0.292636i \(0.905467\pi\)
\(48\) 0 0
\(49\) 12.5074 10.4950i 1.78678 1.49928i
\(50\) −3.60696 + 2.52562i −0.510101 + 0.357177i
\(51\) 0 0
\(52\) 1.84609 + 3.95896i 0.256007 + 0.549008i
\(53\) −0.878899 + 2.41476i −0.120726 + 0.331692i −0.985305 0.170805i \(-0.945363\pi\)
0.864579 + 0.502497i \(0.167585\pi\)
\(54\) 0 0
\(55\) −0.326385 3.73059i −0.0440097 0.503033i
\(56\) 0.420948 + 4.81146i 0.0562515 + 0.642958i
\(57\) 0 0
\(58\) −0.688233 + 1.89090i −0.0903694 + 0.248288i
\(59\) −3.50297 7.51215i −0.456048 0.977999i −0.991093 0.133175i \(-0.957483\pi\)
0.535044 0.844824i \(-0.320295\pi\)
\(60\) 0 0
\(61\) −3.07615 + 2.15394i −0.393861 + 0.275784i −0.753685 0.657236i \(-0.771726\pi\)
0.359824 + 0.933020i \(0.382837\pi\)
\(62\) −2.39947 + 2.01339i −0.304733 + 0.255701i
\(63\) 0 0
\(64\) −0.866025 0.500000i −0.108253 0.0625000i
\(65\) 0.585948 + 3.32308i 0.0726779 + 0.412177i
\(66\) 0 0
\(67\) 4.27780 + 11.7532i 0.522616 + 1.43588i 0.867598 + 0.497267i \(0.165663\pi\)
−0.344981 + 0.938610i \(0.612115\pi\)
\(68\) 1.69993 1.69993i 0.206147 0.206147i
\(69\) 0 0
\(70\) −0.647868 + 3.67424i −0.0774350 + 0.439156i
\(71\) −6.82252 + 8.13076i −0.809684 + 0.964944i −0.999859 0.0168061i \(-0.994650\pi\)
0.190174 + 0.981750i \(0.439095\pi\)
\(72\) 0 0
\(73\) 5.96741i 0.698433i 0.937042 + 0.349217i \(0.113552\pi\)
−0.937042 + 0.349217i \(0.886448\pi\)
\(74\) 5.79256 1.85642i 0.673371 0.215804i
\(75\) 0 0
\(76\) −5.73695 0.501918i −0.658073 0.0575739i
\(77\) 17.9364 + 15.0505i 2.04405 + 1.71516i
\(78\) 0 0
\(79\) −5.34136 + 11.4546i −0.600950 + 1.28874i 0.336847 + 0.941559i \(0.390639\pi\)
−0.937798 + 0.347183i \(0.887138\pi\)
\(80\) −0.546222 0.546222i −0.0610694 0.0610694i
\(81\) 0 0
\(82\) −8.67120 2.32344i −0.957574 0.256581i
\(83\) 7.54117 1.32971i 0.827751 0.145955i 0.256307 0.966595i \(-0.417494\pi\)
0.571445 + 0.820641i \(0.306383\pi\)
\(84\) 0 0
\(85\) 1.60828 0.928540i 0.174442 0.100714i
\(86\) −5.24050 6.24539i −0.565098 0.673457i
\(87\) 0 0
\(88\) −4.68267 + 1.25472i −0.499174 + 0.133753i
\(89\) 8.54762 3.98582i 0.906046 0.422496i 0.0869894 0.996209i \(-0.472275\pi\)
0.819056 + 0.573713i \(0.194498\pi\)
\(90\) 0 0
\(91\) −17.2823 12.1012i −1.81168 1.26855i
\(92\) −5.98827 + 0.523906i −0.624321 + 0.0546210i
\(93\) 0 0
\(94\) −5.36197 + 7.65769i −0.553045 + 0.789831i
\(95\) −4.18029 1.52150i −0.428889 0.156103i
\(96\) 0 0
\(97\) −0.616938 2.30244i −0.0626406 0.233778i 0.927507 0.373806i \(-0.121947\pi\)
−0.990148 + 0.140028i \(0.955281\pi\)
\(98\) −9.36496 13.3745i −0.946004 1.35103i
\(99\) 0 0
\(100\) 2.20164 + 3.81336i 0.220164 + 0.381336i
\(101\) −7.59134 + 13.1486i −0.755367 + 1.30833i 0.189825 + 0.981818i \(0.439208\pi\)
−0.945192 + 0.326516i \(0.894125\pi\)
\(102\) 0 0
\(103\) −3.73836 + 13.9517i −0.368351 + 1.37471i 0.494470 + 0.869195i \(0.335362\pi\)
−0.862821 + 0.505510i \(0.831304\pi\)
\(104\) 4.10479 1.49402i 0.402508 0.146501i
\(105\) 0 0
\(106\) 2.32897 + 1.08601i 0.226209 + 0.105483i
\(107\) 10.0900 + 1.77915i 0.975442 + 0.171997i 0.638578 0.769557i \(-0.279523\pi\)
0.336863 + 0.941554i \(0.390634\pi\)
\(108\) 0 0
\(109\) 0.847015 9.68143i 0.0811293 0.927312i −0.841153 0.540797i \(-0.818123\pi\)
0.922283 0.386516i \(-0.126322\pi\)
\(110\) −3.74484 −0.357057
\(111\) 0 0
\(112\) 4.82983 0.456377
\(113\) 0.235893 2.69626i 0.0221909 0.253643i −0.976994 0.213268i \(-0.931589\pi\)
0.999185 0.0403750i \(-0.0128553\pi\)
\(114\) 0 0
\(115\) −4.57291 0.806328i −0.426426 0.0751905i
\(116\) 1.82372 + 0.850417i 0.169329 + 0.0789592i
\(117\) 0 0
\(118\) −7.78887 + 2.83492i −0.717024 + 0.260975i
\(119\) −3.00521 + 11.2156i −0.275487 + 1.02813i
\(120\) 0 0
\(121\) −6.25086 + 10.8268i −0.568260 + 0.984255i
\(122\) 1.87764 + 3.25217i 0.169994 + 0.294438i
\(123\) 0 0
\(124\) 1.79660 + 2.56582i 0.161340 + 0.230417i
\(125\) 1.88001 + 7.01629i 0.168153 + 0.627556i
\(126\) 0 0
\(127\) −9.30258 3.38586i −0.825470 0.300447i −0.105472 0.994422i \(-0.533635\pi\)
−0.719998 + 0.693976i \(0.755857\pi\)
\(128\) −0.573576 + 0.819152i −0.0506975 + 0.0724035i
\(129\) 0 0
\(130\) 3.36150 0.294093i 0.294823 0.0257937i
\(131\) 3.57335 + 2.50209i 0.312205 + 0.218609i 0.719168 0.694836i \(-0.244523\pi\)
−0.406963 + 0.913445i \(0.633412\pi\)
\(132\) 0 0
\(133\) 25.2084 11.7549i 2.18584 1.01928i
\(134\) 12.0813 3.23717i 1.04366 0.279648i
\(135\) 0 0
\(136\) −1.54530 1.84162i −0.132509 0.157918i
\(137\) −12.5405 + 7.24028i −1.07141 + 0.618579i −0.928567 0.371166i \(-0.878958\pi\)
−0.142844 + 0.989745i \(0.545625\pi\)
\(138\) 0 0
\(139\) 5.42951 0.957370i 0.460525 0.0812030i 0.0614278 0.998112i \(-0.480435\pi\)
0.399098 + 0.916908i \(0.369323\pi\)
\(140\) 3.60379 + 0.965634i 0.304576 + 0.0816109i
\(141\) 0 0
\(142\) 7.50520 + 7.50520i 0.629823 + 0.629823i
\(143\) 8.94959 19.1925i 0.748402 1.60495i
\(144\) 0 0
\(145\) 1.19075 + 0.999160i 0.0988866 + 0.0829757i
\(146\) 5.94471 + 0.520094i 0.491987 + 0.0430433i
\(147\) 0 0
\(148\) −1.34450 5.93231i −0.110517 0.487633i
\(149\) 10.9793i 0.899458i 0.893165 + 0.449729i \(0.148479\pi\)
−0.893165 + 0.449729i \(0.851521\pi\)
\(150\) 0 0
\(151\) −10.0789 + 12.0115i −0.820207 + 0.977484i −0.999981 0.00622350i \(-0.998019\pi\)
0.179774 + 0.983708i \(0.442463\pi\)
\(152\) −1.00002 + 5.67137i −0.0811120 + 0.460009i
\(153\) 0 0
\(154\) 16.5564 16.5564i 1.33416 1.33416i
\(155\) 0.827554 + 2.27369i 0.0664708 + 0.182627i
\(156\) 0 0
\(157\) 0.747096 + 4.23699i 0.0596247 + 0.338149i 0.999998 0.00199559i \(-0.000635218\pi\)
−0.940373 + 0.340144i \(0.889524\pi\)
\(158\) 10.9455 + 6.31937i 0.870775 + 0.502742i
\(159\) 0 0
\(160\) −0.591749 + 0.496537i −0.0467819 + 0.0392547i
\(161\) 23.7823 16.6526i 1.87431 1.31241i
\(162\) 0 0
\(163\) 4.95999 + 10.6367i 0.388496 + 0.833133i 0.999149 + 0.0412349i \(0.0131292\pi\)
−0.610653 + 0.791898i \(0.709093\pi\)
\(164\) −3.07034 + 8.43570i −0.239754 + 0.658717i
\(165\) 0 0
\(166\) −0.667396 7.62837i −0.0518000 0.592076i
\(167\) −1.73092 19.7845i −0.133942 1.53097i −0.704495 0.709709i \(-0.748827\pi\)
0.570553 0.821261i \(-0.306729\pi\)
\(168\) 0 0
\(169\) −2.07996 + 5.71463i −0.159997 + 0.439587i
\(170\) −0.784836 1.68309i −0.0601941 0.129087i
\(171\) 0 0
\(172\) −6.67836 + 4.67624i −0.509220 + 0.356560i
\(173\) −15.4542 + 12.9676i −1.17496 + 0.985909i −0.174961 + 0.984575i \(0.555980\pi\)
−0.999999 + 0.00133371i \(0.999575\pi\)
\(174\) 0 0
\(175\) −18.4179 10.6336i −1.39226 0.803822i
\(176\) 0.841822 + 4.77421i 0.0634547 + 0.359869i
\(177\) 0 0
\(178\) −3.22568 8.86248i −0.241775 0.664271i
\(179\) −0.932166 + 0.932166i −0.0696733 + 0.0696733i −0.741085 0.671411i \(-0.765688\pi\)
0.671411 + 0.741085i \(0.265688\pi\)
\(180\) 0 0
\(181\) −0.426058 + 2.41629i −0.0316686 + 0.179602i −0.996539 0.0831239i \(-0.973510\pi\)
0.964871 + 0.262726i \(0.0846214\pi\)
\(182\) −13.5614 + 16.1619i −1.00524 + 1.19800i
\(183\) 0 0
\(184\) 6.01115i 0.443148i
\(185\) 0.182853 4.69522i 0.0134436 0.345199i
\(186\) 0 0
\(187\) −11.6102 1.01576i −0.849024 0.0742799i
\(188\) 7.16122 + 6.00898i 0.522286 + 0.438250i
\(189\) 0 0
\(190\) −1.88005 + 4.03178i −0.136393 + 0.292496i
\(191\) −14.1268 14.1268i −1.02218 1.02218i −0.999748 0.0224327i \(-0.992859\pi\)
−0.0224327 0.999748i \(-0.507141\pi\)
\(192\) 0 0
\(193\) 7.67390 + 2.05621i 0.552379 + 0.148010i 0.524203 0.851593i \(-0.324363\pi\)
0.0281763 + 0.999603i \(0.491030\pi\)
\(194\) −2.34745 + 0.413919i −0.168537 + 0.0297177i
\(195\) 0 0
\(196\) −14.1399 + 8.16365i −1.00999 + 0.583118i
\(197\) 10.0495 + 11.9765i 0.715997 + 0.853292i 0.994235 0.107220i \(-0.0341950\pi\)
−0.278239 + 0.960512i \(0.589751\pi\)
\(198\) 0 0
\(199\) −9.50441 + 2.54670i −0.673750 + 0.180531i −0.579443 0.815012i \(-0.696730\pi\)
−0.0943064 + 0.995543i \(0.530063\pi\)
\(200\) 3.99073 1.86091i 0.282187 0.131586i
\(201\) 0 0
\(202\) 12.4369 + 8.70843i 0.875059 + 0.612723i
\(203\) −9.68189 + 0.847056i −0.679535 + 0.0594516i
\(204\) 0 0
\(205\) −3.97750 + 5.68046i −0.277801 + 0.396741i
\(206\) 13.5728 + 4.94010i 0.945663 + 0.344193i
\(207\) 0 0
\(208\) −1.13058 4.21938i −0.0783916 0.292561i
\(209\) 16.0132 + 22.8692i 1.10766 + 1.58190i
\(210\) 0 0
\(211\) −5.69398 9.86226i −0.391990 0.678946i 0.600722 0.799458i \(-0.294880\pi\)
−0.992712 + 0.120512i \(0.961546\pi\)
\(212\) 1.28486 2.22545i 0.0882449 0.152845i
\(213\) 0 0
\(214\) 2.65178 9.89659i 0.181272 0.676517i
\(215\) −5.91800 + 2.15398i −0.403604 + 0.146900i
\(216\) 0 0
\(217\) −13.7110 6.39354i −0.930763 0.434022i
\(218\) −9.57076 1.68758i −0.648214 0.114298i
\(219\) 0 0
\(220\) −0.326385 + 3.73059i −0.0220048 + 0.251517i
\(221\) 10.5015 0.706408
\(222\) 0 0
\(223\) 22.7165 1.52121 0.760604 0.649216i \(-0.224903\pi\)
0.760604 + 0.649216i \(0.224903\pi\)
\(224\) 0.420948 4.81146i 0.0281258 0.321479i
\(225\) 0 0
\(226\) −2.66544 0.469990i −0.177303 0.0312633i
\(227\) 12.4715 + 5.81557i 0.827765 + 0.385993i 0.789859 0.613288i \(-0.210154\pi\)
0.0379059 + 0.999281i \(0.487931\pi\)
\(228\) 0 0
\(229\) −4.84646 + 1.76397i −0.320263 + 0.116566i −0.497149 0.867665i \(-0.665620\pi\)
0.176886 + 0.984231i \(0.443398\pi\)
\(230\) −1.20181 + 4.48523i −0.0792453 + 0.295748i
\(231\) 0 0
\(232\) 1.00613 1.74267i 0.0660556 0.114412i
\(233\) 2.78253 + 4.81949i 0.182290 + 0.315735i 0.942660 0.333755i \(-0.108316\pi\)
−0.760370 + 0.649490i \(0.774982\pi\)
\(234\) 0 0
\(235\) 4.14199 + 5.91537i 0.270193 + 0.385876i
\(236\) 2.14528 + 8.00631i 0.139646 + 0.521166i
\(237\) 0 0
\(238\) 10.9110 + 3.97128i 0.707255 + 0.257420i
\(239\) 10.6846 15.2592i 0.691132 0.987038i −0.308230 0.951312i \(-0.599737\pi\)
0.999362 0.0357263i \(-0.0113745\pi\)
\(240\) 0 0
\(241\) −2.27697 + 0.199209i −0.146673 + 0.0128322i −0.160256 0.987076i \(-0.551232\pi\)
0.0135829 + 0.999908i \(0.495676\pi\)
\(242\) 10.2408 + 7.17069i 0.658304 + 0.460950i
\(243\) 0 0
\(244\) 3.40345 1.58705i 0.217883 0.101601i
\(245\) −12.1827 + 3.26433i −0.778322 + 0.208551i
\(246\) 0 0
\(247\) −16.1700 19.2706i −1.02887 1.22616i
\(248\) 2.71264 1.56614i 0.172253 0.0994501i
\(249\) 0 0
\(250\) 7.15344 1.26134i 0.452423 0.0797744i
\(251\) −21.7854 5.83737i −1.37508 0.368452i −0.505749 0.862681i \(-0.668784\pi\)
−0.869332 + 0.494229i \(0.835450\pi\)
\(252\) 0 0
\(253\) 20.6059 + 20.6059i 1.29548 + 1.29548i
\(254\) −4.18375 + 8.97208i −0.262512 + 0.562958i
\(255\) 0 0
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) −13.5323 1.18392i −0.844120 0.0738510i −0.343113 0.939294i \(-0.611481\pi\)
−0.501007 + 0.865443i \(0.667037\pi\)
\(258\) 0 0
\(259\) 19.9498 + 21.5666i 1.23962 + 1.34008i
\(260\) 3.37434i 0.209268i
\(261\) 0 0
\(262\) 2.80401 3.34168i 0.173232 0.206450i
\(263\) −1.43378 + 8.13140i −0.0884110 + 0.501403i 0.908157 + 0.418629i \(0.137489\pi\)
−0.996568 + 0.0827745i \(0.973622\pi\)
\(264\) 0 0
\(265\) 1.40364 1.40364i 0.0862250 0.0862250i
\(266\) −9.51307 26.1369i −0.583284 1.60256i
\(267\) 0 0
\(268\) −2.17190 12.3174i −0.132670 0.752407i
\(269\) −4.64654 2.68268i −0.283304 0.163566i 0.351614 0.936145i \(-0.385633\pi\)
−0.634918 + 0.772579i \(0.718966\pi\)
\(270\) 0 0
\(271\) −7.74885 + 6.50205i −0.470709 + 0.394972i −0.847053 0.531508i \(-0.821625\pi\)
0.376344 + 0.926480i \(0.377181\pi\)
\(272\) −1.96930 + 1.37892i −0.119406 + 0.0836091i
\(273\) 0 0
\(274\) 6.11975 + 13.1239i 0.369708 + 0.792841i
\(275\) 7.30093 20.0591i 0.440263 1.20961i
\(276\) 0 0
\(277\) −2.00383 22.9039i −0.120398 1.37616i −0.780581 0.625055i \(-0.785077\pi\)
0.660182 0.751105i \(-0.270479\pi\)
\(278\) −0.480513 5.49229i −0.0288193 0.329406i
\(279\) 0 0
\(280\) 1.27605 3.50592i 0.0762586 0.209519i
\(281\) −9.14766 19.6172i −0.545703 1.17026i −0.964960 0.262397i \(-0.915487\pi\)
0.419257 0.907868i \(-0.362291\pi\)
\(282\) 0 0
\(283\) −10.9550 + 7.67077i −0.651206 + 0.455980i −0.851921 0.523670i \(-0.824562\pi\)
0.200715 + 0.979650i \(0.435674\pi\)
\(284\) 8.13076 6.82252i 0.482472 0.404842i
\(285\) 0 0
\(286\) −18.3394 10.5883i −1.08443 0.626097i
\(287\) −7.52901 42.6991i −0.444423 2.52045i
\(288\) 0 0
\(289\) 3.83762 + 10.5438i 0.225743 + 0.620223i
\(290\) 1.09914 1.09914i 0.0645436 0.0645436i
\(291\) 0 0
\(292\) 1.03623 5.87676i 0.0606408 0.343911i
\(293\) −0.512469 + 0.610737i −0.0299388 + 0.0356796i −0.780806 0.624773i \(-0.785191\pi\)
0.750867 + 0.660453i \(0.229636\pi\)
\(294\) 0 0
\(295\) 6.40284i 0.372788i
\(296\) −6.02692 + 0.822346i −0.350308 + 0.0477979i
\(297\) 0 0
\(298\) 10.9375 + 0.956908i 0.633593 + 0.0554322i
\(299\) −20.1148 16.8783i −1.16327 0.976100i
\(300\) 0 0
\(301\) 16.6412 35.6873i 0.959186 2.05698i
\(302\) 11.0874 + 11.0874i 0.638008 + 0.638008i
\(303\) 0 0
\(304\) 5.56263 + 1.49050i 0.319039 + 0.0854862i
\(305\) 2.85679 0.503729i 0.163579 0.0288435i
\(306\) 0 0
\(307\) 2.15411 1.24367i 0.122941 0.0709802i −0.437268 0.899331i \(-0.644054\pi\)
0.560210 + 0.828351i \(0.310721\pi\)
\(308\) −15.0505 17.9364i −0.857579 1.02202i
\(309\) 0 0
\(310\) 2.33716 0.626240i 0.132742 0.0355681i
\(311\) −11.9333 + 5.56461i −0.676678 + 0.315540i −0.730404 0.683016i \(-0.760668\pi\)
0.0537257 + 0.998556i \(0.482890\pi\)
\(312\) 0 0
\(313\) −0.847475 0.593409i −0.0479021 0.0335414i 0.549380 0.835573i \(-0.314864\pi\)
−0.597282 + 0.802031i \(0.703753\pi\)
\(314\) 4.28598 0.374975i 0.241872 0.0211610i
\(315\) 0 0
\(316\) 7.24928 10.3530i 0.407804 0.582404i
\(317\) 13.9900 + 5.09193i 0.785755 + 0.285991i 0.703570 0.710626i \(-0.251588\pi\)
0.0821847 + 0.996617i \(0.473810\pi\)
\(318\) 0 0
\(319\) −2.52482 9.42274i −0.141363 0.527572i
\(320\) 0.443073 + 0.632774i 0.0247685 + 0.0353731i
\(321\) 0 0
\(322\) −14.5164 25.1432i −0.808969 1.40118i
\(323\) −6.92234 + 11.9899i −0.385170 + 0.667133i
\(324\) 0 0
\(325\) −4.97826 + 18.5791i −0.276144 + 1.03058i
\(326\) 11.0285 4.01406i 0.610815 0.222318i
\(327\) 0 0
\(328\) 8.13600 + 3.79388i 0.449235 + 0.209482i
\(329\) −44.4649 7.84036i −2.45143 0.432253i
\(330\) 0 0
\(331\) −0.839060 + 9.59050i −0.0461189 + 0.527142i 0.937635 + 0.347621i \(0.113010\pi\)
−0.983754 + 0.179521i \(0.942545\pi\)
\(332\) −7.65751 −0.420260
\(333\) 0 0
\(334\) −19.8601 −1.08669
\(335\) 0.842071 9.62491i 0.0460072 0.525865i
\(336\) 0 0
\(337\) −15.0598 2.65545i −0.820361 0.144652i −0.252311 0.967646i \(-0.581191\pi\)
−0.568049 + 0.822994i \(0.692302\pi\)
\(338\) 5.51161 + 2.57011i 0.299792 + 0.139795i
\(339\) 0 0
\(340\) −1.74508 + 0.635158i −0.0946404 + 0.0344463i
\(341\) 3.93013 14.6674i 0.212828 0.794287i
\(342\) 0 0
\(343\) 22.5247 39.0139i 1.21622 2.10655i
\(344\) 4.07639 + 7.06051i 0.219784 + 0.380677i
\(345\) 0 0
\(346\) 11.5713 + 16.5256i 0.622079 + 0.888421i
\(347\) 4.90451 + 18.3039i 0.263288 + 0.982604i 0.963290 + 0.268463i \(0.0865158\pi\)
−0.700002 + 0.714141i \(0.746817\pi\)
\(348\) 0 0
\(349\) 7.67936 + 2.79506i 0.411067 + 0.149616i 0.539272 0.842132i \(-0.318699\pi\)
−0.128205 + 0.991748i \(0.540922\pi\)
\(350\) −12.1983 + 17.4210i −0.652028 + 0.931192i
\(351\) 0 0
\(352\) 4.82941 0.422519i 0.257408 0.0225203i
\(353\) 6.62053 + 4.63574i 0.352375 + 0.246736i 0.736340 0.676612i \(-0.236553\pi\)
−0.383964 + 0.923348i \(0.625441\pi\)
\(354\) 0 0
\(355\) 7.43083 3.46505i 0.394387 0.183906i
\(356\) −9.10989 + 2.44099i −0.482823 + 0.129372i
\(357\) 0 0
\(358\) 0.847375 + 1.00986i 0.0447852 + 0.0533729i
\(359\) −1.93796 + 1.11888i −0.102282 + 0.0590523i −0.550268 0.834988i \(-0.685475\pi\)
0.447987 + 0.894040i \(0.352141\pi\)
\(360\) 0 0
\(361\) 13.9493 2.45964i 0.734174 0.129455i
\(362\) 2.36996 + 0.635030i 0.124563 + 0.0333764i
\(363\) 0 0
\(364\) 14.9184 + 14.9184i 0.781937 + 0.781937i
\(365\) 1.94813 4.17778i 0.101970 0.218675i
\(366\) 0 0
\(367\) 9.56558 + 8.02648i 0.499319 + 0.418979i 0.857352 0.514730i \(-0.172108\pi\)
−0.358033 + 0.933709i \(0.616552\pi\)
\(368\) 5.98827 + 0.523906i 0.312160 + 0.0273105i
\(369\) 0 0
\(370\) −4.66141 0.591372i −0.242335 0.0307440i
\(371\) 12.4114i 0.644366i
\(372\) 0 0
\(373\) −4.81976 + 5.74396i −0.249557 + 0.297411i −0.876251 0.481855i \(-0.839963\pi\)
0.626694 + 0.779266i \(0.284408\pi\)
\(374\) −2.02380 + 11.4775i −0.104648 + 0.593488i
\(375\) 0 0
\(376\) 6.61026 6.61026i 0.340898 0.340898i
\(377\) 3.00635 + 8.25989i 0.154835 + 0.425406i
\(378\) 0 0
\(379\) −1.34229 7.61251i −0.0689489 0.391029i −0.999679 0.0253226i \(-0.991939\pi\)
0.930730 0.365706i \(-0.119172\pi\)
\(380\) 3.85258 + 2.22429i 0.197633 + 0.114103i
\(381\) 0 0
\(382\) −15.3043 + 12.8418i −0.783036 + 0.657045i
\(383\) 4.87023 3.41017i 0.248857 0.174252i −0.442492 0.896772i \(-0.645906\pi\)
0.691349 + 0.722521i \(0.257017\pi\)
\(384\) 0 0
\(385\) −7.64389 16.3924i −0.389569 0.835432i
\(386\) 2.71721 7.46548i 0.138303 0.379983i
\(387\) 0 0
\(388\) 0.207750 + 2.37460i 0.0105469 + 0.120552i
\(389\) −2.91280 33.2934i −0.147685 1.68804i −0.603022 0.797725i \(-0.706037\pi\)
0.455337 0.890319i \(-0.349519\pi\)
\(390\) 0 0
\(391\) −4.94260 + 13.5797i −0.249958 + 0.686754i
\(392\) 6.90022 + 14.7976i 0.348514 + 0.747390i
\(393\) 0 0
\(394\) 12.8068 8.96743i 0.645198 0.451773i
\(395\) 7.47897 6.27560i 0.376308 0.315760i
\(396\) 0 0
\(397\) −6.33061 3.65498i −0.317724 0.183438i 0.332654 0.943049i \(-0.392056\pi\)
−0.650378 + 0.759611i \(0.725389\pi\)
\(398\) 1.70864 + 9.69020i 0.0856466 + 0.485726i
\(399\) 0 0
\(400\) −1.50601 4.13773i −0.0753006 0.206887i
\(401\) 2.85652 2.85652i 0.142648 0.142648i −0.632177 0.774824i \(-0.717838\pi\)
0.774824 + 0.632177i \(0.217838\pi\)
\(402\) 0 0
\(403\) −2.37594 + 13.4746i −0.118354 + 0.671220i
\(404\) 9.75924 11.6306i 0.485541 0.578645i
\(405\) 0 0
\(406\) 9.71887i 0.482340i
\(407\) −17.8410 + 23.4790i −0.884347 + 1.16381i
\(408\) 0 0
\(409\) 1.09538 + 0.0958335i 0.0541632 + 0.00473866i 0.114205 0.993457i \(-0.463568\pi\)
−0.0600420 + 0.998196i \(0.519123\pi\)
\(410\) 5.31218 + 4.45745i 0.262350 + 0.220138i
\(411\) 0 0
\(412\) 6.10425 13.0906i 0.300735 0.644928i
\(413\) −28.3078 28.3078i −1.39293 1.39293i
\(414\) 0 0
\(415\) −5.71367 1.53097i −0.280473 0.0751525i
\(416\) −4.30186 + 0.758534i −0.210916 + 0.0371902i
\(417\) 0 0
\(418\) 24.1778 13.9591i 1.18258 0.682761i
\(419\) −7.77299 9.26348i −0.379735 0.452551i 0.541995 0.840381i \(-0.317669\pi\)
−0.921731 + 0.387831i \(0.873225\pi\)
\(420\) 0 0
\(421\) −9.46844 + 2.53706i −0.461463 + 0.123649i −0.482058 0.876139i \(-0.660111\pi\)
0.0205949 + 0.999788i \(0.493444\pi\)
\(422\) −10.3210 + 4.81276i −0.502418 + 0.234281i
\(423\) 0 0
\(424\) −2.10500 1.47394i −0.102228 0.0715807i
\(425\) 10.5455 0.922612i 0.511532 0.0447533i
\(426\) 0 0
\(427\) −10.4032 + 14.8573i −0.503446 + 0.718995i
\(428\) −9.62781 3.50424i −0.465378 0.169384i
\(429\) 0 0
\(430\) 1.62999 + 6.08321i 0.0786052 + 0.293359i
\(431\) −6.26981 8.95421i −0.302006 0.431309i 0.639252 0.768997i \(-0.279244\pi\)
−0.941258 + 0.337688i \(0.890355\pi\)
\(432\) 0 0
\(433\) −19.2059 33.2656i −0.922978 1.59864i −0.794782 0.606895i \(-0.792415\pi\)
−0.128196 0.991749i \(-0.540919\pi\)
\(434\) −7.56420 + 13.1016i −0.363093 + 0.628896i
\(435\) 0 0
\(436\) −2.51531 + 9.38726i −0.120461 + 0.449568i
\(437\) 32.5297 11.8398i 1.55611 0.566376i
\(438\) 0 0
\(439\) 15.4648 + 7.21136i 0.738095 + 0.344179i 0.755041 0.655677i \(-0.227617\pi\)
−0.0169465 + 0.999856i \(0.505395\pi\)
\(440\) 3.68795 + 0.650285i 0.175816 + 0.0310011i
\(441\) 0 0
\(442\) 0.915266 10.4615i 0.0435348 0.497605i
\(443\) −24.2781 −1.15349 −0.576744 0.816925i \(-0.695677\pi\)
−0.576744 + 0.816925i \(0.695677\pi\)
\(444\) 0 0
\(445\) −7.28540 −0.345361
\(446\) 1.97987 22.6300i 0.0937497 1.07156i
\(447\) 0 0
\(448\) −4.75646 0.838692i −0.224722 0.0396245i
\(449\) −16.2885 7.59547i −0.768704 0.358452i −0.00161930 0.999999i \(-0.500515\pi\)
−0.767084 + 0.641546i \(0.778293\pi\)
\(450\) 0 0
\(451\) 40.8951 14.8846i 1.92567 0.700888i
\(452\) −0.700510 + 2.61434i −0.0329492 + 0.122968i
\(453\) 0 0
\(454\) 6.88041 11.9172i 0.322914 0.559303i
\(455\) 8.14875 + 14.1141i 0.382019 + 0.661677i
\(456\) 0 0
\(457\) −0.280815 0.401046i −0.0131360 0.0187601i 0.812530 0.582919i \(-0.198089\pi\)
−0.825666 + 0.564159i \(0.809201\pi\)
\(458\) 1.33486 + 4.98176i 0.0623739 + 0.232782i
\(459\) 0 0
\(460\) 4.36342 + 1.58816i 0.203446 + 0.0740481i
\(461\) 14.1082 20.1486i 0.657084 0.938413i −0.342916 0.939366i \(-0.611415\pi\)
1.00000 0.000953260i \(0.000303432\pi\)
\(462\) 0 0
\(463\) −27.4934 + 2.40536i −1.27773 + 0.111787i −0.705737 0.708474i \(-0.749384\pi\)
−0.571990 + 0.820261i \(0.693828\pi\)
\(464\) −1.64835 1.15418i −0.0765225 0.0535816i
\(465\) 0 0
\(466\) 5.04367 2.35190i 0.233643 0.108950i
\(467\) −35.7621 + 9.58242i −1.65487 + 0.443422i −0.960971 0.276649i \(-0.910776\pi\)
−0.693901 + 0.720071i \(0.744109\pi\)
\(468\) 0 0
\(469\) 38.8301 + 46.2759i 1.79301 + 2.13682i
\(470\) 6.25386 3.61067i 0.288469 0.166548i
\(471\) 0 0
\(472\) 8.16282 1.43932i 0.375724 0.0662503i
\(473\) 38.1767 + 10.2294i 1.75537 + 0.470350i
\(474\) 0 0
\(475\) −17.9307 17.9307i −0.822719 0.822719i
\(476\) 4.90712 10.5234i 0.224918 0.482337i
\(477\) 0 0
\(478\) −14.2699 11.9739i −0.652692 0.547674i
\(479\) 33.1595 + 2.90108i 1.51510 + 0.132554i 0.814148 0.580658i \(-0.197205\pi\)
0.700949 + 0.713212i \(0.252760\pi\)
\(480\) 0 0
\(481\) 14.1708 22.4766i 0.646135 1.02485i
\(482\) 2.28567i 0.104109i
\(483\) 0 0
\(484\) 8.03595 9.57687i 0.365270 0.435312i
\(485\) −0.319742 + 1.81335i −0.0145187 + 0.0823398i
\(486\) 0 0
\(487\) −23.4650 + 23.4650i −1.06330 + 1.06330i −0.0654434 + 0.997856i \(0.520846\pi\)
−0.997856 + 0.0654434i \(0.979154\pi\)
\(488\) −1.28438 3.52881i −0.0581413 0.159742i
\(489\) 0 0
\(490\) 2.19012 + 12.4208i 0.0989397 + 0.561115i
\(491\) 19.3042 + 11.1453i 0.871186 + 0.502979i 0.867742 0.497015i \(-0.165571\pi\)
0.00344362 + 0.999994i \(0.498904\pi\)
\(492\) 0 0
\(493\) 3.70582 3.10955i 0.166902 0.140047i
\(494\) −20.6066 + 14.4289i −0.927134 + 0.649187i
\(495\) 0 0
\(496\) −1.32376 2.83881i −0.0594386 0.127466i
\(497\) −17.5332 + 48.1721i −0.786472 + 2.16081i
\(498\) 0 0
\(499\) −2.93219 33.5151i −0.131263 1.50034i −0.721106 0.692825i \(-0.756366\pi\)
0.589843 0.807518i \(-0.299190\pi\)
\(500\) −0.633081 7.23615i −0.0283123 0.323611i
\(501\) 0 0
\(502\) −7.71388 + 21.1937i −0.344287 + 0.945922i
\(503\) 10.6967 + 22.9391i 0.476941 + 1.02280i 0.986710 + 0.162492i \(0.0519530\pi\)
−0.509769 + 0.860311i \(0.670269\pi\)
\(504\) 0 0
\(505\) 9.60721 6.72704i 0.427515 0.299349i
\(506\) 22.3234 18.7316i 0.992398 0.832721i
\(507\) 0 0
\(508\) 8.57330 + 4.94980i 0.380379 + 0.219612i
\(509\) −0.447421 2.53745i −0.0198316 0.112470i 0.973285 0.229600i \(-0.0737418\pi\)
−0.993117 + 0.117130i \(0.962631\pi\)
\(510\) 0 0
\(511\) 9.85758 + 27.0835i 0.436074 + 1.19810i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) −2.35883 + 13.3776i −0.104044 + 0.590061i
\(515\) 7.17193 8.54717i 0.316033 0.376633i
\(516\) 0 0
\(517\) 45.3193i 1.99314i
\(518\) 23.2233 17.9942i 1.02037 0.790619i
\(519\) 0 0
\(520\) −3.36150 0.294093i −0.147412 0.0128968i
\(521\) 26.2417 + 22.0194i 1.14967 + 0.964687i 0.999712 0.0240057i \(-0.00764199\pi\)
0.149957 + 0.988692i \(0.452086\pi\)
\(522\) 0 0
\(523\) 9.22759 19.7886i 0.403494 0.865296i −0.594626 0.804003i \(-0.702700\pi\)
0.998120 0.0612933i \(-0.0195225\pi\)
\(524\) −3.08458 3.08458i −0.134751 0.134751i
\(525\) 0 0
\(526\) 7.97549 + 2.13703i 0.347748 + 0.0931788i
\(527\) 7.41581 1.30761i 0.323038 0.0569603i
\(528\) 0 0
\(529\) 11.3743 6.56696i 0.494535 0.285520i
\(530\) −1.27597 1.52064i −0.0554244 0.0660522i
\(531\) 0 0
\(532\) −26.8666 + 7.19889i −1.16482 + 0.312111i
\(533\) −35.5399 + 16.5725i −1.53940 + 0.717835i
\(534\) 0 0
\(535\) −6.48321 4.53959i −0.280294 0.196264i
\(536\) −12.4599 + 1.09010i −0.538184 + 0.0470850i
\(537\) 0 0
\(538\) −3.07744 + 4.39505i −0.132678 + 0.189484i
\(539\) 74.3790 + 27.0717i 3.20373 + 1.16606i
\(540\) 0 0
\(541\) 10.9911 + 41.0192i 0.472543 + 1.76355i 0.630584 + 0.776121i \(0.282815\pi\)
−0.158042 + 0.987432i \(0.550518\pi\)
\(542\) 5.80195 + 8.28605i 0.249215 + 0.355916i
\(543\) 0 0
\(544\) 1.20203 + 2.08198i 0.0515368 + 0.0892643i
\(545\) −3.75361 + 6.50144i −0.160787 + 0.278491i
\(546\) 0 0
\(547\) −7.71351 + 28.7872i −0.329806 + 1.23085i 0.579586 + 0.814911i \(0.303214\pi\)
−0.909392 + 0.415941i \(0.863452\pi\)
\(548\) 13.6073 4.95265i 0.581274 0.211567i
\(549\) 0 0
\(550\) −19.3465 9.02142i −0.824937 0.384675i
\(551\) −11.4123 2.01229i −0.486179 0.0857264i
\(552\) 0 0
\(553\) −5.32025 + 60.8107i −0.226240 + 2.58594i
\(554\) −22.9914 −0.976809
\(555\) 0 0
\(556\) −5.51327 −0.233815
\(557\) −1.09335 + 12.4971i −0.0463269 + 0.529519i 0.937204 + 0.348781i \(0.113404\pi\)
−0.983531 + 0.180738i \(0.942151\pi\)
\(558\) 0 0
\(559\) −35.0721 6.18416i −1.48339 0.261562i
\(560\) −3.38136 1.57676i −0.142889 0.0666301i
\(561\) 0 0
\(562\) −20.3398 + 7.40309i −0.857984 + 0.312281i
\(563\) −1.11046 + 4.14429i −0.0468003 + 0.174661i −0.985370 0.170428i \(-0.945485\pi\)
0.938570 + 0.345090i \(0.112151\pi\)
\(564\) 0 0
\(565\) −1.04537 + 1.81064i −0.0439793 + 0.0761743i
\(566\) 6.68679 + 11.5819i 0.281067 + 0.486822i
\(567\) 0 0
\(568\) −6.08792 8.69445i −0.255443 0.364811i
\(569\) 6.35699 + 23.7246i 0.266499 + 0.994588i 0.961326 + 0.275411i \(0.0888141\pi\)
−0.694827 + 0.719176i \(0.744519\pi\)
\(570\) 0 0
\(571\) 30.7894 + 11.2064i 1.28850 + 0.468974i 0.893233 0.449594i \(-0.148431\pi\)
0.395263 + 0.918568i \(0.370654\pi\)
\(572\) −12.1464 + 17.3468i −0.507865 + 0.725306i
\(573\) 0 0
\(574\) −43.1928 + 3.77888i −1.80283 + 0.157728i
\(575\) −21.6820 15.1819i −0.904201 0.633128i
\(576\) 0 0
\(577\) 0.500001 0.233154i 0.0208153 0.00970633i −0.412183 0.911101i \(-0.635233\pi\)
0.432998 + 0.901395i \(0.357456\pi\)
\(578\) 10.8381 2.90407i 0.450807 0.120793i
\(579\) 0 0
\(580\) −0.999160 1.19075i −0.0414879 0.0494433i
\(581\) 32.0295 18.4923i 1.32881 0.767188i
\(582\) 0 0
\(583\) −12.2684 + 2.16325i −0.508106 + 0.0895928i
\(584\) −5.76408 1.54448i −0.238519 0.0639111i
\(585\) 0 0
\(586\) 0.563748 + 0.563748i 0.0232882 + 0.0232882i
\(587\) −4.63066 + 9.93049i −0.191128 + 0.409875i −0.978397 0.206734i \(-0.933716\pi\)
0.787269 + 0.616609i \(0.211494\pi\)
\(588\) 0 0
\(589\) −13.8182 11.5948i −0.569369 0.477757i
\(590\) 6.37847 + 0.558044i 0.262598 + 0.0229743i
\(591\) 0 0
\(592\) 0.293936 + 6.07566i 0.0120807 + 0.249708i
\(593\) 33.2747i 1.36643i 0.730219 + 0.683213i \(0.239418\pi\)
−0.730219 + 0.683213i \(0.760582\pi\)
\(594\) 0 0
\(595\) 5.76541 6.87095i 0.236359 0.281681i
\(596\) 1.90653 10.8125i 0.0780946 0.442897i
\(597\) 0 0
\(598\) −18.5672 + 18.5672i −0.759271 + 0.759271i
\(599\) −12.2743 33.7235i −0.501516 1.37790i −0.889795 0.456361i \(-0.849153\pi\)
0.388279 0.921542i \(-0.373070\pi\)
\(600\) 0 0
\(601\) −1.99181 11.2961i −0.0812475 0.460777i −0.998103 0.0615592i \(-0.980393\pi\)
0.916856 0.399218i \(-0.130718\pi\)
\(602\) −34.1011 19.6883i −1.38986 0.802434i
\(603\) 0 0
\(604\) 12.0115 10.0789i 0.488742 0.410103i
\(605\) 7.91076 5.53917i 0.321618 0.225199i
\(606\) 0 0
\(607\) −15.2512 32.7063i −0.619027 1.32751i −0.926623 0.375991i \(-0.877302\pi\)
0.307596 0.951517i \(-0.400475\pi\)
\(608\) 1.96965 5.41156i 0.0798797 0.219468i
\(609\) 0 0
\(610\) −0.252827 2.88982i −0.0102367 0.117005i
\(611\) 3.55905 + 40.6801i 0.143984 + 1.64574i
\(612\) 0 0
\(613\) −12.6318 + 34.7056i −0.510194 + 1.40175i 0.370841 + 0.928696i \(0.379070\pi\)
−0.881035 + 0.473051i \(0.843153\pi\)
\(614\) −1.05120 2.25430i −0.0424229 0.0909763i
\(615\) 0 0
\(616\) −19.1799 + 13.4299i −0.772781 + 0.541107i
\(617\) −6.66131 + 5.58951i −0.268174 + 0.225025i −0.766951 0.641705i \(-0.778227\pi\)
0.498777 + 0.866730i \(0.333783\pi\)
\(618\) 0 0
\(619\) 18.9610 + 10.9471i 0.762105 + 0.440002i 0.830051 0.557687i \(-0.188311\pi\)
−0.0679458 + 0.997689i \(0.521644\pi\)
\(620\) −0.420160 2.38285i −0.0168740 0.0956975i
\(621\) 0 0
\(622\) 4.50338 + 12.3729i 0.180569 + 0.496109i
\(623\) 32.2097 32.2097i 1.29045 1.29045i
\(624\) 0 0
\(625\) −2.84876 + 16.1561i −0.113950 + 0.646244i
\(626\) −0.665013 + 0.792531i −0.0265793 + 0.0316759i
\(627\) 0 0
\(628\) 4.30235i 0.171683i
\(629\) −14.2915 3.09782i −0.569839 0.123518i
\(630\) 0 0
\(631\) 28.1732 + 2.46483i 1.12156 + 0.0981235i 0.632813 0.774304i \(-0.281900\pi\)
0.488743 + 0.872428i \(0.337456\pi\)
\(632\) −9.68184 8.12402i −0.385123 0.323156i
\(633\) 0 0
\(634\) 6.29186 13.4929i 0.249882 0.535873i
\(635\) 5.40737 + 5.40737i 0.214585 + 0.214585i
\(636\) 0 0
\(637\) −68.8911 18.4593i −2.72957 0.731385i
\(638\) −9.60694 + 1.69396i −0.380342 + 0.0670646i
\(639\) 0 0
\(640\) 0.668982 0.386237i 0.0264438 0.0152674i
\(641\) −0.265891 0.316877i −0.0105021 0.0125159i 0.760768 0.649024i \(-0.224823\pi\)
−0.771270 + 0.636508i \(0.780378\pi\)
\(642\) 0 0
\(643\) 18.6696 5.00251i 0.736258 0.197280i 0.128844 0.991665i \(-0.458873\pi\)
0.607414 + 0.794385i \(0.292207\pi\)
\(644\) −26.3127 + 12.2698i −1.03687 + 0.483498i
\(645\) 0 0
\(646\) 11.3409 + 7.94099i 0.446202 + 0.312434i
\(647\) 23.9628 2.09647i 0.942075 0.0824209i 0.394240 0.919007i \(-0.371008\pi\)
0.547835 + 0.836587i \(0.315452\pi\)
\(648\) 0 0
\(649\) 23.0478 32.9157i 0.904706 1.29205i
\(650\) 18.0745 + 6.57860i 0.708942 + 0.258034i
\(651\) 0 0
\(652\) −3.03759 11.3364i −0.118961 0.443969i
\(653\) 5.00399 + 7.14644i 0.195821 + 0.279662i 0.905040 0.425327i \(-0.139841\pi\)
−0.709218 + 0.704989i \(0.750952\pi\)
\(654\) 0 0
\(655\) −1.68487 2.91827i −0.0658332 0.114026i
\(656\) 4.48854 7.77438i 0.175248 0.303539i
\(657\) 0 0
\(658\) −11.6859 + 43.6123i −0.455563 + 1.70019i
\(659\) 0.814198 0.296344i 0.0317167 0.0115439i −0.326113 0.945331i \(-0.605739\pi\)
0.357830 + 0.933787i \(0.383517\pi\)
\(660\) 0 0
\(661\) −22.2246 10.3635i −0.864435 0.403093i −0.0607539 0.998153i \(-0.519350\pi\)
−0.803681 + 0.595060i \(0.797128\pi\)
\(662\) 9.48088 + 1.67173i 0.368485 + 0.0649738i
\(663\) 0 0
\(664\) −0.667396 + 7.62837i −0.0259000 + 0.296038i
\(665\) −21.4859 −0.833186
\(666\) 0 0
\(667\) −12.0960 −0.468358
\(668\) −1.73092 + 19.7845i −0.0669712 + 0.765485i
\(669\) 0 0
\(670\) −9.51489 1.67773i −0.367592 0.0648165i
\(671\) −16.4994 7.69380i −0.636953 0.297016i
\(672\) 0 0
\(673\) 14.6601 5.33583i 0.565104 0.205681i −0.0436404 0.999047i \(-0.513896\pi\)
0.608745 + 0.793366i \(0.291673\pi\)
\(674\) −3.95790 + 14.7711i −0.152453 + 0.568961i
\(675\) 0 0
\(676\) 3.04069 5.26664i 0.116950 0.202563i
\(677\) 10.6755 + 18.4905i 0.410293 + 0.710648i 0.994922 0.100653i \(-0.0320931\pi\)
−0.584629 + 0.811301i \(0.698760\pi\)
\(678\) 0 0
\(679\) −6.60342 9.43066i −0.253416 0.361916i
\(680\) 0.480647 + 1.79380i 0.0184320 + 0.0687891i
\(681\) 0 0
\(682\) −14.2691 5.19353i −0.546392 0.198870i
\(683\) 25.2240 36.0237i 0.965171 1.37841i 0.0398570 0.999205i \(-0.487310\pi\)
0.925314 0.379202i \(-0.123801\pi\)
\(684\) 0 0
\(685\) 11.1433 0.974912i 0.425764 0.0372495i
\(686\) −36.9023 25.8392i −1.40894 0.986547i
\(687\) 0 0
\(688\) 7.38892 3.44551i 0.281700 0.131359i
\(689\) 10.8427 2.90528i 0.413073 0.110683i
\(690\) 0 0
\(691\) 19.2621 + 22.9556i 0.732763 + 0.873273i 0.995804 0.0915114i \(-0.0291698\pi\)
−0.263041 + 0.964785i \(0.584725\pi\)
\(692\) 17.4712 10.0870i 0.664156 0.383451i
\(693\) 0 0
\(694\) 18.6617 3.29056i 0.708388 0.124908i
\(695\) −4.11374 1.10227i −0.156043 0.0418116i
\(696\) 0 0
\(697\) 15.2604 + 15.2604i 0.578030 + 0.578030i
\(698\) 3.45372 7.40653i 0.130725 0.280341i
\(699\) 0 0
\(700\) 16.2916 + 13.6703i 0.615763 + 0.516687i
\(701\) −30.5339 2.67137i −1.15325 0.100896i −0.505554 0.862795i \(-0.668712\pi\)
−0.647697 + 0.761898i \(0.724268\pi\)
\(702\) 0 0
\(703\) 16.3211 + 30.9953i 0.615561 + 1.16901i
\(704\) 4.84786i 0.182710i
\(705\) 0 0
\(706\) 5.19512 6.19130i 0.195521 0.233013i
\(707\) −12.7336 + 72.2158i −0.478896 + 2.71596i
\(708\) 0 0
\(709\) 5.44016 5.44016i 0.204309 0.204309i −0.597534 0.801843i \(-0.703853\pi\)
0.801843 + 0.597534i \(0.203853\pi\)
\(710\) −2.80423 7.70455i −0.105241 0.289147i
\(711\) 0 0
\(712\) 1.63772 + 9.28797i 0.0613761 + 0.348081i
\(713\) −16.3061 9.41431i −0.610667 0.352569i
\(714\) 0 0
\(715\) −12.5312 + 10.5149i −0.468640 + 0.393236i
\(716\) 1.07987 0.756135i 0.0403567 0.0282581i
\(717\) 0 0
\(718\) 0.945719 + 2.02810i 0.0352939 + 0.0756881i
\(719\) 15.7141 43.1743i 0.586039 1.61013i −0.191640 0.981465i \(-0.561380\pi\)
0.777678 0.628663i \(-0.216397\pi\)
\(720\) 0 0
\(721\) 6.08013 + 69.4962i 0.226436 + 2.58817i
\(722\) −1.23452 14.1106i −0.0459440 0.525142i
\(723\) 0 0
\(724\) 0.839170 2.30560i 0.0311875 0.0856869i
\(725\) 3.74463 + 8.03038i 0.139072 + 0.298241i
\(726\) 0 0
\(727\) −25.5264 + 17.8738i −0.946724 + 0.662903i −0.941475 0.337083i \(-0.890560\pi\)
−0.00524871 + 0.999986i \(0.501671\pi\)
\(728\) 16.1619 13.5614i 0.598998 0.502619i
\(729\) 0 0
\(730\) −3.99209 2.30484i −0.147754 0.0853058i
\(731\) 3.40347 + 19.3020i 0.125882 + 0.713912i
\(732\) 0 0
\(733\) −16.8426 46.2746i −0.622094 1.70919i −0.701802 0.712372i \(-0.747621\pi\)
0.0797078 0.996818i \(-0.474601\pi\)
\(734\) 8.82963 8.82963i 0.325908 0.325908i
\(735\) 0 0
\(736\) 1.04383 5.91983i 0.0384759 0.218208i
\(737\) −38.9750 + 46.4486i −1.43566 + 1.71096i
\(738\) 0 0
\(739\) 10.8537i 0.399261i −0.979871 0.199630i \(-0.936026\pi\)
0.979871 0.199630i \(-0.0639741\pi\)
\(740\) −0.995391 + 4.59213i −0.0365913 + 0.168810i
\(741\) 0 0
\(742\) 12.3641 + 1.08172i 0.453902 + 0.0397113i
\(743\) −30.9949 26.0078i −1.13709 0.954134i −0.137753 0.990467i \(-0.543988\pi\)
−0.999340 + 0.0363330i \(0.988432\pi\)
\(744\) 0 0
\(745\) 3.58432 7.68659i 0.131319 0.281615i
\(746\) 5.30203 + 5.30203i 0.194121 + 0.194121i
\(747\) 0 0
\(748\) 11.2575 + 3.01643i 0.411613 + 0.110291i
\(749\) 48.7333 8.59299i 1.78067 0.313981i
\(750\) 0 0
\(751\) −22.2775 + 12.8619i −0.812918 + 0.469338i −0.847968 0.530047i \(-0.822174\pi\)
0.0350504 + 0.999386i \(0.488841\pi\)
\(752\) −6.00898 7.16122i −0.219125 0.261143i
\(753\) 0 0
\(754\) 8.49048 2.27502i 0.309205 0.0828513i
\(755\) 10.9775 5.11890i 0.399513 0.186296i
\(756\) 0 0
\(757\) 9.37743 + 6.56615i 0.340828 + 0.238651i 0.731441 0.681904i \(-0.238848\pi\)
−0.390613 + 0.920555i \(0.627737\pi\)
\(758\) −7.70053 + 0.673709i −0.279696 + 0.0244702i
\(759\) 0 0
\(760\) 2.55160 3.64406i 0.0925561 0.132184i
\(761\) 4.34813 + 1.58259i 0.157620 + 0.0573689i 0.419625 0.907698i \(-0.362162\pi\)
−0.262005 + 0.965066i \(0.584384\pi\)
\(762\) 0 0
\(763\) −12.1485 45.3389i −0.439806 1.64138i
\(764\) 11.4591 + 16.3653i 0.414576 + 0.592076i
\(765\) 0 0
\(766\) −2.97273 5.14891i −0.107409 0.186038i
\(767\) −18.1035 + 31.3563i −0.653681 + 1.13221i
\(768\) 0 0
\(769\) −10.0271 + 37.4216i −0.361586 + 1.34946i 0.510405 + 0.859934i \(0.329495\pi\)
−0.871991 + 0.489522i \(0.837171\pi\)
\(770\) −16.9962 + 6.18611i −0.612501 + 0.222932i
\(771\) 0 0
\(772\) −7.20025 3.35753i −0.259143 0.120840i
\(773\) 34.1798 + 6.02682i 1.22936 + 0.216770i 0.750351 0.661039i \(-0.229884\pi\)
0.479011 + 0.877809i \(0.340995\pi\)
\(774\) 0 0
\(775\) −1.20208 + 13.7398i −0.0431800 + 0.493550i
\(776\) 2.38367 0.0855686
\(777\) 0 0
\(778\) −33.4206 −1.19819
\(779\) 4.50576 51.5011i 0.161436 1.84522i
\(780\) 0 0
\(781\) −50.6732 8.93506i −1.81323 0.319722i
\(782\) 13.0972 + 6.10734i 0.468356 + 0.218398i
\(783\) 0 0
\(784\) 15.3426 5.58427i 0.547952 0.199438i
\(785\) 0.860174 3.21021i 0.0307009 0.114577i
\(786\) 0 0
\(787\) 21.0515 36.4622i 0.750403 1.29974i −0.197224 0.980358i \(-0.563193\pi\)
0.947627 0.319378i \(-0.103474\pi\)
\(788\) −7.81712 13.5396i −0.278473 0.482330i
\(789\) 0 0
\(790\) −5.59988 7.99746i −0.199235 0.284537i
\(791\) −3.38335 12.6268i −0.120298 0.448958i
\(792\) 0 0
\(793\) 15.4147 + 5.61048i 0.547390 + 0.199234i
\(794\) −4.19282 + 5.98797i −0.148798 + 0.212505i
\(795\) 0 0
\(796\) 9.80225 0.857586i 0.347431 0.0303963i
\(797\) −23.3259 16.3329i −0.826245 0.578543i 0.0821676 0.996619i \(-0.473816\pi\)
−0.908412 + 0.418076i \(0.862705\pi\)
\(798\) 0 0
\(799\) 20.3683 9.49791i 0.720580 0.336012i
\(800\) −4.25325 + 1.13965i −0.150375 + 0.0402928i
\(801\) 0 0
\(802\) −2.59668 3.09461i −0.0916921 0.109274i
\(803\) −25.0534 + 14.4646i −0.884115 + 0.510444i
\(804\) 0 0
\(805\) −22.0864 + 3.89443i −0.778444 + 0.137261i
\(806\) 13.2163 + 3.54129i 0.465524 + 0.124737i
\(807\) 0 0
\(808\) −10.7358 10.7358i −0.377683 0.377683i
\(809\) 20.6278 44.2364i 0.725234 1.55527i −0.102869 0.994695i \(-0.532802\pi\)
0.828103 0.560575i \(-0.189420\pi\)
\(810\) 0 0
\(811\) −25.8419 21.6839i −0.907432 0.761426i 0.0641963 0.997937i \(-0.479552\pi\)
−0.971629 + 0.236511i \(0.923996\pi\)
\(812\) 9.68189 + 0.847056i 0.339768 + 0.0297258i
\(813\) 0 0
\(814\) 21.8347 + 19.8195i 0.765305 + 0.694672i
\(815\) 9.06601i 0.317569i
\(816\) 0 0
\(817\) 30.1793 35.9663i 1.05584 1.25830i
\(818\) 0.190938 1.08286i 0.00667598 0.0378614i
\(819\) 0 0
\(820\) 4.90348 4.90348i 0.171237 0.171237i
\(821\) −7.11745 19.5550i −0.248401 0.682475i −0.999745 0.0225653i \(-0.992817\pi\)
0.751345 0.659910i \(-0.229406\pi\)
\(822\) 0 0
\(823\) 4.18380 + 23.7275i 0.145838 + 0.827090i 0.966690 + 0.255949i \(0.0823879\pi\)
−0.820852 + 0.571141i \(0.806501\pi\)
\(824\) −12.5088 7.22195i −0.435764 0.251588i
\(825\) 0 0
\(826\) −30.6673 + 25.7329i −1.06705 + 0.895361i
\(827\) −19.5528 + 13.6910i −0.679916 + 0.476083i −0.861807 0.507236i \(-0.830667\pi\)
0.181891 + 0.983319i \(0.441778\pi\)
\(828\) 0 0
\(829\) −5.89904 12.6505i −0.204882 0.439371i 0.776838 0.629700i \(-0.216822\pi\)
−0.981720 + 0.190329i \(0.939045\pi\)
\(830\) −2.02313 + 5.55850i −0.0702238 + 0.192938i
\(831\) 0 0
\(832\) 0.380716 + 4.35160i 0.0131989 + 0.150865i
\(833\) 3.42103 + 39.1026i 0.118532 + 1.35482i
\(834\) 0 0
\(835\) −5.24706 + 14.4162i −0.181582 + 0.498893i
\(836\) −11.7987 25.3024i −0.408067 0.875103i
\(837\) 0 0
\(838\) −9.90569 + 6.93604i −0.342187 + 0.239602i
\(839\) 12.3861 10.3932i 0.427616 0.358813i −0.403435 0.915008i \(-0.632184\pi\)
0.831051 + 0.556196i \(0.187739\pi\)
\(840\) 0 0
\(841\) −21.6080 12.4754i −0.745105 0.430187i
\(842\) 1.70218 + 9.65353i 0.0586609 + 0.332682i
\(843\) 0 0
\(844\) 3.89491 + 10.7012i 0.134068 + 0.368350i
\(845\) 3.32178 3.32178i 0.114273 0.114273i
\(846\) 0 0
\(847\) −10.4851 + 59.4639i −0.360272 + 2.04320i
\(848\) −1.65179 + 1.96853i −0.0567227 + 0.0675995i
\(849\) 0 0
\(850\) 10.5858i 0.363090i
\(851\) 22.3953 + 28.9034i 0.767702 + 0.990794i
\(852\) 0 0
\(853\) 5.37273 + 0.470053i 0.183959 + 0.0160943i 0.178763 0.983892i \(-0.442791\pi\)
0.00519595 + 0.999987i \(0.498346\pi\)
\(854\) 13.8941 + 11.6585i 0.475445 + 0.398946i
\(855\) 0 0
\(856\) −4.33002 + 9.28576i −0.147997 + 0.317381i
\(857\) 25.0440 + 25.0440i 0.855486 + 0.855486i 0.990802 0.135317i \(-0.0432051\pi\)
−0.135317 + 0.990802i \(0.543205\pi\)
\(858\) 0 0
\(859\) −6.97412 1.86871i −0.237954 0.0637596i 0.137871 0.990450i \(-0.455974\pi\)
−0.375825 + 0.926691i \(0.622641\pi\)
\(860\) 6.20213 1.09360i 0.211491 0.0372915i
\(861\) 0 0
\(862\) −9.46659 + 5.46554i −0.322433 + 0.186157i
\(863\) 9.61826 + 11.4626i 0.327409 + 0.390191i 0.904489 0.426496i \(-0.140252\pi\)
−0.577080 + 0.816688i \(0.695808\pi\)
\(864\) 0 0
\(865\) 15.0529 4.03341i 0.511814 0.137140i
\(866\) −34.8130 + 16.2335i −1.18299 + 0.551638i
\(867\) 0 0
\(868\) 12.3925 + 8.67730i 0.420628 + 0.294527i
\(869\) −61.0376 + 5.34010i −2.07056 + 0.181151i
\(870\) 0 0
\(871\) 31.3375 44.7546i 1.06183 1.51645i
\(872\) 9.13232 + 3.32389i 0.309259 + 0.112561i
\(873\) 0 0
\(874\) −8.95964 33.4378i −0.303064 1.13105i
\(875\) 20.1227 + 28.7382i 0.680273 + 0.971530i
\(876\) 0 0
\(877\) 27.2652 + 47.2246i 0.920679 + 1.59466i 0.798367 + 0.602171i \(0.205697\pi\)
0.122311 + 0.992492i \(0.460969\pi\)
\(878\) 8.53176 14.7774i 0.287933 0.498715i
\(879\) 0 0
\(880\) 0.969237 3.61724i 0.0326730 0.121937i
\(881\) 40.1846 14.6260i 1.35385 0.492763i 0.439706 0.898142i \(-0.355083\pi\)
0.914149 + 0.405379i \(0.132860\pi\)
\(882\) 0 0
\(883\) −23.2956 10.8629i −0.783958 0.365566i −0.0109323 0.999940i \(-0.503480\pi\)
−0.773026 + 0.634375i \(0.781258\pi\)
\(884\) −10.3420 1.82357i −0.347838 0.0613332i
\(885\) 0 0
\(886\) −2.11598 + 24.1857i −0.0710877 + 0.812536i
\(887\) −16.5964 −0.557251 −0.278626 0.960400i \(-0.589879\pi\)
−0.278626 + 0.960400i \(0.589879\pi\)
\(888\) 0 0
\(889\) −47.8134 −1.60361
\(890\) −0.634964 + 7.25767i −0.0212840 + 0.243278i
\(891\) 0 0
\(892\) −22.3714 3.94468i −0.749049 0.132078i
\(893\) −48.7917 22.7519i −1.63275 0.761364i
\(894\) 0 0
\(895\) 0.956925 0.348292i 0.0319865 0.0116421i
\(896\) −1.25005 + 4.66526i −0.0417613 + 0.155855i
\(897\) 0 0
\(898\) −8.98621 + 15.5646i −0.299874 + 0.519396i
\(899\) 3.15148 + 5.45852i 0.105108 + 0.182052i
\(900\) 0 0
\(901\) −3.54344 5.06056i −0.118049 0.168592i
\(902\) −11.2637 42.0367i −0.375040 1.39967i
\(903\) 0 0
\(904\) 2.54334 + 0.925699i 0.0845901 + 0.0307883i
\(905\) 1.08711 1.55255i 0.0361367 0.0516086i
\(906\) 0 0
\(907\) 19.6568 1.71975i 0.652693 0.0571032i 0.244000 0.969775i \(-0.421540\pi\)
0.408693 + 0.912672i \(0.365985\pi\)
\(908\) −11.2722 7.89288i −0.374081 0.261935i
\(909\) 0 0
\(910\) 14.7706 6.88762i 0.489639 0.228323i
\(911\) −0.192021 + 0.0514519i −0.00636194 + 0.00170468i −0.261999 0.965068i \(-0.584382\pi\)
0.255637 + 0.966773i \(0.417715\pi\)
\(912\) 0 0
\(913\) 23.8619 + 28.4375i 0.789713 + 0.941144i
\(914\) −0.423994 + 0.244793i −0.0140245 + 0.00809704i
\(915\) 0 0
\(916\) 5.07914 0.895590i 0.167820 0.0295911i
\(917\) 20.3511 + 5.45306i 0.672052 + 0.180076i
\(918\) 0 0
\(919\) 26.8943 + 26.8943i 0.887163 + 0.887163i 0.994250 0.107087i \(-0.0341524\pi\)
−0.107087 + 0.994250i \(0.534152\pi\)
\(920\) 1.96241 4.20840i 0.0646987 0.138747i
\(921\) 0 0
\(922\) −18.8423 15.8106i −0.620538 0.520693i
\(923\) 46.1877 + 4.04090i 1.52029 + 0.133008i
\(924\) 0 0
\(925\) 12.2555 23.8158i 0.402960 0.783058i
\(926\) 27.5984i 0.906941i
\(927\) 0 0
\(928\) −1.29345 + 1.54148i −0.0424597 + 0.0506015i
\(929\) 9.15549 51.9234i 0.300382 1.70355i −0.344101 0.938933i \(-0.611816\pi\)
0.644483 0.764619i \(-0.277073\pi\)
\(930\) 0 0
\(931\) 66.4869 66.4869i 2.17902 2.17902i
\(932\) −1.90337 5.22945i −0.0623468 0.171296i
\(933\) 0 0
\(934\) 6.42909 + 36.4612i 0.210366 + 1.19305i
\(935\) 7.79670 + 4.50143i 0.254979 + 0.147212i
\(936\) 0 0
\(937\) 38.8883 32.6312i 1.27043 1.06601i 0.275937 0.961176i \(-0.411012\pi\)
0.994489 0.104838i \(-0.0334325\pi\)
\(938\) 49.4841 34.6491i 1.61571 1.13133i
\(939\) 0 0
\(940\) −3.05187 6.54475i −0.0995409 0.213466i
\(941\) 4.76293 13.0861i 0.155267 0.426593i −0.837531 0.546389i \(-0.816002\pi\)
0.992799 + 0.119796i \(0.0382241\pi\)
\(942\) 0 0
\(943\) −4.70315 53.7572i −0.153156 1.75058i
\(944\) −0.722411 8.25720i −0.0235125 0.268749i
\(945\) 0 0
\(946\) 13.5178 37.1399i 0.439502 1.20752i
\(947\) 15.2185 + 32.6362i 0.494536 + 1.06053i 0.982258 + 0.187536i \(0.0600501\pi\)
−0.487722 + 0.872999i \(0.662172\pi\)
\(948\) 0 0
\(949\) 21.3528 14.9514i 0.693143 0.485344i
\(950\) −19.4253 + 16.2997i −0.630239 + 0.528834i
\(951\) 0 0
\(952\) −10.0556 5.80562i −0.325905 0.188161i
\(953\) −2.27881 12.9238i −0.0738181 0.418643i −0.999214 0.0396412i \(-0.987379\pi\)
0.925396 0.379002i \(-0.123733\pi\)
\(954\) 0 0
\(955\) 5.27831 + 14.5020i 0.170802 + 0.469275i
\(956\) −13.1721 + 13.1721i −0.426015 + 0.426015i
\(957\) 0 0
\(958\) 5.78008 32.7805i 0.186746 1.05909i
\(959\) −44.9558 + 53.5762i −1.45170 + 1.73007i
\(960\) 0 0
\(961\) 21.1888i 0.683510i
\(962\) −21.1560 16.0759i −0.682097 0.518307i
\(963\) 0 0
\(964\) 2.27697 + 0.199209i 0.0733363 + 0.00641610i
\(965\) −4.70121 3.94479i −0.151337 0.126987i
\(966\) 0 0
\(967\) 13.0979 28.0886i 0.421201 0.903269i −0.575160 0.818041i \(-0.695060\pi\)
0.996361 0.0852283i \(-0.0271620\pi\)
\(968\) −8.84005 8.84005i −0.284130 0.284130i
\(969\) 0 0
\(970\) 1.77858 + 0.476569i 0.0571067 + 0.0153017i
\(971\) −39.1543 + 6.90396i −1.25652 + 0.221558i −0.761983 0.647598i \(-0.775774\pi\)
−0.494538 + 0.869156i \(0.664663\pi\)
\(972\) 0 0
\(973\) 23.0607 13.3141i 0.739292 0.426830i
\(974\) 21.3306 + 25.4208i 0.683476 + 0.814535i
\(975\) 0 0
\(976\) −3.62733 + 0.971940i −0.116108 + 0.0311110i
\(977\) −14.5955 + 6.80601i −0.466952 + 0.217743i −0.641830 0.766847i \(-0.721825\pi\)
0.174878 + 0.984590i \(0.444047\pi\)
\(978\) 0 0
\(979\) 37.4527 + 26.2247i 1.19700 + 0.838145i
\(980\) 12.5644 1.09924i 0.401356 0.0351141i
\(981\) 0 0
\(982\) 12.7853 18.2594i 0.407996 0.582679i
\(983\) −37.0776 13.4951i −1.18259 0.430428i −0.325475 0.945551i \(-0.605524\pi\)
−0.857116 + 0.515123i \(0.827746\pi\)
\(984\) 0 0
\(985\) −3.12577 11.6655i −0.0995952 0.371695i
\(986\) −2.77473 3.96273i −0.0883655 0.126199i
\(987\) 0 0
\(988\) 12.5780 + 21.7857i 0.400160 + 0.693097i
\(989\) 24.5038 42.4418i 0.779174 1.34957i
\(990\) 0 0
\(991\) −3.83494 + 14.3122i −0.121821 + 0.454641i −0.999706 0.0242291i \(-0.992287\pi\)
0.877886 + 0.478870i \(0.158954\pi\)
\(992\) −2.94338 + 1.07130i −0.0934525 + 0.0340139i
\(993\) 0 0
\(994\) 46.4607 + 21.6650i 1.47364 + 0.687171i
\(995\) 7.48543 + 1.31988i 0.237304 + 0.0418431i
\(996\) 0 0
\(997\) −1.31057 + 14.9799i −0.0415061 + 0.474417i 0.946788 + 0.321857i \(0.104307\pi\)
−0.988294 + 0.152559i \(0.951248\pi\)
\(998\) −33.6431 −1.06496
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 666.2.bs.b.557.6 yes 96
3.2 odd 2 inner 666.2.bs.b.557.3 96
37.19 odd 36 inner 666.2.bs.b.611.3 yes 96
111.56 even 36 inner 666.2.bs.b.611.6 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
666.2.bs.b.557.3 96 3.2 odd 2 inner
666.2.bs.b.557.6 yes 96 1.1 even 1 trivial
666.2.bs.b.611.3 yes 96 37.19 odd 36 inner
666.2.bs.b.611.6 yes 96 111.56 even 36 inner