Defining parameters
Level: | \( N \) | \(=\) | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 666.bs (of order \(36\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 111 \) |
Character field: | \(\Q(\zeta_{36})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(228\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(666, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1464 | 168 | 1296 |
Cusp forms | 1272 | 168 | 1104 |
Eisenstein series | 192 | 0 | 192 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(666, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
666.2.bs.a | $72$ | $5.318$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
666.2.bs.b | $96$ | $5.318$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(666, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(666, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(333, [\chi])\)\(^{\oplus 2}\)