gp: [N,k,chi] = [666,2,Mod(17,666)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("666.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(666, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([18, 7]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [96]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{96} - 108 T_{5}^{92} + 5904 T_{5}^{90} + 21546 T_{5}^{88} - 906444 T_{5}^{86} + \cdots + 86\!\cdots\!81 \)
T5^96 - 108*T5^92 + 5904*T5^90 + 21546*T5^88 - 906444*T5^86 - 11888208*T5^84 + 518678964*T5^82 - 2868475761*T5^80 - 183722290344*T5^78 + 3141789513336*T5^76 - 21599808048252*T5^74 - 480928511268*T5^72 + 2627865631430820*T5^70 - 35811205048673496*T5^68 + 514367175223428696*T5^66 - 3911640662229558129*T5^64 + 9988326382395314556*T5^62 + 208773761208826631400*T5^60 - 5233235051629545826392*T5^58 + 52567190157106246505148*T5^56 - 689691172388957275426776*T5^54 + 6301850535623969158553190*T5^52 - 46472653169009470724878872*T5^50 + 404513567068794405673345929*T5^48 - 1899515878476726152880450288*T5^46 + 17269738839602841542708836062*T5^44 - 55154793404511040249064763936*T5^42 + 238598860467673383456823051932*T5^40 - 1169628816311657338814827669116*T5^38 + 4286004052930602963519010366206*T5^36 - 14168600896203319167357647811084*T5^34 + 24323663822485346481312510829524*T5^32 - 20344473759887310585109474047744*T5^30 + 56134145218941830016354443291946*T5^28 - 60593455084574941149102084640476*T5^26 - 55318869958208846967168611466690*T5^24 - 34908176886345641089295052112512*T5^22 + 28674358643451800587960309879440*T5^20 + 179719620543912811732633595311020*T5^18 + 59037075588177532899458670245769*T5^16 - 14048282516526186003421401991392*T5^14 + 30887837442553136313655073068974*T5^12 + 17204618319701491351068609357612*T5^10 + 5621333896231682674465388314251*T5^8 - 42226301294268967291748725404*T5^6 + 203236224623948687603584590*T5^4 + 277446982597350802137108*T5^2 + 86613805716200053281
acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\).