Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [666,2,Mod(17,666)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(666, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([18, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("666.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 666 = 2 \cdot 3^{2} \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 666.bs (of order \(36\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.31803677462\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −0.573576 | + | 0.819152i | 0 | −0.342020 | − | 0.939693i | −3.25585 | + | 0.284850i | 0 | −0.761384 | − | 0.638877i | 0.965926 | + | 0.258819i | 0 | 1.63414 | − | 2.83042i | ||||||
17.2 | −0.573576 | + | 0.819152i | 0 | −0.342020 | − | 0.939693i | −1.60885 | + | 0.140756i | 0 | 1.53998 | + | 1.29220i | 0.965926 | + | 0.258819i | 0 | 0.807495 | − | 1.39862i | ||||||
17.3 | −0.573576 | + | 0.819152i | 0 | −0.342020 | − | 0.939693i | 1.31281 | − | 0.114856i | 0 | −1.79970 | − | 1.51012i | 0.965926 | + | 0.258819i | 0 | −0.658910 | + | 1.14127i | ||||||
17.4 | −0.573576 | + | 0.819152i | 0 | −0.342020 | − | 0.939693i | 3.55188 | − | 0.310750i | 0 | 3.11397 | + | 2.61293i | 0.965926 | + | 0.258819i | 0 | −1.78273 | + | 3.08777i | ||||||
17.5 | 0.573576 | − | 0.819152i | 0 | −0.342020 | − | 0.939693i | −3.55188 | + | 0.310750i | 0 | 3.11397 | + | 2.61293i | −0.965926 | − | 0.258819i | 0 | −1.78273 | + | 3.08777i | ||||||
17.6 | 0.573576 | − | 0.819152i | 0 | −0.342020 | − | 0.939693i | −1.31281 | + | 0.114856i | 0 | −1.79970 | − | 1.51012i | −0.965926 | − | 0.258819i | 0 | −0.658910 | + | 1.14127i | ||||||
17.7 | 0.573576 | − | 0.819152i | 0 | −0.342020 | − | 0.939693i | 1.60885 | − | 0.140756i | 0 | 1.53998 | + | 1.29220i | −0.965926 | − | 0.258819i | 0 | 0.807495 | − | 1.39862i | ||||||
17.8 | 0.573576 | − | 0.819152i | 0 | −0.342020 | − | 0.939693i | 3.25585 | − | 0.284850i | 0 | −0.761384 | − | 0.638877i | −0.965926 | − | 0.258819i | 0 | 1.63414 | − | 2.83042i | ||||||
35.1 | −0.996195 | − | 0.0871557i | 0 | 0.984808 | + | 0.173648i | −1.84075 | + | 3.94750i | 0 | −3.67900 | + | 1.33905i | −0.965926 | − | 0.258819i | 0 | 2.17779 | − | 3.77205i | ||||||
35.2 | −0.996195 | − | 0.0871557i | 0 | 0.984808 | + | 0.173648i | −0.252650 | + | 0.541810i | 0 | 1.12060 | − | 0.407863i | −0.965926 | − | 0.258819i | 0 | 0.298910 | − | 0.517728i | ||||||
35.3 | −0.996195 | − | 0.0871557i | 0 | 0.984808 | + | 0.173648i | 0.898297 | − | 1.92640i | 0 | −4.07456 | + | 1.48302i | −0.965926 | − | 0.258819i | 0 | −1.06278 | + | 1.84078i | ||||||
35.4 | −0.996195 | − | 0.0871557i | 0 | 0.984808 | + | 0.173648i | 1.19510 | − | 2.56290i | 0 | 4.06568 | − | 1.47979i | −0.965926 | − | 0.258819i | 0 | −1.41393 | + | 2.44899i | ||||||
35.5 | 0.996195 | + | 0.0871557i | 0 | 0.984808 | + | 0.173648i | −1.19510 | + | 2.56290i | 0 | 4.06568 | − | 1.47979i | 0.965926 | + | 0.258819i | 0 | −1.41393 | + | 2.44899i | ||||||
35.6 | 0.996195 | + | 0.0871557i | 0 | 0.984808 | + | 0.173648i | −0.898297 | + | 1.92640i | 0 | −4.07456 | + | 1.48302i | 0.965926 | + | 0.258819i | 0 | −1.06278 | + | 1.84078i | ||||||
35.7 | 0.996195 | + | 0.0871557i | 0 | 0.984808 | + | 0.173648i | 0.252650 | − | 0.541810i | 0 | 1.12060 | − | 0.407863i | 0.965926 | + | 0.258819i | 0 | 0.298910 | − | 0.517728i | ||||||
35.8 | 0.996195 | + | 0.0871557i | 0 | 0.984808 | + | 0.173648i | 1.84075 | − | 3.94750i | 0 | −3.67900 | + | 1.33905i | 0.965926 | + | 0.258819i | 0 | 2.17779 | − | 3.77205i | ||||||
89.1 | −0.906308 | + | 0.422618i | 0 | 0.642788 | − | 0.766044i | −3.46881 | + | 2.42889i | 0 | −0.619757 | + | 3.51482i | −0.258819 | + | 0.965926i | 0 | 2.11732 | − | 3.66730i | ||||||
89.2 | −0.906308 | + | 0.422618i | 0 | 0.642788 | − | 0.766044i | −1.52173 | + | 1.06553i | 0 | 0.800320 | − | 4.53884i | −0.258819 | + | 0.965926i | 0 | 0.928845 | − | 1.60881i | ||||||
89.3 | −0.906308 | + | 0.422618i | 0 | 0.642788 | − | 0.766044i | 2.38993 | − | 1.67345i | 0 | 0.280864 | − | 1.59286i | −0.258819 | + | 0.965926i | 0 | −1.45878 | + | 2.52669i | ||||||
89.4 | −0.906308 | + | 0.422618i | 0 | 0.642788 | − | 0.766044i | 2.60061 | − | 1.82097i | 0 | −0.588545 | + | 3.33781i | −0.258819 | + | 0.965926i | 0 | −1.58738 | + | 2.74942i | ||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
37.i | odd | 36 | 1 | inner |
111.q | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 666.2.bs.b | ✓ | 96 |
3.b | odd | 2 | 1 | inner | 666.2.bs.b | ✓ | 96 |
37.i | odd | 36 | 1 | inner | 666.2.bs.b | ✓ | 96 |
111.q | even | 36 | 1 | inner | 666.2.bs.b | ✓ | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
666.2.bs.b | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
666.2.bs.b | ✓ | 96 | 3.b | odd | 2 | 1 | inner |
666.2.bs.b | ✓ | 96 | 37.i | odd | 36 | 1 | inner |
666.2.bs.b | ✓ | 96 | 111.q | even | 36 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{96} - 108 T_{5}^{92} + 5904 T_{5}^{90} + 21546 T_{5}^{88} - 906444 T_{5}^{86} - 11888208 T_{5}^{84} + 518678964 T_{5}^{82} - 2868475761 T_{5}^{80} - 183722290344 T_{5}^{78} + \cdots + 86\!\cdots\!81 \)
acting on \(S_{2}^{\mathrm{new}}(666, [\chi])\).