Properties

Label 666.2.bs.b.557.3
Level $666$
Weight $2$
Character 666.557
Analytic conductor $5.318$
Analytic rank $0$
Dimension $96$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [666,2,Mod(17,666)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([18, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("666.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 666.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.31803677462\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 557.3
Character \(\chi\) \(=\) 666.557
Dual form 666.2.bs.b.611.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0871557 + 0.996195i) q^{2} +(-0.984808 - 0.173648i) q^{4} +(0.700099 + 0.326462i) q^{5} +(4.53856 - 1.65190i) q^{7} +(0.258819 - 0.965926i) q^{8} +O(q^{10})\) \(q+(-0.0871557 + 0.996195i) q^{2} +(-0.984808 - 0.173648i) q^{4} +(0.700099 + 0.326462i) q^{5} +(4.53856 - 1.65190i) q^{7} +(0.258819 - 0.965926i) q^{8} +(-0.386237 + 0.668982i) q^{10} +(-2.42393 - 4.19837i) q^{11} +(-2.50551 - 3.57824i) q^{13} +(1.25005 + 4.66526i) q^{14} +(0.939693 + 0.342020i) q^{16} +(1.37892 - 1.96930i) q^{17} +(5.73695 - 0.501918i) q^{19} +(-0.632774 - 0.443073i) q^{20} +(4.39365 - 2.04879i) q^{22} +(-5.80632 + 1.55580i) q^{23} +(-2.83038 - 3.37311i) q^{25} +(3.78299 - 2.18411i) q^{26} +(-4.75646 + 0.838692i) q^{28} +(1.94369 + 0.520811i) q^{29} +(-2.21486 - 2.21486i) q^{31} +(-0.422618 + 0.906308i) q^{32} +(1.84162 + 1.54530i) q^{34} +(3.71672 + 0.325171i) q^{35} +(2.35421 + 5.60872i) q^{37} +5.75886i q^{38} +(0.496537 - 0.591749i) q^{40} +(-1.55885 + 8.84070i) q^{41} +(5.76488 - 5.76488i) q^{43} +(1.65806 + 4.55550i) q^{44} +(-1.04383 - 5.91983i) q^{46} +(8.09588 + 4.67416i) q^{47} +(12.5074 - 10.4950i) q^{49} +(3.60696 - 2.52562i) q^{50} +(1.84609 + 3.95896i) q^{52} +(0.878899 - 2.41476i) q^{53} +(-0.326385 - 3.73059i) q^{55} +(-0.420948 - 4.81146i) q^{56} +(-0.688233 + 1.89090i) q^{58} +(3.50297 + 7.51215i) q^{59} +(-3.07615 + 2.15394i) q^{61} +(2.39947 - 2.01339i) q^{62} +(-0.866025 - 0.500000i) q^{64} +(-0.585948 - 3.32308i) q^{65} +(4.27780 + 11.7532i) q^{67} +(-1.69993 + 1.69993i) q^{68} +(-0.647868 + 3.67424i) q^{70} +(6.82252 - 8.13076i) q^{71} +5.96741i q^{73} +(-5.79256 + 1.85642i) q^{74} +(-5.73695 - 0.501918i) q^{76} +(-17.9364 - 15.0505i) q^{77} +(-5.34136 + 11.4546i) q^{79} +(0.546222 + 0.546222i) q^{80} +(-8.67120 - 2.32344i) q^{82} +(-7.54117 + 1.32971i) q^{83} +(1.60828 - 0.928540i) q^{85} +(5.24050 + 6.24539i) q^{86} +(-4.68267 + 1.25472i) q^{88} +(-8.54762 + 3.98582i) q^{89} +(-17.2823 - 12.1012i) q^{91} +(5.98827 - 0.523906i) q^{92} +(-5.36197 + 7.65769i) q^{94} +(4.18029 + 1.52150i) q^{95} +(-0.616938 - 2.30244i) q^{97} +(9.36496 + 13.3745i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q+O(q^{10}) \) Copy content Toggle raw display \( 96 q - 12 q^{13} + 24 q^{19} + 12 q^{22} + 48 q^{31} + 72 q^{34} + 24 q^{37} + 72 q^{43} + 60 q^{46} + 12 q^{52} - 60 q^{55} + 12 q^{58} - 120 q^{61} + 36 q^{67} + 12 q^{70} - 24 q^{76} + 60 q^{79} + 96 q^{82} - 108 q^{85} - 24 q^{88} + 216 q^{91} - 60 q^{94} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/666\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{36}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0871557 + 0.996195i −0.0616284 + 0.704416i
\(3\) 0 0
\(4\) −0.984808 0.173648i −0.492404 0.0868241i
\(5\) 0.700099 + 0.326462i 0.313094 + 0.145998i 0.572813 0.819686i \(-0.305852\pi\)
−0.259719 + 0.965684i \(0.583630\pi\)
\(6\) 0 0
\(7\) 4.53856 1.65190i 1.71541 0.624360i 0.717988 0.696055i \(-0.245063\pi\)
0.997427 + 0.0716957i \(0.0228410\pi\)
\(8\) 0.258819 0.965926i 0.0915064 0.341506i
\(9\) 0 0
\(10\) −0.386237 + 0.668982i −0.122139 + 0.211551i
\(11\) −2.42393 4.19837i −0.730842 1.26586i −0.956524 0.291654i \(-0.905794\pi\)
0.225682 0.974201i \(-0.427539\pi\)
\(12\) 0 0
\(13\) −2.50551 3.57824i −0.694904 0.992425i −0.999206 0.0398497i \(-0.987312\pi\)
0.304302 0.952576i \(-0.401577\pi\)
\(14\) 1.25005 + 4.66526i 0.334091 + 1.24684i
\(15\) 0 0
\(16\) 0.939693 + 0.342020i 0.234923 + 0.0855050i
\(17\) 1.37892 1.96930i 0.334436 0.477624i −0.616350 0.787472i \(-0.711389\pi\)
0.950786 + 0.309848i \(0.100278\pi\)
\(18\) 0 0
\(19\) 5.73695 0.501918i 1.31615 0.115148i 0.592641 0.805467i \(-0.298085\pi\)
0.723505 + 0.690319i \(0.242530\pi\)
\(20\) −0.632774 0.443073i −0.141493 0.0990741i
\(21\) 0 0
\(22\) 4.39365 2.04879i 0.936729 0.436804i
\(23\) −5.80632 + 1.55580i −1.21070 + 0.324407i −0.807037 0.590500i \(-0.798930\pi\)
−0.403665 + 0.914907i \(0.632264\pi\)
\(24\) 0 0
\(25\) −2.83038 3.37311i −0.566075 0.674622i
\(26\) 3.78299 2.18411i 0.741906 0.428340i
\(27\) 0 0
\(28\) −4.75646 + 0.838692i −0.898886 + 0.158498i
\(29\) 1.94369 + 0.520811i 0.360934 + 0.0967121i 0.434729 0.900561i \(-0.356844\pi\)
−0.0737944 + 0.997273i \(0.523511\pi\)
\(30\) 0 0
\(31\) −2.21486 2.21486i −0.397800 0.397800i 0.479656 0.877456i \(-0.340761\pi\)
−0.877456 + 0.479656i \(0.840761\pi\)
\(32\) −0.422618 + 0.906308i −0.0747091 + 0.160214i
\(33\) 0 0
\(34\) 1.84162 + 1.54530i 0.315836 + 0.265017i
\(35\) 3.71672 + 0.325171i 0.628241 + 0.0549640i
\(36\) 0 0
\(37\) 2.35421 + 5.60872i 0.387029 + 0.922067i
\(38\) 5.75886i 0.934211i
\(39\) 0 0
\(40\) 0.496537 0.591749i 0.0785094 0.0935638i
\(41\) −1.55885 + 8.84070i −0.243452 + 1.38069i 0.580608 + 0.814183i \(0.302815\pi\)
−0.824060 + 0.566502i \(0.808296\pi\)
\(42\) 0 0
\(43\) 5.76488 5.76488i 0.879136 0.879136i −0.114309 0.993445i \(-0.536465\pi\)
0.993445 + 0.114309i \(0.0364654\pi\)
\(44\) 1.65806 + 4.55550i 0.249963 + 0.686767i
\(45\) 0 0
\(46\) −1.04383 5.91983i −0.153904 0.872831i
\(47\) 8.09588 + 4.67416i 1.18091 + 0.681796i 0.956224 0.292636i \(-0.0945325\pi\)
0.224681 + 0.974432i \(0.427866\pi\)
\(48\) 0 0
\(49\) 12.5074 10.4950i 1.78678 1.49928i
\(50\) 3.60696 2.52562i 0.510101 0.357177i
\(51\) 0 0
\(52\) 1.84609 + 3.95896i 0.256007 + 0.549008i
\(53\) 0.878899 2.41476i 0.120726 0.331692i −0.864579 0.502497i \(-0.832415\pi\)
0.985305 + 0.170805i \(0.0546369\pi\)
\(54\) 0 0
\(55\) −0.326385 3.73059i −0.0440097 0.503033i
\(56\) −0.420948 4.81146i −0.0562515 0.642958i
\(57\) 0 0
\(58\) −0.688233 + 1.89090i −0.0903694 + 0.248288i
\(59\) 3.50297 + 7.51215i 0.456048 + 0.977999i 0.991093 + 0.133175i \(0.0425171\pi\)
−0.535044 + 0.844824i \(0.679705\pi\)
\(60\) 0 0
\(61\) −3.07615 + 2.15394i −0.393861 + 0.275784i −0.753685 0.657236i \(-0.771726\pi\)
0.359824 + 0.933020i \(0.382837\pi\)
\(62\) 2.39947 2.01339i 0.304733 0.255701i
\(63\) 0 0
\(64\) −0.866025 0.500000i −0.108253 0.0625000i
\(65\) −0.585948 3.32308i −0.0726779 0.412177i
\(66\) 0 0
\(67\) 4.27780 + 11.7532i 0.522616 + 1.43588i 0.867598 + 0.497267i \(0.165663\pi\)
−0.344981 + 0.938610i \(0.612115\pi\)
\(68\) −1.69993 + 1.69993i −0.206147 + 0.206147i
\(69\) 0 0
\(70\) −0.647868 + 3.67424i −0.0774350 + 0.439156i
\(71\) 6.82252 8.13076i 0.809684 0.964944i −0.190174 0.981750i \(-0.560905\pi\)
0.999859 + 0.0168061i \(0.00534979\pi\)
\(72\) 0 0
\(73\) 5.96741i 0.698433i 0.937042 + 0.349217i \(0.113552\pi\)
−0.937042 + 0.349217i \(0.886448\pi\)
\(74\) −5.79256 + 1.85642i −0.673371 + 0.215804i
\(75\) 0 0
\(76\) −5.73695 0.501918i −0.658073 0.0575739i
\(77\) −17.9364 15.0505i −2.04405 1.71516i
\(78\) 0 0
\(79\) −5.34136 + 11.4546i −0.600950 + 1.28874i 0.336847 + 0.941559i \(0.390639\pi\)
−0.937798 + 0.347183i \(0.887138\pi\)
\(80\) 0.546222 + 0.546222i 0.0610694 + 0.0610694i
\(81\) 0 0
\(82\) −8.67120 2.32344i −0.957574 0.256581i
\(83\) −7.54117 + 1.32971i −0.827751 + 0.145955i −0.571445 0.820641i \(-0.693617\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(84\) 0 0
\(85\) 1.60828 0.928540i 0.174442 0.100714i
\(86\) 5.24050 + 6.24539i 0.565098 + 0.673457i
\(87\) 0 0
\(88\) −4.68267 + 1.25472i −0.499174 + 0.133753i
\(89\) −8.54762 + 3.98582i −0.906046 + 0.422496i −0.819056 0.573713i \(-0.805502\pi\)
−0.0869894 + 0.996209i \(0.527725\pi\)
\(90\) 0 0
\(91\) −17.2823 12.1012i −1.81168 1.26855i
\(92\) 5.98827 0.523906i 0.624321 0.0546210i
\(93\) 0 0
\(94\) −5.36197 + 7.65769i −0.553045 + 0.789831i
\(95\) 4.18029 + 1.52150i 0.428889 + 0.156103i
\(96\) 0 0
\(97\) −0.616938 2.30244i −0.0626406 0.233778i 0.927507 0.373806i \(-0.121947\pi\)
−0.990148 + 0.140028i \(0.955281\pi\)
\(98\) 9.36496 + 13.3745i 0.946004 + 1.35103i
\(99\) 0 0
\(100\) 2.20164 + 3.81336i 0.220164 + 0.381336i
\(101\) 7.59134 13.1486i 0.755367 1.30833i −0.189825 0.981818i \(-0.560792\pi\)
0.945192 0.326516i \(-0.105875\pi\)
\(102\) 0 0
\(103\) −3.73836 + 13.9517i −0.368351 + 1.37471i 0.494470 + 0.869195i \(0.335362\pi\)
−0.862821 + 0.505510i \(0.831304\pi\)
\(104\) −4.10479 + 1.49402i −0.402508 + 0.146501i
\(105\) 0 0
\(106\) 2.32897 + 1.08601i 0.226209 + 0.105483i
\(107\) −10.0900 1.77915i −0.975442 0.171997i −0.336863 0.941554i \(-0.609366\pi\)
−0.638578 + 0.769557i \(0.720477\pi\)
\(108\) 0 0
\(109\) 0.847015 9.68143i 0.0811293 0.927312i −0.841153 0.540797i \(-0.818123\pi\)
0.922283 0.386516i \(-0.126322\pi\)
\(110\) 3.74484 0.357057
\(111\) 0 0
\(112\) 4.82983 0.456377
\(113\) −0.235893 + 2.69626i −0.0221909 + 0.253643i 0.976994 + 0.213268i \(0.0684108\pi\)
−0.999185 + 0.0403750i \(0.987145\pi\)
\(114\) 0 0
\(115\) −4.57291 0.806328i −0.426426 0.0751905i
\(116\) −1.82372 0.850417i −0.169329 0.0789592i
\(117\) 0 0
\(118\) −7.78887 + 2.83492i −0.717024 + 0.260975i
\(119\) 3.00521 11.2156i 0.275487 1.02813i
\(120\) 0 0
\(121\) −6.25086 + 10.8268i −0.568260 + 0.984255i
\(122\) −1.87764 3.25217i −0.169994 0.294438i
\(123\) 0 0
\(124\) 1.79660 + 2.56582i 0.161340 + 0.230417i
\(125\) −1.88001 7.01629i −0.168153 0.627556i
\(126\) 0 0
\(127\) −9.30258 3.38586i −0.825470 0.300447i −0.105472 0.994422i \(-0.533635\pi\)
−0.719998 + 0.693976i \(0.755857\pi\)
\(128\) 0.573576 0.819152i 0.0506975 0.0724035i
\(129\) 0 0
\(130\) 3.36150 0.294093i 0.294823 0.0257937i
\(131\) −3.57335 2.50209i −0.312205 0.218609i 0.406963 0.913445i \(-0.366588\pi\)
−0.719168 + 0.694836i \(0.755477\pi\)
\(132\) 0 0
\(133\) 25.2084 11.7549i 2.18584 1.01928i
\(134\) −12.0813 + 3.23717i −1.04366 + 0.279648i
\(135\) 0 0
\(136\) −1.54530 1.84162i −0.132509 0.157918i
\(137\) 12.5405 7.24028i 1.07141 0.618579i 0.142844 0.989745i \(-0.454375\pi\)
0.928567 + 0.371166i \(0.121042\pi\)
\(138\) 0 0
\(139\) 5.42951 0.957370i 0.460525 0.0812030i 0.0614278 0.998112i \(-0.480435\pi\)
0.399098 + 0.916908i \(0.369323\pi\)
\(140\) −3.60379 0.965634i −0.304576 0.0816109i
\(141\) 0 0
\(142\) 7.50520 + 7.50520i 0.629823 + 0.629823i
\(143\) −8.94959 + 19.1925i −0.748402 + 1.60495i
\(144\) 0 0
\(145\) 1.19075 + 0.999160i 0.0988866 + 0.0829757i
\(146\) −5.94471 0.520094i −0.491987 0.0430433i
\(147\) 0 0
\(148\) −1.34450 5.93231i −0.110517 0.487633i
\(149\) 10.9793i 0.899458i −0.893165 0.449729i \(-0.851521\pi\)
0.893165 0.449729i \(-0.148479\pi\)
\(150\) 0 0
\(151\) −10.0789 + 12.0115i −0.820207 + 0.977484i −0.999981 0.00622350i \(-0.998019\pi\)
0.179774 + 0.983708i \(0.442463\pi\)
\(152\) 1.00002 5.67137i 0.0811120 0.460009i
\(153\) 0 0
\(154\) 16.5564 16.5564i 1.33416 1.33416i
\(155\) −0.827554 2.27369i −0.0664708 0.182627i
\(156\) 0 0
\(157\) 0.747096 + 4.23699i 0.0596247 + 0.338149i 0.999998 0.00199559i \(-0.000635218\pi\)
−0.940373 + 0.340144i \(0.889524\pi\)
\(158\) −10.9455 6.31937i −0.870775 0.502742i
\(159\) 0 0
\(160\) −0.591749 + 0.496537i −0.0467819 + 0.0392547i
\(161\) −23.7823 + 16.6526i −1.87431 + 1.31241i
\(162\) 0 0
\(163\) 4.95999 + 10.6367i 0.388496 + 0.833133i 0.999149 + 0.0412349i \(0.0131292\pi\)
−0.610653 + 0.791898i \(0.709093\pi\)
\(164\) 3.07034 8.43570i 0.239754 0.658717i
\(165\) 0 0
\(166\) −0.667396 7.62837i −0.0518000 0.592076i
\(167\) 1.73092 + 19.7845i 0.133942 + 1.53097i 0.704495 + 0.709709i \(0.251173\pi\)
−0.570553 + 0.821261i \(0.693271\pi\)
\(168\) 0 0
\(169\) −2.07996 + 5.71463i −0.159997 + 0.439587i
\(170\) 0.784836 + 1.68309i 0.0601941 + 0.129087i
\(171\) 0 0
\(172\) −6.67836 + 4.67624i −0.509220 + 0.356560i
\(173\) 15.4542 12.9676i 1.17496 0.985909i 0.174961 0.984575i \(-0.444020\pi\)
0.999999 0.00133371i \(-0.000424532\pi\)
\(174\) 0 0
\(175\) −18.4179 10.6336i −1.39226 0.803822i
\(176\) −0.841822 4.77421i −0.0634547 0.359869i
\(177\) 0 0
\(178\) −3.22568 8.86248i −0.241775 0.664271i
\(179\) 0.932166 0.932166i 0.0696733 0.0696733i −0.671411 0.741085i \(-0.734312\pi\)
0.741085 + 0.671411i \(0.234312\pi\)
\(180\) 0 0
\(181\) −0.426058 + 2.41629i −0.0316686 + 0.179602i −0.996539 0.0831239i \(-0.973510\pi\)
0.964871 + 0.262726i \(0.0846214\pi\)
\(182\) 13.5614 16.1619i 1.00524 1.19800i
\(183\) 0 0
\(184\) 6.01115i 0.443148i
\(185\) −0.182853 + 4.69522i −0.0134436 + 0.345199i
\(186\) 0 0
\(187\) −11.6102 1.01576i −0.849024 0.0742799i
\(188\) −7.16122 6.00898i −0.522286 0.438250i
\(189\) 0 0
\(190\) −1.88005 + 4.03178i −0.136393 + 0.292496i
\(191\) 14.1268 + 14.1268i 1.02218 + 1.02218i 0.999748 + 0.0224327i \(0.00714116\pi\)
0.0224327 + 0.999748i \(0.492859\pi\)
\(192\) 0 0
\(193\) 7.67390 + 2.05621i 0.552379 + 0.148010i 0.524203 0.851593i \(-0.324363\pi\)
0.0281763 + 0.999603i \(0.491030\pi\)
\(194\) 2.34745 0.413919i 0.168537 0.0297177i
\(195\) 0 0
\(196\) −14.1399 + 8.16365i −1.00999 + 0.583118i
\(197\) −10.0495 11.9765i −0.715997 0.853292i 0.278239 0.960512i \(-0.410249\pi\)
−0.994235 + 0.107220i \(0.965805\pi\)
\(198\) 0 0
\(199\) −9.50441 + 2.54670i −0.673750 + 0.180531i −0.579443 0.815012i \(-0.696730\pi\)
−0.0943064 + 0.995543i \(0.530063\pi\)
\(200\) −3.99073 + 1.86091i −0.282187 + 0.131586i
\(201\) 0 0
\(202\) 12.4369 + 8.70843i 0.875059 + 0.612723i
\(203\) 9.68189 0.847056i 0.679535 0.0594516i
\(204\) 0 0
\(205\) −3.97750 + 5.68046i −0.277801 + 0.396741i
\(206\) −13.5728 4.94010i −0.945663 0.344193i
\(207\) 0 0
\(208\) −1.13058 4.21938i −0.0783916 0.292561i
\(209\) −16.0132 22.8692i −1.10766 1.58190i
\(210\) 0 0
\(211\) −5.69398 9.86226i −0.391990 0.678946i 0.600722 0.799458i \(-0.294880\pi\)
−0.992712 + 0.120512i \(0.961546\pi\)
\(212\) −1.28486 + 2.22545i −0.0882449 + 0.152845i
\(213\) 0 0
\(214\) 2.65178 9.89659i 0.181272 0.676517i
\(215\) 5.91800 2.15398i 0.403604 0.146900i
\(216\) 0 0
\(217\) −13.7110 6.39354i −0.930763 0.434022i
\(218\) 9.57076 + 1.68758i 0.648214 + 0.114298i
\(219\) 0 0
\(220\) −0.326385 + 3.73059i −0.0220048 + 0.251517i
\(221\) −10.5015 −0.706408
\(222\) 0 0
\(223\) 22.7165 1.52121 0.760604 0.649216i \(-0.224903\pi\)
0.760604 + 0.649216i \(0.224903\pi\)
\(224\) −0.420948 + 4.81146i −0.0281258 + 0.321479i
\(225\) 0 0
\(226\) −2.66544 0.469990i −0.177303 0.0312633i
\(227\) −12.4715 5.81557i −0.827765 0.385993i −0.0379059 0.999281i \(-0.512069\pi\)
−0.789859 + 0.613288i \(0.789846\pi\)
\(228\) 0 0
\(229\) −4.84646 + 1.76397i −0.320263 + 0.116566i −0.497149 0.867665i \(-0.665620\pi\)
0.176886 + 0.984231i \(0.443398\pi\)
\(230\) 1.20181 4.48523i 0.0792453 0.295748i
\(231\) 0 0
\(232\) 1.00613 1.74267i 0.0660556 0.114412i
\(233\) −2.78253 4.81949i −0.182290 0.315735i 0.760370 0.649490i \(-0.225018\pi\)
−0.942660 + 0.333755i \(0.891684\pi\)
\(234\) 0 0
\(235\) 4.14199 + 5.91537i 0.270193 + 0.385876i
\(236\) −2.14528 8.00631i −0.139646 0.521166i
\(237\) 0 0
\(238\) 10.9110 + 3.97128i 0.707255 + 0.257420i
\(239\) −10.6846 + 15.2592i −0.691132 + 0.987038i 0.308230 + 0.951312i \(0.400263\pi\)
−0.999362 + 0.0357263i \(0.988626\pi\)
\(240\) 0 0
\(241\) −2.27697 + 0.199209i −0.146673 + 0.0128322i −0.160256 0.987076i \(-0.551232\pi\)
0.0135829 + 0.999908i \(0.495676\pi\)
\(242\) −10.2408 7.17069i −0.658304 0.460950i
\(243\) 0 0
\(244\) 3.40345 1.58705i 0.217883 0.101601i
\(245\) 12.1827 3.26433i 0.778322 0.208551i
\(246\) 0 0
\(247\) −16.1700 19.2706i −1.02887 1.22616i
\(248\) −2.71264 + 1.56614i −0.172253 + 0.0994501i
\(249\) 0 0
\(250\) 7.15344 1.26134i 0.452423 0.0797744i
\(251\) 21.7854 + 5.83737i 1.37508 + 0.368452i 0.869332 0.494229i \(-0.164550\pi\)
0.505749 + 0.862681i \(0.331216\pi\)
\(252\) 0 0
\(253\) 20.6059 + 20.6059i 1.29548 + 1.29548i
\(254\) 4.18375 8.97208i 0.262512 0.562958i
\(255\) 0 0
\(256\) 0.766044 + 0.642788i 0.0478778 + 0.0401742i
\(257\) 13.5323 + 1.18392i 0.844120 + 0.0738510i 0.501007 0.865443i \(-0.332963\pi\)
0.343113 + 0.939294i \(0.388519\pi\)
\(258\) 0 0
\(259\) 19.9498 + 21.5666i 1.23962 + 1.34008i
\(260\) 3.37434i 0.209268i
\(261\) 0 0
\(262\) 2.80401 3.34168i 0.173232 0.206450i
\(263\) 1.43378 8.13140i 0.0884110 0.501403i −0.908157 0.418629i \(-0.862511\pi\)
0.996568 0.0827745i \(-0.0263781\pi\)
\(264\) 0 0
\(265\) 1.40364 1.40364i 0.0862250 0.0862250i
\(266\) 9.51307 + 26.1369i 0.583284 + 1.60256i
\(267\) 0 0
\(268\) −2.17190 12.3174i −0.132670 0.752407i
\(269\) 4.64654 + 2.68268i 0.283304 + 0.163566i 0.634918 0.772579i \(-0.281034\pi\)
−0.351614 + 0.936145i \(0.614367\pi\)
\(270\) 0 0
\(271\) −7.74885 + 6.50205i −0.470709 + 0.394972i −0.847053 0.531508i \(-0.821625\pi\)
0.376344 + 0.926480i \(0.377181\pi\)
\(272\) 1.96930 1.37892i 0.119406 0.0836091i
\(273\) 0 0
\(274\) 6.11975 + 13.1239i 0.369708 + 0.792841i
\(275\) −7.30093 + 20.0591i −0.440263 + 1.20961i
\(276\) 0 0
\(277\) −2.00383 22.9039i −0.120398 1.37616i −0.780581 0.625055i \(-0.785077\pi\)
0.660182 0.751105i \(-0.270479\pi\)
\(278\) 0.480513 + 5.49229i 0.0288193 + 0.329406i
\(279\) 0 0
\(280\) 1.27605 3.50592i 0.0762586 0.209519i
\(281\) 9.14766 + 19.6172i 0.545703 + 1.17026i 0.964960 + 0.262397i \(0.0845130\pi\)
−0.419257 + 0.907868i \(0.637709\pi\)
\(282\) 0 0
\(283\) −10.9550 + 7.67077i −0.651206 + 0.455980i −0.851921 0.523670i \(-0.824562\pi\)
0.200715 + 0.979650i \(0.435674\pi\)
\(284\) −8.13076 + 6.82252i −0.482472 + 0.404842i
\(285\) 0 0
\(286\) −18.3394 10.5883i −1.08443 0.626097i
\(287\) 7.52901 + 42.6991i 0.444423 + 2.52045i
\(288\) 0 0
\(289\) 3.83762 + 10.5438i 0.225743 + 0.620223i
\(290\) −1.09914 + 1.09914i −0.0645436 + 0.0645436i
\(291\) 0 0
\(292\) 1.03623 5.87676i 0.0606408 0.343911i
\(293\) 0.512469 0.610737i 0.0299388 0.0356796i −0.750867 0.660453i \(-0.770364\pi\)
0.780806 + 0.624773i \(0.214809\pi\)
\(294\) 0 0
\(295\) 6.40284i 0.372788i
\(296\) 6.02692 0.822346i 0.350308 0.0477979i
\(297\) 0 0
\(298\) 10.9375 + 0.956908i 0.633593 + 0.0554322i
\(299\) 20.1148 + 16.8783i 1.16327 + 0.976100i
\(300\) 0 0
\(301\) 16.6412 35.6873i 0.959186 2.05698i
\(302\) −11.0874 11.0874i −0.638008 0.638008i
\(303\) 0 0
\(304\) 5.56263 + 1.49050i 0.319039 + 0.0854862i
\(305\) −2.85679 + 0.503729i −0.163579 + 0.0288435i
\(306\) 0 0
\(307\) 2.15411 1.24367i 0.122941 0.0709802i −0.437268 0.899331i \(-0.644054\pi\)
0.560210 + 0.828351i \(0.310721\pi\)
\(308\) 15.0505 + 17.9364i 0.857579 + 1.02202i
\(309\) 0 0
\(310\) 2.33716 0.626240i 0.132742 0.0355681i
\(311\) 11.9333 5.56461i 0.676678 0.315540i −0.0537257 0.998556i \(-0.517110\pi\)
0.730404 + 0.683016i \(0.239332\pi\)
\(312\) 0 0
\(313\) −0.847475 0.593409i −0.0479021 0.0335414i 0.549380 0.835573i \(-0.314864\pi\)
−0.597282 + 0.802031i \(0.703753\pi\)
\(314\) −4.28598 + 0.374975i −0.241872 + 0.0211610i
\(315\) 0 0
\(316\) 7.24928 10.3530i 0.407804 0.582404i
\(317\) −13.9900 5.09193i −0.785755 0.285991i −0.0821847 0.996617i \(-0.526190\pi\)
−0.703570 + 0.710626i \(0.748412\pi\)
\(318\) 0 0
\(319\) −2.52482 9.42274i −0.141363 0.527572i
\(320\) −0.443073 0.632774i −0.0247685 0.0353731i
\(321\) 0 0
\(322\) −14.5164 25.1432i −0.808969 1.40118i
\(323\) 6.92234 11.9899i 0.385170 0.667133i
\(324\) 0 0
\(325\) −4.97826 + 18.5791i −0.276144 + 1.03058i
\(326\) −11.0285 + 4.01406i −0.610815 + 0.222318i
\(327\) 0 0
\(328\) 8.13600 + 3.79388i 0.449235 + 0.209482i
\(329\) 44.4649 + 7.84036i 2.45143 + 0.432253i
\(330\) 0 0
\(331\) −0.839060 + 9.59050i −0.0461189 + 0.527142i 0.937635 + 0.347621i \(0.113010\pi\)
−0.983754 + 0.179521i \(0.942545\pi\)
\(332\) 7.65751 0.420260
\(333\) 0 0
\(334\) −19.8601 −1.08669
\(335\) −0.842071 + 9.62491i −0.0460072 + 0.525865i
\(336\) 0 0
\(337\) −15.0598 2.65545i −0.820361 0.144652i −0.252311 0.967646i \(-0.581191\pi\)
−0.568049 + 0.822994i \(0.692302\pi\)
\(338\) −5.51161 2.57011i −0.299792 0.139795i
\(339\) 0 0
\(340\) −1.74508 + 0.635158i −0.0946404 + 0.0344463i
\(341\) −3.93013 + 14.6674i −0.212828 + 0.794287i
\(342\) 0 0
\(343\) 22.5247 39.0139i 1.21622 2.10655i
\(344\) −4.07639 7.06051i −0.219784 0.380677i
\(345\) 0 0
\(346\) 11.5713 + 16.5256i 0.622079 + 0.888421i
\(347\) −4.90451 18.3039i −0.263288 0.982604i −0.963290 0.268463i \(-0.913484\pi\)
0.700002 0.714141i \(-0.253183\pi\)
\(348\) 0 0
\(349\) 7.67936 + 2.79506i 0.411067 + 0.149616i 0.539272 0.842132i \(-0.318699\pi\)
−0.128205 + 0.991748i \(0.540922\pi\)
\(350\) 12.1983 17.4210i 0.652028 0.931192i
\(351\) 0 0
\(352\) 4.82941 0.422519i 0.257408 0.0225203i
\(353\) −6.62053 4.63574i −0.352375 0.246736i 0.383964 0.923348i \(-0.374559\pi\)
−0.736340 + 0.676612i \(0.763447\pi\)
\(354\) 0 0
\(355\) 7.43083 3.46505i 0.394387 0.183906i
\(356\) 9.10989 2.44099i 0.482823 0.129372i
\(357\) 0 0
\(358\) 0.847375 + 1.00986i 0.0447852 + 0.0533729i
\(359\) 1.93796 1.11888i 0.102282 0.0590523i −0.447987 0.894040i \(-0.647859\pi\)
0.550268 + 0.834988i \(0.314525\pi\)
\(360\) 0 0
\(361\) 13.9493 2.45964i 0.734174 0.129455i
\(362\) −2.36996 0.635030i −0.124563 0.0333764i
\(363\) 0 0
\(364\) 14.9184 + 14.9184i 0.781937 + 0.781937i
\(365\) −1.94813 + 4.17778i −0.101970 + 0.218675i
\(366\) 0 0
\(367\) 9.56558 + 8.02648i 0.499319 + 0.418979i 0.857352 0.514730i \(-0.172108\pi\)
−0.358033 + 0.933709i \(0.616552\pi\)
\(368\) −5.98827 0.523906i −0.312160 0.0273105i
\(369\) 0 0
\(370\) −4.66141 0.591372i −0.242335 0.0307440i
\(371\) 12.4114i 0.644366i
\(372\) 0 0
\(373\) −4.81976 + 5.74396i −0.249557 + 0.297411i −0.876251 0.481855i \(-0.839963\pi\)
0.626694 + 0.779266i \(0.284408\pi\)
\(374\) 2.02380 11.4775i 0.104648 0.593488i
\(375\) 0 0
\(376\) 6.61026 6.61026i 0.340898 0.340898i
\(377\) −3.00635 8.25989i −0.154835 0.425406i
\(378\) 0 0
\(379\) −1.34229 7.61251i −0.0689489 0.391029i −0.999679 0.0253226i \(-0.991939\pi\)
0.930730 0.365706i \(-0.119172\pi\)
\(380\) −3.85258 2.22429i −0.197633 0.114103i
\(381\) 0 0
\(382\) −15.3043 + 12.8418i −0.783036 + 0.657045i
\(383\) −4.87023 + 3.41017i −0.248857 + 0.174252i −0.691349 0.722521i \(-0.742983\pi\)
0.442492 + 0.896772i \(0.354094\pi\)
\(384\) 0 0
\(385\) −7.64389 16.3924i −0.389569 0.835432i
\(386\) −2.71721 + 7.46548i −0.138303 + 0.379983i
\(387\) 0 0
\(388\) 0.207750 + 2.37460i 0.0105469 + 0.120552i
\(389\) 2.91280 + 33.2934i 0.147685 + 1.68804i 0.603022 + 0.797725i \(0.293963\pi\)
−0.455337 + 0.890319i \(0.650481\pi\)
\(390\) 0 0
\(391\) −4.94260 + 13.5797i −0.249958 + 0.686754i
\(392\) −6.90022 14.7976i −0.348514 0.747390i
\(393\) 0 0
\(394\) 12.8068 8.96743i 0.645198 0.451773i
\(395\) −7.47897 + 6.27560i −0.376308 + 0.315760i
\(396\) 0 0
\(397\) −6.33061 3.65498i −0.317724 0.183438i 0.332654 0.943049i \(-0.392056\pi\)
−0.650378 + 0.759611i \(0.725389\pi\)
\(398\) −1.70864 9.69020i −0.0856466 0.485726i
\(399\) 0 0
\(400\) −1.50601 4.13773i −0.0753006 0.206887i
\(401\) −2.85652 + 2.85652i −0.142648 + 0.142648i −0.774824 0.632177i \(-0.782162\pi\)
0.632177 + 0.774824i \(0.282162\pi\)
\(402\) 0 0
\(403\) −2.37594 + 13.4746i −0.118354 + 0.671220i
\(404\) −9.75924 + 11.6306i −0.485541 + 0.578645i
\(405\) 0 0
\(406\) 9.71887i 0.482340i
\(407\) 17.8410 23.4790i 0.884347 1.16381i
\(408\) 0 0
\(409\) 1.09538 + 0.0958335i 0.0541632 + 0.00473866i 0.114205 0.993457i \(-0.463568\pi\)
−0.0600420 + 0.998196i \(0.519123\pi\)
\(410\) −5.31218 4.45745i −0.262350 0.220138i
\(411\) 0 0
\(412\) 6.10425 13.0906i 0.300735 0.644928i
\(413\) 28.3078 + 28.3078i 1.39293 + 1.39293i
\(414\) 0 0
\(415\) −5.71367 1.53097i −0.280473 0.0751525i
\(416\) 4.30186 0.758534i 0.210916 0.0371902i
\(417\) 0 0
\(418\) 24.1778 13.9591i 1.18258 0.682761i
\(419\) 7.77299 + 9.26348i 0.379735 + 0.452551i 0.921731 0.387831i \(-0.126775\pi\)
−0.541995 + 0.840381i \(0.682331\pi\)
\(420\) 0 0
\(421\) −9.46844 + 2.53706i −0.461463 + 0.123649i −0.482058 0.876139i \(-0.660111\pi\)
0.0205949 + 0.999788i \(0.493444\pi\)
\(422\) 10.3210 4.81276i 0.502418 0.234281i
\(423\) 0 0
\(424\) −2.10500 1.47394i −0.102228 0.0715807i
\(425\) −10.5455 + 0.922612i −0.511532 + 0.0447533i
\(426\) 0 0
\(427\) −10.4032 + 14.8573i −0.503446 + 0.718995i
\(428\) 9.62781 + 3.50424i 0.465378 + 0.169384i
\(429\) 0 0
\(430\) 1.62999 + 6.08321i 0.0786052 + 0.293359i
\(431\) 6.26981 + 8.95421i 0.302006 + 0.431309i 0.941258 0.337688i \(-0.109645\pi\)
−0.639252 + 0.768997i \(0.720756\pi\)
\(432\) 0 0
\(433\) −19.2059 33.2656i −0.922978 1.59864i −0.794782 0.606895i \(-0.792415\pi\)
−0.128196 0.991749i \(-0.540919\pi\)
\(434\) 7.56420 13.1016i 0.363093 0.628896i
\(435\) 0 0
\(436\) −2.51531 + 9.38726i −0.120461 + 0.449568i
\(437\) −32.5297 + 11.8398i −1.55611 + 0.566376i
\(438\) 0 0
\(439\) 15.4648 + 7.21136i 0.738095 + 0.344179i 0.755041 0.655677i \(-0.227617\pi\)
−0.0169465 + 0.999856i \(0.505395\pi\)
\(440\) −3.68795 0.650285i −0.175816 0.0310011i
\(441\) 0 0
\(442\) 0.915266 10.4615i 0.0435348 0.497605i
\(443\) 24.2781 1.15349 0.576744 0.816925i \(-0.304323\pi\)
0.576744 + 0.816925i \(0.304323\pi\)
\(444\) 0 0
\(445\) −7.28540 −0.345361
\(446\) −1.97987 + 22.6300i −0.0937497 + 1.07156i
\(447\) 0 0
\(448\) −4.75646 0.838692i −0.224722 0.0396245i
\(449\) 16.2885 + 7.59547i 0.768704 + 0.358452i 0.767084 0.641546i \(-0.221707\pi\)
0.00161930 + 0.999999i \(0.499485\pi\)
\(450\) 0 0
\(451\) 40.8951 14.8846i 1.92567 0.700888i
\(452\) 0.700510 2.61434i 0.0329492 0.122968i
\(453\) 0 0
\(454\) 6.88041 11.9172i 0.322914 0.559303i
\(455\) −8.14875 14.1141i −0.382019 0.661677i
\(456\) 0 0
\(457\) −0.280815 0.401046i −0.0131360 0.0187601i 0.812530 0.582919i \(-0.198089\pi\)
−0.825666 + 0.564159i \(0.809201\pi\)
\(458\) −1.33486 4.98176i −0.0623739 0.232782i
\(459\) 0 0
\(460\) 4.36342 + 1.58816i 0.203446 + 0.0740481i
\(461\) −14.1082 + 20.1486i −0.657084 + 0.938413i −1.00000 0.000953260i \(-0.999697\pi\)
0.342916 + 0.939366i \(0.388585\pi\)
\(462\) 0 0
\(463\) −27.4934 + 2.40536i −1.27773 + 0.111787i −0.705737 0.708474i \(-0.749384\pi\)
−0.571990 + 0.820261i \(0.693828\pi\)
\(464\) 1.64835 + 1.15418i 0.0765225 + 0.0535816i
\(465\) 0 0
\(466\) 5.04367 2.35190i 0.233643 0.108950i
\(467\) 35.7621 9.58242i 1.65487 0.443422i 0.693901 0.720071i \(-0.255891\pi\)
0.960971 + 0.276649i \(0.0892240\pi\)
\(468\) 0 0
\(469\) 38.8301 + 46.2759i 1.79301 + 2.13682i
\(470\) −6.25386 + 3.61067i −0.288469 + 0.166548i
\(471\) 0 0
\(472\) 8.16282 1.43932i 0.375724 0.0662503i
\(473\) −38.1767 10.2294i −1.75537 0.470350i
\(474\) 0 0
\(475\) −17.9307 17.9307i −0.822719 0.822719i
\(476\) −4.90712 + 10.5234i −0.224918 + 0.482337i
\(477\) 0 0
\(478\) −14.2699 11.9739i −0.652692 0.547674i
\(479\) −33.1595 2.90108i −1.51510 0.132554i −0.700949 0.713212i \(-0.747240\pi\)
−0.814148 + 0.580658i \(0.802795\pi\)
\(480\) 0 0
\(481\) 14.1708 22.4766i 0.646135 1.02485i
\(482\) 2.28567i 0.104109i
\(483\) 0 0
\(484\) 8.03595 9.57687i 0.365270 0.435312i
\(485\) 0.319742 1.81335i 0.0145187 0.0823398i
\(486\) 0 0
\(487\) −23.4650 + 23.4650i −1.06330 + 1.06330i −0.0654434 + 0.997856i \(0.520846\pi\)
−0.997856 + 0.0654434i \(0.979154\pi\)
\(488\) 1.28438 + 3.52881i 0.0581413 + 0.159742i
\(489\) 0 0
\(490\) 2.19012 + 12.4208i 0.0989397 + 0.561115i
\(491\) −19.3042 11.1453i −0.871186 0.502979i −0.00344362 0.999994i \(-0.501096\pi\)
−0.867742 + 0.497015i \(0.834429\pi\)
\(492\) 0 0
\(493\) 3.70582 3.10955i 0.166902 0.140047i
\(494\) 20.6066 14.4289i 0.927134 0.649187i
\(495\) 0 0
\(496\) −1.32376 2.83881i −0.0594386 0.127466i
\(497\) 17.5332 48.1721i 0.786472 2.16081i
\(498\) 0 0
\(499\) −2.93219 33.5151i −0.131263 1.50034i −0.721106 0.692825i \(-0.756366\pi\)
0.589843 0.807518i \(-0.299190\pi\)
\(500\) 0.633081 + 7.23615i 0.0283123 + 0.323611i
\(501\) 0 0
\(502\) −7.71388 + 21.1937i −0.344287 + 0.945922i
\(503\) −10.6967 22.9391i −0.476941 1.02280i −0.986710 0.162492i \(-0.948047\pi\)
0.509769 0.860311i \(-0.329731\pi\)
\(504\) 0 0
\(505\) 9.60721 6.72704i 0.427515 0.299349i
\(506\) −22.3234 + 18.7316i −0.992398 + 0.832721i
\(507\) 0 0
\(508\) 8.57330 + 4.94980i 0.380379 + 0.219612i
\(509\) 0.447421 + 2.53745i 0.0198316 + 0.112470i 0.993117 0.117130i \(-0.0373693\pi\)
−0.973285 + 0.229600i \(0.926258\pi\)
\(510\) 0 0
\(511\) 9.85758 + 27.0835i 0.436074 + 1.19810i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −2.35883 + 13.3776i −0.104044 + 0.590061i
\(515\) −7.17193 + 8.54717i −0.316033 + 0.376633i
\(516\) 0 0
\(517\) 45.3193i 1.99314i
\(518\) −23.2233 + 17.9942i −1.02037 + 0.790619i
\(519\) 0 0
\(520\) −3.36150 0.294093i −0.147412 0.0128968i
\(521\) −26.2417 22.0194i −1.14967 0.964687i −0.149957 0.988692i \(-0.547914\pi\)
−0.999712 + 0.0240057i \(0.992358\pi\)
\(522\) 0 0
\(523\) 9.22759 19.7886i 0.403494 0.865296i −0.594626 0.804003i \(-0.702700\pi\)
0.998120 0.0612933i \(-0.0195225\pi\)
\(524\) 3.08458 + 3.08458i 0.134751 + 0.134751i
\(525\) 0 0
\(526\) 7.97549 + 2.13703i 0.347748 + 0.0931788i
\(527\) −7.41581 + 1.30761i −0.323038 + 0.0569603i
\(528\) 0 0
\(529\) 11.3743 6.56696i 0.494535 0.285520i
\(530\) 1.27597 + 1.52064i 0.0554244 + 0.0660522i
\(531\) 0 0
\(532\) −26.8666 + 7.19889i −1.16482 + 0.312111i
\(533\) 35.5399 16.5725i 1.53940 0.717835i
\(534\) 0 0
\(535\) −6.48321 4.53959i −0.280294 0.196264i
\(536\) 12.4599 1.09010i 0.538184 0.0470850i
\(537\) 0 0
\(538\) −3.07744 + 4.39505i −0.132678 + 0.189484i
\(539\) −74.3790 27.0717i −3.20373 1.16606i
\(540\) 0 0
\(541\) 10.9911 + 41.0192i 0.472543 + 1.76355i 0.630584 + 0.776121i \(0.282815\pi\)
−0.158042 + 0.987432i \(0.550518\pi\)
\(542\) −5.80195 8.28605i −0.249215 0.355916i
\(543\) 0 0
\(544\) 1.20203 + 2.08198i 0.0515368 + 0.0892643i
\(545\) 3.75361 6.50144i 0.160787 0.278491i
\(546\) 0 0
\(547\) −7.71351 + 28.7872i −0.329806 + 1.23085i 0.579586 + 0.814911i \(0.303214\pi\)
−0.909392 + 0.415941i \(0.863452\pi\)
\(548\) −13.6073 + 4.95265i −0.581274 + 0.211567i
\(549\) 0 0
\(550\) −19.3465 9.02142i −0.824937 0.384675i
\(551\) 11.4123 + 2.01229i 0.486179 + 0.0857264i
\(552\) 0 0
\(553\) −5.32025 + 60.8107i −0.226240 + 2.58594i
\(554\) 22.9914 0.976809
\(555\) 0 0
\(556\) −5.51327 −0.233815
\(557\) 1.09335 12.4971i 0.0463269 0.529519i −0.937204 0.348781i \(-0.886596\pi\)
0.983531 0.180738i \(-0.0578486\pi\)
\(558\) 0 0
\(559\) −35.0721 6.18416i −1.48339 0.261562i
\(560\) 3.38136 + 1.57676i 0.142889 + 0.0666301i
\(561\) 0 0
\(562\) −20.3398 + 7.40309i −0.857984 + 0.312281i
\(563\) 1.11046 4.14429i 0.0468003 0.174661i −0.938570 0.345090i \(-0.887849\pi\)
0.985370 + 0.170428i \(0.0545152\pi\)
\(564\) 0 0
\(565\) −1.04537 + 1.81064i −0.0439793 + 0.0761743i
\(566\) −6.68679 11.5819i −0.281067 0.486822i
\(567\) 0 0
\(568\) −6.08792 8.69445i −0.255443 0.364811i
\(569\) −6.35699 23.7246i −0.266499 0.994588i −0.961326 0.275411i \(-0.911186\pi\)
0.694827 0.719176i \(-0.255481\pi\)
\(570\) 0 0
\(571\) 30.7894 + 11.2064i 1.28850 + 0.468974i 0.893233 0.449594i \(-0.148431\pi\)
0.395263 + 0.918568i \(0.370654\pi\)
\(572\) 12.1464 17.3468i 0.507865 0.725306i
\(573\) 0 0
\(574\) −43.1928 + 3.77888i −1.80283 + 0.157728i
\(575\) 21.6820 + 15.1819i 0.904201 + 0.633128i
\(576\) 0 0
\(577\) 0.500001 0.233154i 0.0208153 0.00970633i −0.412183 0.911101i \(-0.635233\pi\)
0.432998 + 0.901395i \(0.357456\pi\)
\(578\) −10.8381 + 2.90407i −0.450807 + 0.120793i
\(579\) 0 0
\(580\) −0.999160 1.19075i −0.0414879 0.0494433i
\(581\) −32.0295 + 18.4923i −1.32881 + 0.767188i
\(582\) 0 0
\(583\) −12.2684 + 2.16325i −0.508106 + 0.0895928i
\(584\) 5.76408 + 1.54448i 0.238519 + 0.0639111i
\(585\) 0 0
\(586\) 0.563748 + 0.563748i 0.0232882 + 0.0232882i
\(587\) 4.63066 9.93049i 0.191128 0.409875i −0.787269 0.616609i \(-0.788506\pi\)
0.978397 + 0.206734i \(0.0662836\pi\)
\(588\) 0 0
\(589\) −13.8182 11.5948i −0.569369 0.477757i
\(590\) −6.37847 0.558044i −0.262598 0.0229743i
\(591\) 0 0
\(592\) 0.293936 + 6.07566i 0.0120807 + 0.249708i
\(593\) 33.2747i 1.36643i −0.730219 0.683213i \(-0.760582\pi\)
0.730219 0.683213i \(-0.239418\pi\)
\(594\) 0 0
\(595\) 5.76541 6.87095i 0.236359 0.281681i
\(596\) −1.90653 + 10.8125i −0.0780946 + 0.442897i
\(597\) 0 0
\(598\) −18.5672 + 18.5672i −0.759271 + 0.759271i
\(599\) 12.2743 + 33.7235i 0.501516 + 1.37790i 0.889795 + 0.456361i \(0.150847\pi\)
−0.388279 + 0.921542i \(0.626930\pi\)
\(600\) 0 0
\(601\) −1.99181 11.2961i −0.0812475 0.460777i −0.998103 0.0615592i \(-0.980393\pi\)
0.916856 0.399218i \(-0.130718\pi\)
\(602\) 34.1011 + 19.6883i 1.38986 + 0.802434i
\(603\) 0 0
\(604\) 12.0115 10.0789i 0.488742 0.410103i
\(605\) −7.91076 + 5.53917i −0.321618 + 0.225199i
\(606\) 0 0
\(607\) −15.2512 32.7063i −0.619027 1.32751i −0.926623 0.375991i \(-0.877302\pi\)
0.307596 0.951517i \(-0.400475\pi\)
\(608\) −1.96965 + 5.41156i −0.0798797 + 0.219468i
\(609\) 0 0
\(610\) −0.252827 2.88982i −0.0102367 0.117005i
\(611\) −3.55905 40.6801i −0.143984 1.64574i
\(612\) 0 0
\(613\) −12.6318 + 34.7056i −0.510194 + 1.40175i 0.370841 + 0.928696i \(0.379070\pi\)
−0.881035 + 0.473051i \(0.843153\pi\)
\(614\) 1.05120 + 2.25430i 0.0424229 + 0.0909763i
\(615\) 0 0
\(616\) −19.1799 + 13.4299i −0.772781 + 0.541107i
\(617\) 6.66131 5.58951i 0.268174 0.225025i −0.498777 0.866730i \(-0.666217\pi\)
0.766951 + 0.641705i \(0.221773\pi\)
\(618\) 0 0
\(619\) 18.9610 + 10.9471i 0.762105 + 0.440002i 0.830051 0.557687i \(-0.188311\pi\)
−0.0679458 + 0.997689i \(0.521644\pi\)
\(620\) 0.420160 + 2.38285i 0.0168740 + 0.0956975i
\(621\) 0 0
\(622\) 4.50338 + 12.3729i 0.180569 + 0.496109i
\(623\) −32.2097 + 32.2097i −1.29045 + 1.29045i
\(624\) 0 0
\(625\) −2.84876 + 16.1561i −0.113950 + 0.646244i
\(626\) 0.665013 0.792531i 0.0265793 0.0316759i
\(627\) 0 0
\(628\) 4.30235i 0.171683i
\(629\) 14.2915 + 3.09782i 0.569839 + 0.123518i
\(630\) 0 0
\(631\) 28.1732 + 2.46483i 1.12156 + 0.0981235i 0.632813 0.774304i \(-0.281900\pi\)
0.488743 + 0.872428i \(0.337456\pi\)
\(632\) 9.68184 + 8.12402i 0.385123 + 0.323156i
\(633\) 0 0
\(634\) 6.29186 13.4929i 0.249882 0.535873i
\(635\) −5.40737 5.40737i −0.214585 0.214585i
\(636\) 0 0
\(637\) −68.8911 18.4593i −2.72957 0.731385i
\(638\) 9.60694 1.69396i 0.380342 0.0670646i
\(639\) 0 0
\(640\) 0.668982 0.386237i 0.0264438 0.0152674i
\(641\) 0.265891 + 0.316877i 0.0105021 + 0.0125159i 0.771270 0.636508i \(-0.219622\pi\)
−0.760768 + 0.649024i \(0.775177\pi\)
\(642\) 0 0
\(643\) 18.6696 5.00251i 0.736258 0.197280i 0.128844 0.991665i \(-0.458873\pi\)
0.607414 + 0.794385i \(0.292207\pi\)
\(644\) 26.3127 12.2698i 1.03687 0.483498i
\(645\) 0 0
\(646\) 11.3409 + 7.94099i 0.446202 + 0.312434i
\(647\) −23.9628 + 2.09647i −0.942075 + 0.0824209i −0.547835 0.836587i \(-0.684548\pi\)
−0.394240 + 0.919007i \(0.628992\pi\)
\(648\) 0 0
\(649\) 23.0478 32.9157i 0.904706 1.29205i
\(650\) −18.0745 6.57860i −0.708942 0.258034i
\(651\) 0 0
\(652\) −3.03759 11.3364i −0.118961 0.443969i
\(653\) −5.00399 7.14644i −0.195821 0.279662i 0.709218 0.704989i \(-0.249048\pi\)
−0.905040 + 0.425327i \(0.860159\pi\)
\(654\) 0 0
\(655\) −1.68487 2.91827i −0.0658332 0.114026i
\(656\) −4.48854 + 7.77438i −0.175248 + 0.303539i
\(657\) 0 0
\(658\) −11.6859 + 43.6123i −0.455563 + 1.70019i
\(659\) −0.814198 + 0.296344i −0.0317167 + 0.0115439i −0.357830 0.933787i \(-0.616483\pi\)
0.326113 + 0.945331i \(0.394261\pi\)
\(660\) 0 0
\(661\) −22.2246 10.3635i −0.864435 0.403093i −0.0607539 0.998153i \(-0.519350\pi\)
−0.803681 + 0.595060i \(0.797128\pi\)
\(662\) −9.48088 1.67173i −0.368485 0.0649738i
\(663\) 0 0
\(664\) −0.667396 + 7.62837i −0.0259000 + 0.296038i
\(665\) 21.4859 0.833186
\(666\) 0 0
\(667\) −12.0960 −0.468358
\(668\) 1.73092 19.7845i 0.0669712 0.765485i
\(669\) 0 0
\(670\) −9.51489 1.67773i −0.367592 0.0648165i
\(671\) 16.4994 + 7.69380i 0.636953 + 0.297016i
\(672\) 0 0
\(673\) 14.6601 5.33583i 0.565104 0.205681i −0.0436404 0.999047i \(-0.513896\pi\)
0.608745 + 0.793366i \(0.291673\pi\)
\(674\) 3.95790 14.7711i 0.152453 0.568961i
\(675\) 0 0
\(676\) 3.04069 5.26664i 0.116950 0.202563i
\(677\) −10.6755 18.4905i −0.410293 0.710648i 0.584629 0.811301i \(-0.301240\pi\)
−0.994922 + 0.100653i \(0.967907\pi\)
\(678\) 0 0
\(679\) −6.60342 9.43066i −0.253416 0.361916i
\(680\) −0.480647 1.79380i −0.0184320 0.0687891i
\(681\) 0 0
\(682\) −14.2691 5.19353i −0.546392 0.198870i
\(683\) −25.2240 + 36.0237i −0.965171 + 1.37841i −0.0398570 + 0.999205i \(0.512690\pi\)
−0.925314 + 0.379202i \(0.876199\pi\)
\(684\) 0 0
\(685\) 11.1433 0.974912i 0.425764 0.0372495i
\(686\) 36.9023 + 25.8392i 1.40894 + 0.986547i
\(687\) 0 0
\(688\) 7.38892 3.44551i 0.281700 0.131359i
\(689\) −10.8427 + 2.90528i −0.413073 + 0.110683i
\(690\) 0 0
\(691\) 19.2621 + 22.9556i 0.732763 + 0.873273i 0.995804 0.0915114i \(-0.0291698\pi\)
−0.263041 + 0.964785i \(0.584725\pi\)
\(692\) −17.4712 + 10.0870i −0.664156 + 0.383451i
\(693\) 0 0
\(694\) 18.6617 3.29056i 0.708388 0.124908i
\(695\) 4.11374 + 1.10227i 0.156043 + 0.0418116i
\(696\) 0 0
\(697\) 15.2604 + 15.2604i 0.578030 + 0.578030i
\(698\) −3.45372 + 7.40653i −0.130725 + 0.280341i
\(699\) 0 0
\(700\) 16.2916 + 13.6703i 0.615763 + 0.516687i
\(701\) 30.5339 + 2.67137i 1.15325 + 0.100896i 0.647697 0.761898i \(-0.275732\pi\)
0.505554 + 0.862795i \(0.331288\pi\)
\(702\) 0 0
\(703\) 16.3211 + 30.9953i 0.615561 + 1.16901i
\(704\) 4.84786i 0.182710i
\(705\) 0 0
\(706\) 5.19512 6.19130i 0.195521 0.233013i
\(707\) 12.7336 72.2158i 0.478896 2.71596i
\(708\) 0 0
\(709\) 5.44016 5.44016i 0.204309 0.204309i −0.597534 0.801843i \(-0.703853\pi\)
0.801843 + 0.597534i \(0.203853\pi\)
\(710\) 2.80423 + 7.70455i 0.105241 + 0.289147i
\(711\) 0 0
\(712\) 1.63772 + 9.28797i 0.0613761 + 0.348081i
\(713\) 16.3061 + 9.41431i 0.610667 + 0.352569i
\(714\) 0 0
\(715\) −12.5312 + 10.5149i −0.468640 + 0.393236i
\(716\) −1.07987 + 0.756135i −0.0403567 + 0.0282581i
\(717\) 0 0
\(718\) 0.945719 + 2.02810i 0.0352939 + 0.0756881i
\(719\) −15.7141 + 43.1743i −0.586039 + 1.61013i 0.191640 + 0.981465i \(0.438620\pi\)
−0.777678 + 0.628663i \(0.783603\pi\)
\(720\) 0 0
\(721\) 6.08013 + 69.4962i 0.226436 + 2.58817i
\(722\) 1.23452 + 14.1106i 0.0459440 + 0.525142i
\(723\) 0 0
\(724\) 0.839170 2.30560i 0.0311875 0.0856869i
\(725\) −3.74463 8.03038i −0.139072 0.298241i
\(726\) 0 0
\(727\) −25.5264 + 17.8738i −0.946724 + 0.662903i −0.941475 0.337083i \(-0.890560\pi\)
−0.00524871 + 0.999986i \(0.501671\pi\)
\(728\) −16.1619 + 13.5614i −0.598998 + 0.502619i
\(729\) 0 0
\(730\) −3.99209 2.30484i −0.147754 0.0853058i
\(731\) −3.40347 19.3020i −0.125882 0.713912i
\(732\) 0 0
\(733\) −16.8426 46.2746i −0.622094 1.70919i −0.701802 0.712372i \(-0.747621\pi\)
0.0797078 0.996818i \(-0.474601\pi\)
\(734\) −8.82963 + 8.82963i −0.325908 + 0.325908i
\(735\) 0 0
\(736\) 1.04383 5.91983i 0.0384759 0.218208i
\(737\) 38.9750 46.4486i 1.43566 1.71096i
\(738\) 0 0
\(739\) 10.8537i 0.399261i −0.979871 0.199630i \(-0.936026\pi\)
0.979871 0.199630i \(-0.0639741\pi\)
\(740\) 0.995391 4.59213i 0.0365913 0.168810i
\(741\) 0 0
\(742\) 12.3641 + 1.08172i 0.453902 + 0.0397113i
\(743\) 30.9949 + 26.0078i 1.13709 + 0.954134i 0.999340 0.0363330i \(-0.0115677\pi\)
0.137753 + 0.990467i \(0.456012\pi\)
\(744\) 0 0
\(745\) 3.58432 7.68659i 0.131319 0.281615i
\(746\) −5.30203 5.30203i −0.194121 0.194121i
\(747\) 0 0
\(748\) 11.2575 + 3.01643i 0.411613 + 0.110291i
\(749\) −48.7333 + 8.59299i −1.78067 + 0.313981i
\(750\) 0 0
\(751\) −22.2775 + 12.8619i −0.812918 + 0.469338i −0.847968 0.530047i \(-0.822174\pi\)
0.0350504 + 0.999386i \(0.488841\pi\)
\(752\) 6.00898 + 7.16122i 0.219125 + 0.261143i
\(753\) 0 0
\(754\) 8.49048 2.27502i 0.309205 0.0828513i
\(755\) −10.9775 + 5.11890i −0.399513 + 0.186296i
\(756\) 0 0
\(757\) 9.37743 + 6.56615i 0.340828 + 0.238651i 0.731441 0.681904i \(-0.238848\pi\)
−0.390613 + 0.920555i \(0.627737\pi\)
\(758\) 7.70053 0.673709i 0.279696 0.0244702i
\(759\) 0 0
\(760\) 2.55160 3.64406i 0.0925561 0.132184i
\(761\) −4.34813 1.58259i −0.157620 0.0573689i 0.262005 0.965066i \(-0.415616\pi\)
−0.419625 + 0.907698i \(0.637838\pi\)
\(762\) 0 0
\(763\) −12.1485 45.3389i −0.439806 1.64138i
\(764\) −11.4591 16.3653i −0.414576 0.592076i
\(765\) 0 0
\(766\) −2.97273 5.14891i −0.107409 0.186038i
\(767\) 18.1035 31.3563i 0.653681 1.13221i
\(768\) 0 0
\(769\) −10.0271 + 37.4216i −0.361586 + 1.34946i 0.510405 + 0.859934i \(0.329495\pi\)
−0.871991 + 0.489522i \(0.837171\pi\)
\(770\) 16.9962 6.18611i 0.612501 0.222932i
\(771\) 0 0
\(772\) −7.20025 3.35753i −0.259143 0.120840i
\(773\) −34.1798 6.02682i −1.22936 0.216770i −0.479011 0.877809i \(-0.659005\pi\)
−0.750351 + 0.661039i \(0.770116\pi\)
\(774\) 0 0
\(775\) −1.20208 + 13.7398i −0.0431800 + 0.493550i
\(776\) −2.38367 −0.0855686
\(777\) 0 0
\(778\) −33.4206 −1.19819
\(779\) −4.50576 + 51.5011i −0.161436 + 1.84522i
\(780\) 0 0
\(781\) −50.6732 8.93506i −1.81323 0.319722i
\(782\) −13.0972 6.10734i −0.468356 0.218398i
\(783\) 0 0
\(784\) 15.3426 5.58427i 0.547952 0.199438i