Defining parameters
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(666))\).
|
Total |
New |
Old |
Modular forms
| 12888 |
3245 |
9643 |
Cusp forms
| 11737 |
3245 |
8492 |
Eisenstein series
| 1151 |
0 |
1151 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(666))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label |
\(\chi\) |
Newforms |
Dimension |
\(\chi\) degree |
666.2.a |
\(\chi_{666}(1, \cdot)\) |
666.2.a.a |
1 |
1 |
666.2.a.b |
1 |
666.2.a.c |
1 |
666.2.a.d |
1 |
666.2.a.e |
1 |
666.2.a.f |
1 |
666.2.a.g |
1 |
666.2.a.h |
2 |
666.2.a.i |
2 |
666.2.a.j |
2 |
666.2.a.k |
2 |
666.2.c |
\(\chi_{666}(73, \cdot)\) |
666.2.c.a |
2 |
1 |
666.2.c.b |
4 |
666.2.c.c |
4 |
666.2.c.d |
4 |
666.2.e |
\(\chi_{666}(223, \cdot)\) |
666.2.e.a |
2 |
2 |
666.2.e.b |
2 |
666.2.e.c |
12 |
666.2.e.d |
14 |
666.2.e.e |
20 |
666.2.e.f |
22 |
666.2.f |
\(\chi_{666}(343, \cdot)\) |
666.2.f.a |
2 |
2 |
666.2.f.b |
2 |
666.2.f.c |
2 |
666.2.f.d |
2 |
666.2.f.e |
2 |
666.2.f.f |
2 |
666.2.f.g |
4 |
666.2.f.h |
4 |
666.2.f.i |
4 |
666.2.f.j |
6 |
666.2.g |
\(\chi_{666}(211, \cdot)\) |
666.2.g.a |
2 |
2 |
666.2.g.b |
36 |
666.2.g.c |
38 |
666.2.h |
\(\chi_{666}(121, \cdot)\) |
666.2.h.a |
2 |
2 |
666.2.h.b |
36 |
666.2.h.c |
38 |
666.2.j |
\(\chi_{666}(179, \cdot)\) |
666.2.j.a |
4 |
2 |
666.2.j.b |
4 |
666.2.j.c |
4 |
666.2.j.d |
8 |
666.2.k |
\(\chi_{666}(175, \cdot)\) |
666.2.k.a |
76 |
2 |
666.2.q |
\(\chi_{666}(295, \cdot)\) |
666.2.q.a |
4 |
2 |
666.2.q.b |
72 |
666.2.s |
\(\chi_{666}(307, \cdot)\) |
666.2.s.a |
4 |
2 |
666.2.s.b |
4 |
666.2.s.c |
4 |
666.2.s.d |
4 |
666.2.s.e |
4 |
666.2.s.f |
8 |
666.2.t |
\(\chi_{666}(85, \cdot)\) |
666.2.t.a |
76 |
2 |
666.2.w |
\(\chi_{666}(7, \cdot)\) |
666.2.w.a |
114 |
6 |
666.2.w.b |
114 |
666.2.x |
\(\chi_{666}(127, \cdot)\) |
666.2.x.a |
6 |
6 |
666.2.x.b |
6 |
666.2.x.c |
6 |
666.2.x.d |
6 |
666.2.x.e |
6 |
666.2.x.f |
12 |
666.2.x.g |
12 |
666.2.x.h |
24 |
666.2.x.i |
24 |
666.2.y |
\(\chi_{666}(229, \cdot)\) |
666.2.y.a |
114 |
6 |
666.2.y.b |
114 |
666.2.ba |
\(\chi_{666}(23, \cdot)\) |
666.2.ba.a |
152 |
4 |
666.2.bb |
\(\chi_{666}(191, \cdot)\) |
666.2.bb.a |
152 |
4 |
666.2.be |
\(\chi_{666}(125, \cdot)\) |
666.2.be.a |
8 |
4 |
666.2.be.b |
8 |
666.2.be.c |
8 |
666.2.be.d |
16 |
666.2.bf |
\(\chi_{666}(245, \cdot)\) |
666.2.bf.a |
152 |
4 |
666.2.bj |
\(\chi_{666}(289, \cdot)\) |
666.2.bj.a |
12 |
6 |
666.2.bj.b |
12 |
666.2.bj.c |
12 |
666.2.bj.d |
12 |
666.2.bj.e |
24 |
666.2.bj.f |
24 |
666.2.bk |
\(\chi_{666}(115, \cdot)\) |
666.2.bk.a |
228 |
6 |
666.2.bp |
\(\chi_{666}(25, \cdot)\) |
666.2.bp.a |
228 |
6 |
666.2.br |
\(\chi_{666}(59, \cdot)\) |
666.2.br.a |
456 |
12 |
666.2.bs |
\(\chi_{666}(17, \cdot)\) |
666.2.bs.a |
72 |
12 |
666.2.bs.b |
96 |
666.2.bv |
\(\chi_{666}(5, \cdot)\) |
666.2.bv.a |
456 |
12 |