Properties

Label 666.2
Level 666
Weight 2
Dimension 3245
Nonzero newspaces 24
Newform subspaces 83
Sturm bound 49248
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newform subspaces: \( 83 \)
Sturm bound: \(49248\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(666))\).

Total New Old
Modular forms 12888 3245 9643
Cusp forms 11737 3245 8492
Eisenstein series 1151 0 1151

Trace form

\( 3245q + 2q^{2} + 6q^{3} + 2q^{4} - 6q^{6} + 4q^{7} - 4q^{8} - 6q^{9} + O(q^{10}) \) \( 3245q + 2q^{2} + 6q^{3} + 2q^{4} - 6q^{6} + 4q^{7} - 4q^{8} - 6q^{9} - 6q^{11} + 4q^{13} + 4q^{14} + 2q^{16} + 12q^{17} + 12q^{18} + 4q^{19} - 12q^{21} - 6q^{22} - 12q^{23} + 6q^{24} - 10q^{25} + q^{26} + 4q^{28} + 48q^{29} + 100q^{31} + 2q^{32} + 18q^{33} + 66q^{34} + 108q^{35} - 6q^{36} + 92q^{37} + 34q^{38} + 45q^{40} + 126q^{41} + 70q^{43} + 12q^{44} + 96q^{46} + 24q^{47} - 6q^{48} + 42q^{49} - q^{50} - 18q^{51} + 4q^{52} - 48q^{53} - 18q^{54} + 4q^{56} - 6q^{57} + 12q^{58} + 42q^{59} + 61q^{61} + 16q^{62} + 24q^{63} - 4q^{64} + 81q^{65} + 46q^{67} - 6q^{68} + 120q^{71} - 6q^{72} + 28q^{73} - 4q^{74} + 30q^{75} - 2q^{76} + 60q^{77} + 12q^{78} + 64q^{79} + 18q^{81} - 36q^{82} + 60q^{83} + 12q^{84} + 81q^{85} - 2q^{86} - 36q^{87} - 6q^{88} + 21q^{89} - 16q^{91} - 120q^{92} - 216q^{93} - 228q^{94} - 432q^{95} - 422q^{97} - 420q^{98} - 396q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(666))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
666.2.a \(\chi_{666}(1, \cdot)\) 666.2.a.a 1 1
666.2.a.b 1
666.2.a.c 1
666.2.a.d 1
666.2.a.e 1
666.2.a.f 1
666.2.a.g 1
666.2.a.h 2
666.2.a.i 2
666.2.a.j 2
666.2.a.k 2
666.2.c \(\chi_{666}(73, \cdot)\) 666.2.c.a 2 1
666.2.c.b 4
666.2.c.c 4
666.2.c.d 4
666.2.e \(\chi_{666}(223, \cdot)\) 666.2.e.a 2 2
666.2.e.b 2
666.2.e.c 12
666.2.e.d 14
666.2.e.e 20
666.2.e.f 22
666.2.f \(\chi_{666}(343, \cdot)\) 666.2.f.a 2 2
666.2.f.b 2
666.2.f.c 2
666.2.f.d 2
666.2.f.e 2
666.2.f.f 2
666.2.f.g 4
666.2.f.h 4
666.2.f.i 4
666.2.f.j 6
666.2.g \(\chi_{666}(211, \cdot)\) 666.2.g.a 2 2
666.2.g.b 36
666.2.g.c 38
666.2.h \(\chi_{666}(121, \cdot)\) 666.2.h.a 2 2
666.2.h.b 36
666.2.h.c 38
666.2.j \(\chi_{666}(179, \cdot)\) 666.2.j.a 4 2
666.2.j.b 4
666.2.j.c 4
666.2.j.d 8
666.2.k \(\chi_{666}(175, \cdot)\) 666.2.k.a 76 2
666.2.q \(\chi_{666}(295, \cdot)\) 666.2.q.a 4 2
666.2.q.b 72
666.2.s \(\chi_{666}(307, \cdot)\) 666.2.s.a 4 2
666.2.s.b 4
666.2.s.c 4
666.2.s.d 4
666.2.s.e 4
666.2.s.f 8
666.2.t \(\chi_{666}(85, \cdot)\) 666.2.t.a 76 2
666.2.w \(\chi_{666}(7, \cdot)\) 666.2.w.a 114 6
666.2.w.b 114
666.2.x \(\chi_{666}(127, \cdot)\) 666.2.x.a 6 6
666.2.x.b 6
666.2.x.c 6
666.2.x.d 6
666.2.x.e 6
666.2.x.f 12
666.2.x.g 12
666.2.x.h 24
666.2.x.i 24
666.2.y \(\chi_{666}(229, \cdot)\) 666.2.y.a 114 6
666.2.y.b 114
666.2.ba \(\chi_{666}(23, \cdot)\) 666.2.ba.a 152 4
666.2.bb \(\chi_{666}(191, \cdot)\) 666.2.bb.a 152 4
666.2.be \(\chi_{666}(125, \cdot)\) 666.2.be.a 8 4
666.2.be.b 8
666.2.be.c 8
666.2.be.d 16
666.2.bf \(\chi_{666}(245, \cdot)\) 666.2.bf.a 152 4
666.2.bj \(\chi_{666}(289, \cdot)\) 666.2.bj.a 12 6
666.2.bj.b 12
666.2.bj.c 12
666.2.bj.d 12
666.2.bj.e 24
666.2.bj.f 24
666.2.bk \(\chi_{666}(115, \cdot)\) 666.2.bk.a 228 6
666.2.bp \(\chi_{666}(25, \cdot)\) 666.2.bp.a 228 6
666.2.br \(\chi_{666}(59, \cdot)\) 666.2.br.a 456 12
666.2.bs \(\chi_{666}(17, \cdot)\) 666.2.bs.a 72 12
666.2.bs.b 96
666.2.bv \(\chi_{666}(5, \cdot)\) 666.2.bv.a 456 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(666))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(666)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(74))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(111))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(222))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(333))\)\(^{\oplus 2}\)