Properties

Label 666.2
Level 666
Weight 2
Dimension 3245
Nonzero newspaces 24
Newform subspaces 83
Sturm bound 49248
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 666 = 2 \cdot 3^{2} \cdot 37 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Newform subspaces: \( 83 \)
Sturm bound: \(49248\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(666))\).

Total New Old
Modular forms 12888 3245 9643
Cusp forms 11737 3245 8492
Eisenstein series 1151 0 1151

Trace form

\( 3245 q + 2 q^{2} + 6 q^{3} + 2 q^{4} - 6 q^{6} + 4 q^{7} - 4 q^{8} - 6 q^{9} - 6 q^{11} + 4 q^{13} + 4 q^{14} + 2 q^{16} + 12 q^{17} + 12 q^{18} + 4 q^{19} - 12 q^{21} - 6 q^{22} - 12 q^{23} + 6 q^{24}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(666))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
666.2.a \(\chi_{666}(1, \cdot)\) 666.2.a.a 1 1
666.2.a.b 1
666.2.a.c 1
666.2.a.d 1
666.2.a.e 1
666.2.a.f 1
666.2.a.g 1
666.2.a.h 2
666.2.a.i 2
666.2.a.j 2
666.2.a.k 2
666.2.c \(\chi_{666}(73, \cdot)\) 666.2.c.a 2 1
666.2.c.b 4
666.2.c.c 4
666.2.c.d 4
666.2.e \(\chi_{666}(223, \cdot)\) 666.2.e.a 2 2
666.2.e.b 2
666.2.e.c 12
666.2.e.d 14
666.2.e.e 20
666.2.e.f 22
666.2.f \(\chi_{666}(343, \cdot)\) 666.2.f.a 2 2
666.2.f.b 2
666.2.f.c 2
666.2.f.d 2
666.2.f.e 2
666.2.f.f 2
666.2.f.g 4
666.2.f.h 4
666.2.f.i 4
666.2.f.j 6
666.2.g \(\chi_{666}(211, \cdot)\) 666.2.g.a 2 2
666.2.g.b 36
666.2.g.c 38
666.2.h \(\chi_{666}(121, \cdot)\) 666.2.h.a 2 2
666.2.h.b 36
666.2.h.c 38
666.2.j \(\chi_{666}(179, \cdot)\) 666.2.j.a 4 2
666.2.j.b 4
666.2.j.c 4
666.2.j.d 8
666.2.k \(\chi_{666}(175, \cdot)\) 666.2.k.a 76 2
666.2.q \(\chi_{666}(295, \cdot)\) 666.2.q.a 4 2
666.2.q.b 72
666.2.s \(\chi_{666}(307, \cdot)\) 666.2.s.a 4 2
666.2.s.b 4
666.2.s.c 4
666.2.s.d 4
666.2.s.e 4
666.2.s.f 8
666.2.t \(\chi_{666}(85, \cdot)\) 666.2.t.a 76 2
666.2.w \(\chi_{666}(7, \cdot)\) 666.2.w.a 114 6
666.2.w.b 114
666.2.x \(\chi_{666}(127, \cdot)\) 666.2.x.a 6 6
666.2.x.b 6
666.2.x.c 6
666.2.x.d 6
666.2.x.e 6
666.2.x.f 12
666.2.x.g 12
666.2.x.h 24
666.2.x.i 24
666.2.y \(\chi_{666}(229, \cdot)\) 666.2.y.a 114 6
666.2.y.b 114
666.2.ba \(\chi_{666}(23, \cdot)\) 666.2.ba.a 152 4
666.2.bb \(\chi_{666}(191, \cdot)\) 666.2.bb.a 152 4
666.2.be \(\chi_{666}(125, \cdot)\) 666.2.be.a 8 4
666.2.be.b 8
666.2.be.c 8
666.2.be.d 16
666.2.bf \(\chi_{666}(245, \cdot)\) 666.2.bf.a 152 4
666.2.bj \(\chi_{666}(289, \cdot)\) 666.2.bj.a 12 6
666.2.bj.b 12
666.2.bj.c 12
666.2.bj.d 12
666.2.bj.e 24
666.2.bj.f 24
666.2.bk \(\chi_{666}(115, \cdot)\) 666.2.bk.a 228 6
666.2.bp \(\chi_{666}(25, \cdot)\) 666.2.bp.a 228 6
666.2.br \(\chi_{666}(59, \cdot)\) 666.2.br.a 456 12
666.2.bs \(\chi_{666}(17, \cdot)\) 666.2.bs.a 72 12
666.2.bs.b 96
666.2.bv \(\chi_{666}(5, \cdot)\) 666.2.bv.a 456 12

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(666))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(666)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(74))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(111))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(222))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(333))\)\(^{\oplus 2}\)