Properties

Label 650.2.d.c.51.4
Level $650$
Weight $2$
Character 650.51
Analytic conductor $5.190$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(51,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,18,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.126157824.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.4
Root \(-3.10548i\) of defining polynomial
Character \(\chi\) \(=\) 650.51
Dual form 650.2.d.c.51.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -3.10548 q^{3} -1.00000 q^{4} -3.10548i q^{6} -4.10548i q^{7} -1.00000i q^{8} +6.64402 q^{9} +1.53854i q^{11} +3.10548 q^{12} +(-1.26927 + 3.37475i) q^{13} +4.10548 q^{14} +1.00000 q^{16} +3.00000 q^{17} +6.64402i q^{18} +1.10548i q^{19} +12.7495i q^{21} -1.53854 q^{22} -6.74950 q^{23} +3.10548i q^{24} +(-3.37475 - 1.26927i) q^{26} -11.3164 q^{27} +4.10548i q^{28} -5.56694 q^{29} -8.64402i q^{31} +1.00000i q^{32} -4.77791i q^{33} +3.00000i q^{34} -6.64402 q^{36} +4.53854i q^{37} -1.10548 q^{38} +(3.94170 - 10.4802i) q^{39} +7.85499i q^{41} -12.7495 q^{42} +4.00000 q^{43} -1.53854i q^{44} -6.74950i q^{46} +10.8550i q^{47} -3.10548 q^{48} -9.85499 q^{49} -9.31645 q^{51} +(1.26927 - 3.37475i) q^{52} -0.433057 q^{53} -11.3164i q^{54} -4.10548 q^{56} -3.43306i q^{57} -5.56694i q^{58} +13.7779i q^{59} -14.3164 q^{61} +8.64402 q^{62} -27.2769i q^{63} -1.00000 q^{64} +4.77791 q^{66} +3.74950i q^{67} -3.00000 q^{68} +20.9605 q^{69} -6.64402i q^{72} +10.7779i q^{73} -4.53854 q^{74} -1.10548i q^{76} +6.31645 q^{77} +(10.4802 + 3.94170i) q^{78} -6.53854 q^{79} +15.2110 q^{81} -7.85499 q^{82} +4.46146i q^{83} -12.7495i q^{84} +4.00000i q^{86} +17.2880 q^{87} +1.53854 q^{88} +1.85499i q^{89} +(13.8550 + 5.21097i) q^{91} +6.74950 q^{92} +26.8439i q^{93} -10.8550 q^{94} -3.10548i q^{96} +3.78903i q^{97} -9.85499i q^{98} +10.2221i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 18 q^{9} - 6 q^{13} + 6 q^{14} + 6 q^{16} + 18 q^{17} - 6 q^{22} - 12 q^{27} - 18 q^{29} - 18 q^{36} + 12 q^{38} - 12 q^{39} - 36 q^{42} + 24 q^{43} + 6 q^{52} - 18 q^{53} - 6 q^{56} - 30 q^{61}+ \cdots - 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −3.10548 −1.79295 −0.896476 0.443093i \(-0.853881\pi\)
−0.896476 + 0.443093i \(0.853881\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 3.10548i 1.26781i
\(7\) 4.10548i 1.55173i −0.630901 0.775863i \(-0.717315\pi\)
0.630901 0.775863i \(-0.282685\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 6.64402 2.21467
\(10\) 0 0
\(11\) 1.53854i 0.463887i 0.972729 + 0.231944i \(0.0745085\pi\)
−0.972729 + 0.231944i \(0.925492\pi\)
\(12\) 3.10548 0.896476
\(13\) −1.26927 + 3.37475i −0.352032 + 0.935988i
\(14\) 4.10548 1.09724
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 6.64402i 1.56601i
\(19\) 1.10548i 0.253615i 0.991927 + 0.126808i \(0.0404731\pi\)
−0.991927 + 0.126808i \(0.959527\pi\)
\(20\) 0 0
\(21\) 12.7495i 2.78217i
\(22\) −1.53854 −0.328018
\(23\) −6.74950 −1.40737 −0.703685 0.710513i \(-0.748463\pi\)
−0.703685 + 0.710513i \(0.748463\pi\)
\(24\) 3.10548i 0.633904i
\(25\) 0 0
\(26\) −3.37475 1.26927i −0.661843 0.248924i
\(27\) −11.3164 −2.17785
\(28\) 4.10548i 0.775863i
\(29\) −5.56694 −1.03376 −0.516878 0.856059i \(-0.672906\pi\)
−0.516878 + 0.856059i \(0.672906\pi\)
\(30\) 0 0
\(31\) 8.64402i 1.55251i −0.630418 0.776256i \(-0.717116\pi\)
0.630418 0.776256i \(-0.282884\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 4.77791i 0.831727i
\(34\) 3.00000i 0.514496i
\(35\) 0 0
\(36\) −6.64402 −1.10734
\(37\) 4.53854i 0.746131i 0.927805 + 0.373066i \(0.121693\pi\)
−0.927805 + 0.373066i \(0.878307\pi\)
\(38\) −1.10548 −0.179333
\(39\) 3.94170 10.4802i 0.631176 1.67818i
\(40\) 0 0
\(41\) 7.85499i 1.22674i 0.789795 + 0.613371i \(0.210187\pi\)
−0.789795 + 0.613371i \(0.789813\pi\)
\(42\) −12.7495 −1.96729
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 1.53854i 0.231944i
\(45\) 0 0
\(46\) 6.74950i 0.995160i
\(47\) 10.8550i 1.58336i 0.610934 + 0.791681i \(0.290794\pi\)
−0.610934 + 0.791681i \(0.709206\pi\)
\(48\) −3.10548 −0.448238
\(49\) −9.85499 −1.40786
\(50\) 0 0
\(51\) −9.31645 −1.30456
\(52\) 1.26927 3.37475i 0.176016 0.467994i
\(53\) −0.433057 −0.0594850 −0.0297425 0.999558i \(-0.509469\pi\)
−0.0297425 + 0.999558i \(0.509469\pi\)
\(54\) 11.3164i 1.53997i
\(55\) 0 0
\(56\) −4.10548 −0.548618
\(57\) 3.43306i 0.454720i
\(58\) 5.56694i 0.730975i
\(59\) 13.7779i 1.79373i 0.442304 + 0.896865i \(0.354161\pi\)
−0.442304 + 0.896865i \(0.645839\pi\)
\(60\) 0 0
\(61\) −14.3164 −1.83303 −0.916517 0.399997i \(-0.869011\pi\)
−0.916517 + 0.399997i \(0.869011\pi\)
\(62\) 8.64402 1.09779
\(63\) 27.2769i 3.43657i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 4.77791 0.588120
\(67\) 3.74950i 0.458075i 0.973418 + 0.229037i \(0.0735578\pi\)
−0.973418 + 0.229037i \(0.926442\pi\)
\(68\) −3.00000 −0.363803
\(69\) 20.9605 2.52334
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 6.64402i 0.783006i
\(73\) 10.7779i 1.26146i 0.776003 + 0.630729i \(0.217244\pi\)
−0.776003 + 0.630729i \(0.782756\pi\)
\(74\) −4.53854 −0.527595
\(75\) 0 0
\(76\) 1.10548i 0.126808i
\(77\) 6.31645 0.719826
\(78\) 10.4802 + 3.94170i 1.18665 + 0.446309i
\(79\) −6.53854 −0.735643 −0.367822 0.929896i \(-0.619896\pi\)
−0.367822 + 0.929896i \(0.619896\pi\)
\(80\) 0 0
\(81\) 15.2110 1.69011
\(82\) −7.85499 −0.867438
\(83\) 4.46146i 0.489709i 0.969560 + 0.244854i \(0.0787402\pi\)
−0.969560 + 0.244854i \(0.921260\pi\)
\(84\) 12.7495i 1.39109i
\(85\) 0 0
\(86\) 4.00000i 0.431331i
\(87\) 17.2880 1.85347
\(88\) 1.53854 0.164009
\(89\) 1.85499i 0.196628i 0.995155 + 0.0983141i \(0.0313450\pi\)
−0.995155 + 0.0983141i \(0.968655\pi\)
\(90\) 0 0
\(91\) 13.8550 + 5.21097i 1.45240 + 0.546258i
\(92\) 6.74950 0.703685
\(93\) 26.8439i 2.78358i
\(94\) −10.8550 −1.11961
\(95\) 0 0
\(96\) 3.10548i 0.316952i
\(97\) 3.78903i 0.384718i 0.981325 + 0.192359i \(0.0616138\pi\)
−0.981325 + 0.192359i \(0.938386\pi\)
\(98\) 9.85499i 0.995504i
\(99\) 10.2221i 1.02736i
\(100\) 0 0
\(101\) 7.18256 0.714692 0.357346 0.933972i \(-0.383682\pi\)
0.357346 + 0.933972i \(0.383682\pi\)
\(102\) 9.31645i 0.922466i
\(103\) −12.5385 −1.23546 −0.617730 0.786391i \(-0.711947\pi\)
−0.617730 + 0.786391i \(0.711947\pi\)
\(104\) 3.37475 + 1.26927i 0.330922 + 0.124462i
\(105\) 0 0
\(106\) 0.433057i 0.0420622i
\(107\) −1.81744 −0.175698 −0.0878492 0.996134i \(-0.527999\pi\)
−0.0878492 + 0.996134i \(0.527999\pi\)
\(108\) 11.3164 1.08893
\(109\) 3.67243i 0.351755i −0.984412 0.175877i \(-0.943724\pi\)
0.984412 0.175877i \(-0.0562762\pi\)
\(110\) 0 0
\(111\) 14.0944i 1.33778i
\(112\) 4.10548i 0.387932i
\(113\) 16.0660 1.51136 0.755679 0.654942i \(-0.227307\pi\)
0.755679 + 0.654942i \(0.227307\pi\)
\(114\) 3.43306 0.321535
\(115\) 0 0
\(116\) 5.56694 0.516878
\(117\) −8.43306 + 22.4219i −0.779636 + 2.07291i
\(118\) −13.7779 −1.26836
\(119\) 12.3164i 1.12905i
\(120\) 0 0
\(121\) 8.63290 0.784809
\(122\) 14.3164i 1.29615i
\(123\) 24.3935i 2.19949i
\(124\) 8.64402i 0.776256i
\(125\) 0 0
\(126\) 27.2769 2.43002
\(127\) 4.92292 0.436839 0.218419 0.975855i \(-0.429910\pi\)
0.218419 + 0.975855i \(0.429910\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −12.4219 −1.09369
\(130\) 0 0
\(131\) 0.866114 0.0756727 0.0378364 0.999284i \(-0.487953\pi\)
0.0378364 + 0.999284i \(0.487953\pi\)
\(132\) 4.77791i 0.415864i
\(133\) 4.53854 0.393541
\(134\) −3.74950 −0.323908
\(135\) 0 0
\(136\) 3.00000i 0.257248i
\(137\) 16.7779i 1.43343i −0.697364 0.716717i \(-0.745644\pi\)
0.697364 0.716717i \(-0.254356\pi\)
\(138\) 20.9605i 1.78427i
\(139\) −4.39353 −0.372654 −0.186327 0.982488i \(-0.559658\pi\)
−0.186327 + 0.982488i \(0.559658\pi\)
\(140\) 0 0
\(141\) 33.7100i 2.83889i
\(142\) 0 0
\(143\) −5.19219 1.95282i −0.434193 0.163303i
\(144\) 6.64402 0.553669
\(145\) 0 0
\(146\) −10.7779 −0.891986
\(147\) 30.6045 2.52422
\(148\) 4.53854i 0.373066i
\(149\) 9.70998i 0.795472i 0.917500 + 0.397736i \(0.130204\pi\)
−0.917500 + 0.397736i \(0.869796\pi\)
\(150\) 0 0
\(151\) 2.48986i 0.202622i 0.994855 + 0.101311i \(0.0323038\pi\)
−0.994855 + 0.101311i \(0.967696\pi\)
\(152\) 1.10548 0.0896665
\(153\) 19.9321 1.61141
\(154\) 6.31645i 0.508994i
\(155\) 0 0
\(156\) −3.94170 + 10.4802i −0.315588 + 0.839090i
\(157\) −11.3935 −0.909302 −0.454651 0.890670i \(-0.650236\pi\)
−0.454651 + 0.890670i \(0.650236\pi\)
\(158\) 6.53854i 0.520178i
\(159\) 1.34485 0.106654
\(160\) 0 0
\(161\) 27.7100i 2.18385i
\(162\) 15.2110i 1.19509i
\(163\) 16.8155i 1.31709i −0.752542 0.658544i \(-0.771173\pi\)
0.752542 0.658544i \(-0.228827\pi\)
\(164\) 7.85499i 0.613371i
\(165\) 0 0
\(166\) −4.46146 −0.346276
\(167\) 1.61562i 0.125020i −0.998044 0.0625102i \(-0.980089\pi\)
0.998044 0.0625102i \(-0.0199106\pi\)
\(168\) 12.7495 0.983646
\(169\) −9.77791 8.56694i −0.752147 0.658996i
\(170\) 0 0
\(171\) 7.34485i 0.561675i
\(172\) −4.00000 −0.304997
\(173\) −12.3164 −0.936402 −0.468201 0.883622i \(-0.655098\pi\)
−0.468201 + 0.883622i \(0.655098\pi\)
\(174\) 17.2880i 1.31060i
\(175\) 0 0
\(176\) 1.53854i 0.115972i
\(177\) 42.7871i 3.21607i
\(178\) −1.85499 −0.139037
\(179\) 10.1826 0.761080 0.380540 0.924764i \(-0.375738\pi\)
0.380540 + 0.924764i \(0.375738\pi\)
\(180\) 0 0
\(181\) 11.3935 0.846874 0.423437 0.905926i \(-0.360823\pi\)
0.423437 + 0.905926i \(0.360823\pi\)
\(182\) −5.21097 + 13.8550i −0.386262 + 1.02700i
\(183\) 44.4595 3.28654
\(184\) 6.74950i 0.497580i
\(185\) 0 0
\(186\) −26.8439 −1.96829
\(187\) 4.61562i 0.337527i
\(188\) 10.8550i 0.791681i
\(189\) 46.4595i 3.37943i
\(190\) 0 0
\(191\) −19.4990 −1.41090 −0.705449 0.708760i \(-0.749255\pi\)
−0.705449 + 0.708760i \(0.749255\pi\)
\(192\) 3.10548 0.224119
\(193\) 2.72110i 0.195869i 0.995193 + 0.0979346i \(0.0312236\pi\)
−0.995193 + 0.0979346i \(0.968776\pi\)
\(194\) −3.78903 −0.272037
\(195\) 0 0
\(196\) 9.85499 0.703928
\(197\) 1.61562i 0.115108i −0.998342 0.0575540i \(-0.981670\pi\)
0.998342 0.0575540i \(-0.0183302\pi\)
\(198\) −10.2221 −0.726452
\(199\) −22.2485 −1.57716 −0.788578 0.614935i \(-0.789182\pi\)
−0.788578 + 0.614935i \(0.789182\pi\)
\(200\) 0 0
\(201\) 11.6440i 0.821306i
\(202\) 7.18256i 0.505363i
\(203\) 22.8550i 1.60411i
\(204\) 9.31645 0.652282
\(205\) 0 0
\(206\) 12.5385i 0.873601i
\(207\) −44.8439 −3.11686
\(208\) −1.26927 + 3.37475i −0.0880080 + 0.233997i
\(209\) −1.70083 −0.117649
\(210\) 0 0
\(211\) 10.2394 0.704907 0.352454 0.935829i \(-0.385347\pi\)
0.352454 + 0.935829i \(0.385347\pi\)
\(212\) 0.433057 0.0297425
\(213\) 0 0
\(214\) 1.81744i 0.124238i
\(215\) 0 0
\(216\) 11.3164i 0.769987i
\(217\) −35.4879 −2.40907
\(218\) 3.67243 0.248728
\(219\) 33.4706i 2.26173i
\(220\) 0 0
\(221\) −3.80781 + 10.1243i −0.256141 + 0.681031i
\(222\) 14.0944 0.945951
\(223\) 20.9605i 1.40362i 0.712366 + 0.701808i \(0.247624\pi\)
−0.712366 + 0.701808i \(0.752376\pi\)
\(224\) 4.10548 0.274309
\(225\) 0 0
\(226\) 16.0660i 1.06869i
\(227\) 4.85499i 0.322237i −0.986935 0.161118i \(-0.948490\pi\)
0.986935 0.161118i \(-0.0515101\pi\)
\(228\) 3.43306i 0.227360i
\(229\) 6.71196i 0.443538i 0.975099 + 0.221769i \(0.0711832\pi\)
−0.975099 + 0.221769i \(0.928817\pi\)
\(230\) 0 0
\(231\) −19.6156 −1.29061
\(232\) 5.56694i 0.365488i
\(233\) 14.3651 0.941091 0.470545 0.882376i \(-0.344057\pi\)
0.470545 + 0.882376i \(0.344057\pi\)
\(234\) −22.4219 8.43306i −1.46577 0.551286i
\(235\) 0 0
\(236\) 13.7779i 0.896865i
\(237\) 20.3053 1.31897
\(238\) 12.3164 0.798357
\(239\) 1.14501i 0.0740647i 0.999314 + 0.0370324i \(0.0117905\pi\)
−0.999314 + 0.0370324i \(0.988210\pi\)
\(240\) 0 0
\(241\) 20.5669i 1.32483i 0.749136 + 0.662417i \(0.230469\pi\)
−0.749136 + 0.662417i \(0.769531\pi\)
\(242\) 8.63290i 0.554944i
\(243\) −13.2880 −0.852428
\(244\) 14.3164 0.916517
\(245\) 0 0
\(246\) 24.3935 1.55527
\(247\) −3.73073 1.40316i −0.237381 0.0892807i
\(248\) −8.64402 −0.548896
\(249\) 13.8550i 0.878024i
\(250\) 0 0
\(251\) 3.31645 0.209332 0.104666 0.994507i \(-0.466623\pi\)
0.104666 + 0.994507i \(0.466623\pi\)
\(252\) 27.2769i 1.71828i
\(253\) 10.3844i 0.652860i
\(254\) 4.92292i 0.308892i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.4331 0.775553 0.387776 0.921753i \(-0.373243\pi\)
0.387776 + 0.921753i \(0.373243\pi\)
\(258\) 12.4219i 0.773356i
\(259\) 18.6329 1.15779
\(260\) 0 0
\(261\) −36.9869 −2.28943
\(262\) 0.866114i 0.0535087i
\(263\) 4.38438 0.270353 0.135176 0.990822i \(-0.456840\pi\)
0.135176 + 0.990822i \(0.456840\pi\)
\(264\) −4.77791 −0.294060
\(265\) 0 0
\(266\) 4.53854i 0.278276i
\(267\) 5.76063i 0.352545i
\(268\) 3.74950i 0.229037i
\(269\) −5.56694 −0.339423 −0.169711 0.985494i \(-0.554284\pi\)
−0.169711 + 0.985494i \(0.554284\pi\)
\(270\) 0 0
\(271\) 9.39353i 0.570616i −0.958436 0.285308i \(-0.907904\pi\)
0.958436 0.285308i \(-0.0920959\pi\)
\(272\) 3.00000 0.181902
\(273\) −43.0264 16.1826i −2.60408 0.979413i
\(274\) 16.7779 1.01359
\(275\) 0 0
\(276\) −20.9605 −1.26167
\(277\) 8.38438 0.503769 0.251884 0.967757i \(-0.418950\pi\)
0.251884 + 0.967757i \(0.418950\pi\)
\(278\) 4.39353i 0.263506i
\(279\) 57.4311i 3.43831i
\(280\) 0 0
\(281\) 12.6329i 0.753615i −0.926292 0.376808i \(-0.877022\pi\)
0.926292 0.376808i \(-0.122978\pi\)
\(282\) 33.7100 2.00740
\(283\) −13.4706 −0.800744 −0.400372 0.916353i \(-0.631119\pi\)
−0.400372 + 0.916353i \(0.631119\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.95282 5.19219i 0.115473 0.307021i
\(287\) 32.2485 1.90357
\(288\) 6.64402i 0.391503i
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 11.7668i 0.689781i
\(292\) 10.7779i 0.630729i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 30.6045i 1.78489i
\(295\) 0 0
\(296\) 4.53854 0.263797
\(297\) 17.4108i 1.01028i
\(298\) −9.70998 −0.562484
\(299\) 8.56694 22.7779i 0.495439 1.31728i
\(300\) 0 0
\(301\) 16.4219i 0.946544i
\(302\) −2.48986 −0.143276
\(303\) −22.3053 −1.28141
\(304\) 1.10548i 0.0634038i
\(305\) 0 0
\(306\) 19.9321i 1.13944i
\(307\) 13.8925i 0.792889i 0.918059 + 0.396444i \(0.129756\pi\)
−0.918059 + 0.396444i \(0.870244\pi\)
\(308\) −6.31645 −0.359913
\(309\) 38.9382 2.21512
\(310\) 0 0
\(311\) 3.51827 0.199503 0.0997513 0.995012i \(-0.468195\pi\)
0.0997513 + 0.995012i \(0.468195\pi\)
\(312\) −10.4802 3.94170i −0.593326 0.223155i
\(313\) −24.5650 −1.38849 −0.694247 0.719737i \(-0.744262\pi\)
−0.694247 + 0.719737i \(0.744262\pi\)
\(314\) 11.3935i 0.642974i
\(315\) 0 0
\(316\) 6.53854 0.367822
\(317\) 1.46146i 0.0820838i 0.999157 + 0.0410419i \(0.0130677\pi\)
−0.999157 + 0.0410419i \(0.986932\pi\)
\(318\) 1.34485i 0.0754155i
\(319\) 8.56496i 0.479546i
\(320\) 0 0
\(321\) 5.64402 0.315019
\(322\) −27.7100 −1.54422
\(323\) 3.31645i 0.184532i
\(324\) −15.2110 −0.845054
\(325\) 0 0
\(326\) 16.8155 0.931322
\(327\) 11.4047i 0.630679i
\(328\) 7.85499 0.433719
\(329\) 44.5650 2.45695
\(330\) 0 0
\(331\) 18.2394i 1.00253i −0.865295 0.501263i \(-0.832869\pi\)
0.865295 0.501263i \(-0.167131\pi\)
\(332\) 4.46146i 0.244854i
\(333\) 30.1542i 1.65244i
\(334\) 1.61562 0.0884027
\(335\) 0 0
\(336\) 12.7495i 0.695543i
\(337\) −19.6329 −1.06947 −0.534736 0.845019i \(-0.679589\pi\)
−0.534736 + 0.845019i \(0.679589\pi\)
\(338\) 8.56694 9.77791i 0.465980 0.531848i
\(339\) −49.8925 −2.70979
\(340\) 0 0
\(341\) 13.2992 0.720190
\(342\) −7.34485 −0.397164
\(343\) 11.7211i 0.632880i
\(344\) 4.00000i 0.215666i
\(345\) 0 0
\(346\) 12.3164i 0.662136i
\(347\) −23.6816 −1.27129 −0.635647 0.771980i \(-0.719266\pi\)
−0.635647 + 0.771980i \(0.719266\pi\)
\(348\) −17.2880 −0.926736
\(349\) 0.154159i 0.00825192i 0.999991 + 0.00412596i \(0.00131334\pi\)
−0.999991 + 0.00412596i \(0.998687\pi\)
\(350\) 0 0
\(351\) 14.3636 38.1902i 0.766674 2.03844i
\(352\) −1.53854 −0.0820044
\(353\) 36.6329i 1.94977i −0.222704 0.974886i \(-0.571488\pi\)
0.222704 0.974886i \(-0.428512\pi\)
\(354\) 42.7871 2.27411
\(355\) 0 0
\(356\) 1.85499i 0.0983141i
\(357\) 38.2485i 2.02433i
\(358\) 10.1826i 0.538165i
\(359\) 27.2394i 1.43764i 0.695197 + 0.718819i \(0.255317\pi\)
−0.695197 + 0.718819i \(0.744683\pi\)
\(360\) 0 0
\(361\) 17.7779 0.935679
\(362\) 11.3935i 0.598830i
\(363\) −26.8093 −1.40712
\(364\) −13.8550 5.21097i −0.726199 0.273129i
\(365\) 0 0
\(366\) 44.4595i 2.32393i
\(367\) −23.8641 −1.24570 −0.622849 0.782342i \(-0.714025\pi\)
−0.622849 + 0.782342i \(0.714025\pi\)
\(368\) −6.74950 −0.351842
\(369\) 52.1887i 2.71684i
\(370\) 0 0
\(371\) 1.77791i 0.0923044i
\(372\) 26.8439i 1.39179i
\(373\) −22.3164 −1.15550 −0.577751 0.816213i \(-0.696070\pi\)
−0.577751 + 0.816213i \(0.696070\pi\)
\(374\) −4.61562 −0.238668
\(375\) 0 0
\(376\) 10.8550 0.559803
\(377\) 7.06595 18.7871i 0.363915 0.967583i
\(378\) −46.4595 −2.38962
\(379\) 9.74950i 0.500798i 0.968143 + 0.250399i \(0.0805619\pi\)
−0.968143 + 0.250399i \(0.919438\pi\)
\(380\) 0 0
\(381\) −15.2880 −0.783230
\(382\) 19.4990i 0.997656i
\(383\) 24.7871i 1.26656i 0.773923 + 0.633280i \(0.218292\pi\)
−0.773923 + 0.633280i \(0.781708\pi\)
\(384\) 3.10548i 0.158476i
\(385\) 0 0
\(386\) −2.72110 −0.138500
\(387\) 26.5761 1.35094
\(388\) 3.78903i 0.192359i
\(389\) −0.749505 −0.0380014 −0.0190007 0.999819i \(-0.506048\pi\)
−0.0190007 + 0.999819i \(0.506048\pi\)
\(390\) 0 0
\(391\) −20.2485 −1.02401
\(392\) 9.85499i 0.497752i
\(393\) −2.68970 −0.135678
\(394\) 1.61562 0.0813937
\(395\) 0 0
\(396\) 10.2221i 0.513679i
\(397\) 9.67243i 0.485445i −0.970096 0.242723i \(-0.921960\pi\)
0.970096 0.242723i \(-0.0780405\pi\)
\(398\) 22.2485i 1.11522i
\(399\) −14.0944 −0.705600
\(400\) 0 0
\(401\) 10.9321i 0.545921i 0.962025 + 0.272961i \(0.0880029\pi\)
−0.962025 + 0.272961i \(0.911997\pi\)
\(402\) 11.6440 0.580751
\(403\) 29.1714 + 10.9716i 1.45313 + 0.546534i
\(404\) −7.18256 −0.357346
\(405\) 0 0
\(406\) −22.8550 −1.13427
\(407\) −6.98272 −0.346121
\(408\) 9.31645i 0.461233i
\(409\) 26.5669i 1.31365i −0.754043 0.656825i \(-0.771899\pi\)
0.754043 0.656825i \(-0.228101\pi\)
\(410\) 0 0
\(411\) 52.1035i 2.57008i
\(412\) 12.5385 0.617730
\(413\) 56.5650 2.78338
\(414\) 44.8439i 2.20396i
\(415\) 0 0
\(416\) −3.37475 1.26927i −0.165461 0.0622311i
\(417\) 13.6440 0.668151
\(418\) 1.70083i 0.0831903i
\(419\) 24.3145 1.18784 0.593920 0.804524i \(-0.297580\pi\)
0.593920 + 0.804524i \(0.297580\pi\)
\(420\) 0 0
\(421\) 6.15416i 0.299935i −0.988691 0.149968i \(-0.952083\pi\)
0.988691 0.149968i \(-0.0479170\pi\)
\(422\) 10.2394i 0.498445i
\(423\) 72.1208i 3.50663i
\(424\) 0.433057i 0.0210311i
\(425\) 0 0
\(426\) 0 0
\(427\) 58.7759i 2.84437i
\(428\) 1.81744 0.0878492
\(429\) 16.1243 + 6.06445i 0.778486 + 0.292795i
\(430\) 0 0
\(431\) 0.828565i 0.0399106i 0.999801 + 0.0199553i \(0.00635238\pi\)
−0.999801 + 0.0199553i \(0.993648\pi\)
\(432\) −11.3164 −0.544463
\(433\) 15.7008 0.754534 0.377267 0.926105i \(-0.376864\pi\)
0.377267 + 0.926105i \(0.376864\pi\)
\(434\) 35.4879i 1.70347i
\(435\) 0 0
\(436\) 3.67243i 0.175877i
\(437\) 7.46146i 0.356930i
\(438\) 33.4706 1.59929
\(439\) −9.17144 −0.437729 −0.218864 0.975755i \(-0.570235\pi\)
−0.218864 + 0.975755i \(0.570235\pi\)
\(440\) 0 0
\(441\) −65.4768 −3.11794
\(442\) −10.1243 3.80781i −0.481562 0.181119i
\(443\) 15.3164 0.727706 0.363853 0.931456i \(-0.381461\pi\)
0.363853 + 0.931456i \(0.381461\pi\)
\(444\) 14.0944i 0.668889i
\(445\) 0 0
\(446\) −20.9605 −0.992507
\(447\) 30.1542i 1.42624i
\(448\) 4.10548i 0.193966i
\(449\) 23.4108i 1.10482i −0.833571 0.552412i \(-0.813708\pi\)
0.833571 0.552412i \(-0.186292\pi\)
\(450\) 0 0
\(451\) −12.0852 −0.569070
\(452\) −16.0660 −0.755679
\(453\) 7.73223i 0.363292i
\(454\) 4.85499 0.227856
\(455\) 0 0
\(456\) −3.43306 −0.160768
\(457\) 22.9321i 1.07272i −0.843990 0.536358i \(-0.819800\pi\)
0.843990 0.536358i \(-0.180200\pi\)
\(458\) −6.71196 −0.313629
\(459\) −33.9493 −1.58462
\(460\) 0 0
\(461\) 13.4615i 0.626963i −0.949594 0.313481i \(-0.898505\pi\)
0.949594 0.313481i \(-0.101495\pi\)
\(462\) 19.6156i 0.912601i
\(463\) 16.0264i 0.744811i −0.928070 0.372406i \(-0.878533\pi\)
0.928070 0.372406i \(-0.121467\pi\)
\(464\) −5.56694 −0.258439
\(465\) 0 0
\(466\) 14.3651i 0.665452i
\(467\) −0.866114 −0.0400790 −0.0200395 0.999799i \(-0.506379\pi\)
−0.0200395 + 0.999799i \(0.506379\pi\)
\(468\) 8.43306 22.4219i 0.389818 1.03645i
\(469\) 15.3935 0.710807
\(470\) 0 0
\(471\) 35.3824 1.63033
\(472\) 13.7779 0.634180
\(473\) 6.15416i 0.282969i
\(474\) 20.3053i 0.932654i
\(475\) 0 0
\(476\) 12.3164i 0.564523i
\(477\) −2.87724 −0.131740
\(478\) −1.14501 −0.0523717
\(479\) 29.4879i 1.34734i 0.739034 + 0.673668i \(0.235282\pi\)
−0.739034 + 0.673668i \(0.764718\pi\)
\(480\) 0 0
\(481\) −15.3164 5.76063i −0.698370 0.262662i
\(482\) −20.5669 −0.936799
\(483\) 86.0528i 3.91554i
\(484\) −8.63290 −0.392404
\(485\) 0 0
\(486\) 13.2880i 0.602758i
\(487\) 35.4503i 1.60641i 0.595704 + 0.803204i \(0.296873\pi\)
−0.595704 + 0.803204i \(0.703127\pi\)
\(488\) 14.3164i 0.648075i
\(489\) 52.2201i 2.36148i
\(490\) 0 0
\(491\) −32.1319 −1.45009 −0.725046 0.688700i \(-0.758182\pi\)
−0.725046 + 0.688700i \(0.758182\pi\)
\(492\) 24.3935i 1.09975i
\(493\) −16.7008 −0.752168
\(494\) 1.40316 3.73073i 0.0631310 0.167853i
\(495\) 0 0
\(496\) 8.64402i 0.388128i
\(497\) 0 0
\(498\) 13.8550 0.620857
\(499\) 27.2769i 1.22108i −0.791984 0.610541i \(-0.790952\pi\)
0.791984 0.610541i \(-0.209048\pi\)
\(500\) 0 0
\(501\) 5.01728i 0.224155i
\(502\) 3.31645i 0.148020i
\(503\) 26.9980 1.20378 0.601891 0.798578i \(-0.294414\pi\)
0.601891 + 0.798578i \(0.294414\pi\)
\(504\) −27.2769 −1.21501
\(505\) 0 0
\(506\) 10.3844 0.461642
\(507\) 30.3651 + 26.6045i 1.34856 + 1.18155i
\(508\) −4.92292 −0.218419
\(509\) 38.8814i 1.72339i 0.507428 + 0.861694i \(0.330596\pi\)
−0.507428 + 0.861694i \(0.669404\pi\)
\(510\) 0 0
\(511\) 44.2485 1.95744
\(512\) 1.00000i 0.0441942i
\(513\) 12.5101i 0.552336i
\(514\) 12.4331i 0.548399i
\(515\) 0 0
\(516\) 12.4219 0.546845
\(517\) −16.7008 −0.734502
\(518\) 18.6329i 0.818682i
\(519\) 38.2485 1.67892
\(520\) 0 0
\(521\) 4.06595 0.178133 0.0890663 0.996026i \(-0.471612\pi\)
0.0890663 + 0.996026i \(0.471612\pi\)
\(522\) 36.9869i 1.61887i
\(523\) 34.8723 1.52486 0.762429 0.647072i \(-0.224007\pi\)
0.762429 + 0.647072i \(0.224007\pi\)
\(524\) −0.866114 −0.0378364
\(525\) 0 0
\(526\) 4.38438i 0.191168i
\(527\) 25.9321i 1.12962i
\(528\) 4.77791i 0.207932i
\(529\) 22.5558 0.980688
\(530\) 0 0
\(531\) 91.5407i 3.97253i
\(532\) −4.53854 −0.196771
\(533\) −26.5086 9.97010i −1.14822 0.431853i
\(534\) 5.76063 0.249287
\(535\) 0 0
\(536\) 3.74950 0.161954
\(537\) −31.6218 −1.36458
\(538\) 5.56694i 0.240008i
\(539\) 15.1623i 0.653086i
\(540\) 0 0
\(541\) 37.2282i 1.60057i −0.599622 0.800284i \(-0.704682\pi\)
0.599622 0.800284i \(-0.295318\pi\)
\(542\) 9.39353 0.403487
\(543\) −35.3824 −1.51840
\(544\) 3.00000i 0.128624i
\(545\) 0 0
\(546\) 16.1826 43.0264i 0.692550 1.84136i
\(547\) −35.9493 −1.53708 −0.768541 0.639800i \(-0.779017\pi\)
−0.768541 + 0.639800i \(0.779017\pi\)
\(548\) 16.7779i 0.716717i
\(549\) −95.1188 −4.05957
\(550\) 0 0
\(551\) 6.15416i 0.262176i
\(552\) 20.9605i 0.892137i
\(553\) 26.8439i 1.14152i
\(554\) 8.38438i 0.356218i
\(555\) 0 0
\(556\) 4.39353 0.186327
\(557\) 14.0944i 0.597197i 0.954379 + 0.298599i \(0.0965191\pi\)
−0.954379 + 0.298599i \(0.903481\pi\)
\(558\) 57.4311 2.43125
\(559\) −5.07708 + 13.4990i −0.214738 + 0.570947i
\(560\) 0 0
\(561\) 14.3337i 0.605170i
\(562\) 12.6329 0.532887
\(563\) −28.2678 −1.19134 −0.595672 0.803228i \(-0.703114\pi\)
−0.595672 + 0.803228i \(0.703114\pi\)
\(564\) 33.7100i 1.41945i
\(565\) 0 0
\(566\) 13.4706i 0.566212i
\(567\) 62.4484i 2.62258i
\(568\) 0 0
\(569\) −26.1339 −1.09559 −0.547795 0.836613i \(-0.684533\pi\)
−0.547795 + 0.836613i \(0.684533\pi\)
\(570\) 0 0
\(571\) 10.7871 0.451424 0.225712 0.974194i \(-0.427529\pi\)
0.225712 + 0.974194i \(0.427529\pi\)
\(572\) 5.19219 + 1.95282i 0.217096 + 0.0816516i
\(573\) 60.5538 2.52967
\(574\) 32.2485i 1.34603i
\(575\) 0 0
\(576\) −6.64402 −0.276834
\(577\) 12.1228i 0.504677i −0.967639 0.252339i \(-0.918800\pi\)
0.967639 0.252339i \(-0.0811997\pi\)
\(578\) 8.00000i 0.332756i
\(579\) 8.45033i 0.351184i
\(580\) 0 0
\(581\) 18.3164 0.759894
\(582\) 11.7668 0.487749
\(583\) 0.666275i 0.0275943i
\(584\) 10.7779 0.445993
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 35.2485i 1.45486i 0.686181 + 0.727431i \(0.259286\pi\)
−0.686181 + 0.727431i \(0.740714\pi\)
\(588\) −30.6045 −1.26211
\(589\) 9.55582 0.393741
\(590\) 0 0
\(591\) 5.01728i 0.206383i
\(592\) 4.53854i 0.186533i
\(593\) 11.0862i 0.455257i −0.973748 0.227628i \(-0.926903\pi\)
0.973748 0.227628i \(-0.0730971\pi\)
\(594\) 17.4108 0.714374
\(595\) 0 0
\(596\) 9.70998i 0.397736i
\(597\) 69.0924 2.82776
\(598\) 22.7779 + 8.56694i 0.931458 + 0.350328i
\(599\) 31.4990 1.28701 0.643507 0.765440i \(-0.277479\pi\)
0.643507 + 0.765440i \(0.277479\pi\)
\(600\) 0 0
\(601\) 19.6329 0.800843 0.400421 0.916331i \(-0.368864\pi\)
0.400421 + 0.916331i \(0.368864\pi\)
\(602\) 16.4219 0.669308
\(603\) 24.9118i 1.01449i
\(604\) 2.48986i 0.101311i
\(605\) 0 0
\(606\) 22.3053i 0.906092i
\(607\) 17.6156 0.714996 0.357498 0.933914i \(-0.383630\pi\)
0.357498 + 0.933914i \(0.383630\pi\)
\(608\) −1.10548 −0.0448332
\(609\) 70.9758i 2.87608i
\(610\) 0 0
\(611\) −36.6329 13.7779i −1.48201 0.557395i
\(612\) −19.9321 −0.805706
\(613\) 25.4200i 1.02670i −0.858179 0.513351i \(-0.828404\pi\)
0.858179 0.513351i \(-0.171596\pi\)
\(614\) −13.8925 −0.560657
\(615\) 0 0
\(616\) 6.31645i 0.254497i
\(617\) 27.7100i 1.11556i −0.829988 0.557781i \(-0.811653\pi\)
0.829988 0.557781i \(-0.188347\pi\)
\(618\) 38.9382i 1.56632i
\(619\) 20.8439i 0.837786i 0.908036 + 0.418893i \(0.137582\pi\)
−0.908036 + 0.418893i \(0.862418\pi\)
\(620\) 0 0
\(621\) 76.3804 3.06504
\(622\) 3.51827i 0.141070i
\(623\) 7.61562 0.305113
\(624\) 3.94170 10.4802i 0.157794 0.419545i
\(625\) 0 0
\(626\) 24.5650i 0.981813i
\(627\) 5.28189 0.210939
\(628\) 11.3935 0.454651
\(629\) 13.6156i 0.542890i
\(630\) 0 0
\(631\) 30.7495i 1.22412i 0.790812 + 0.612059i \(0.209659\pi\)
−0.790812 + 0.612059i \(0.790341\pi\)
\(632\) 6.53854i 0.260089i
\(633\) −31.7982 −1.26386
\(634\) −1.46146 −0.0580420
\(635\) 0 0
\(636\) −1.34485 −0.0533268
\(637\) 12.5086 33.2581i 0.495610 1.31774i
\(638\) 8.56496 0.339090
\(639\) 0 0
\(640\) 0 0
\(641\) 19.0660 0.753060 0.376530 0.926404i \(-0.377117\pi\)
0.376530 + 0.926404i \(0.377117\pi\)
\(642\) 5.64402i 0.222752i
\(643\) 45.8641i 1.80870i −0.426786 0.904352i \(-0.640354\pi\)
0.426786 0.904352i \(-0.359646\pi\)
\(644\) 27.7100i 1.09193i
\(645\) 0 0
\(646\) −3.31645 −0.130484
\(647\) 11.0173 0.433134 0.216567 0.976268i \(-0.430514\pi\)
0.216567 + 0.976268i \(0.430514\pi\)
\(648\) 15.2110i 0.597543i
\(649\) −21.1979 −0.832089
\(650\) 0 0
\(651\) 110.207 4.31935
\(652\) 16.8155i 0.658544i
\(653\) −14.5650 −0.569971 −0.284986 0.958532i \(-0.591989\pi\)
−0.284986 + 0.958532i \(0.591989\pi\)
\(654\) −11.4047 −0.445957
\(655\) 0 0
\(656\) 7.85499i 0.306686i
\(657\) 71.6087i 2.79372i
\(658\) 44.5650i 1.73732i
\(659\) 19.8174 0.771978 0.385989 0.922503i \(-0.373860\pi\)
0.385989 + 0.922503i \(0.373860\pi\)
\(660\) 0 0
\(661\) 13.4615i 0.523590i 0.965123 + 0.261795i \(0.0843145\pi\)
−0.965123 + 0.261795i \(0.915686\pi\)
\(662\) 18.2394 0.708893
\(663\) 11.8251 31.4407i 0.459248 1.22106i
\(664\) 4.46146 0.173138
\(665\) 0 0
\(666\) −30.1542 −1.16845
\(667\) 37.5741 1.45488
\(668\) 1.61562i 0.0625102i
\(669\) 65.0924i 2.51662i
\(670\) 0 0
\(671\) 22.0264i 0.850321i
\(672\) −12.7495 −0.491823
\(673\) −0.0679332 −0.00261863 −0.00130932 0.999999i \(-0.500417\pi\)
−0.00130932 + 0.999999i \(0.500417\pi\)
\(674\) 19.6329i 0.756231i
\(675\) 0 0
\(676\) 9.77791 + 8.56694i 0.376073 + 0.329498i
\(677\) −26.1319 −1.00433 −0.502165 0.864772i \(-0.667463\pi\)
−0.502165 + 0.864772i \(0.667463\pi\)
\(678\) 49.8925i 1.91611i
\(679\) 15.5558 0.596977
\(680\) 0 0
\(681\) 15.0771i 0.577755i
\(682\) 13.2992i 0.509252i
\(683\) 17.0944i 0.654097i 0.945007 + 0.327049i \(0.106054\pi\)
−0.945007 + 0.327049i \(0.893946\pi\)
\(684\) 7.34485i 0.280837i
\(685\) 0 0
\(686\) −11.7211 −0.447514
\(687\) 20.8439i 0.795243i
\(688\) 4.00000 0.152499
\(689\) 0.549666 1.46146i 0.0209406 0.0556772i
\(690\) 0 0
\(691\) 25.3844i 0.965667i −0.875712 0.482834i \(-0.839608\pi\)
0.875712 0.482834i \(-0.160392\pi\)
\(692\) 12.3164 0.468201
\(693\) 41.9666 1.59418
\(694\) 23.6816i 0.898940i
\(695\) 0 0
\(696\) 17.2880i 0.655302i
\(697\) 23.5650i 0.892587i
\(698\) −0.154159 −0.00583499
\(699\) −44.6106 −1.68733
\(700\) 0 0
\(701\) 9.43108 0.356207 0.178103 0.984012i \(-0.443004\pi\)
0.178103 + 0.984012i \(0.443004\pi\)
\(702\) 38.1902 + 14.3636i 1.44140 + 0.542120i
\(703\) −5.01728 −0.189230
\(704\) 1.53854i 0.0579859i
\(705\) 0 0
\(706\) 36.6329 1.37870
\(707\) 29.4879i 1.10901i
\(708\) 42.7871i 1.60804i
\(709\) 20.1734i 0.757629i 0.925473 + 0.378814i \(0.123668\pi\)
−0.925473 + 0.378814i \(0.876332\pi\)
\(710\) 0 0
\(711\) −43.4422 −1.62921
\(712\) 1.85499 0.0695186
\(713\) 58.3429i 2.18496i
\(714\) −38.2485 −1.43141
\(715\) 0 0
\(716\) −10.1826 −0.380540
\(717\) 3.55582i 0.132794i
\(718\) −27.2394 −1.01656
\(719\) −31.4990 −1.17471 −0.587357 0.809328i \(-0.699832\pi\)
−0.587357 + 0.809328i \(0.699832\pi\)
\(720\) 0 0
\(721\) 51.4768i 1.91709i
\(722\) 17.7779i 0.661625i
\(723\) 63.8703i 2.37536i
\(724\) −11.3935 −0.423437
\(725\) 0 0
\(726\) 26.8093i 0.994987i
\(727\) 22.8814 0.848625 0.424312 0.905516i \(-0.360516\pi\)
0.424312 + 0.905516i \(0.360516\pi\)
\(728\) 5.21097 13.8550i 0.193131 0.513500i
\(729\) −4.36710 −0.161745
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) −44.4595 −1.64327
\(733\) 48.1126i 1.77708i −0.458798 0.888541i \(-0.651720\pi\)
0.458798 0.888541i \(-0.348280\pi\)
\(734\) 23.8641i 0.880841i
\(735\) 0 0
\(736\) 6.74950i 0.248790i
\(737\) −5.76876 −0.212495
\(738\) −52.1887 −1.92109
\(739\) 19.9321i 0.733213i 0.930376 + 0.366606i \(0.119480\pi\)
−0.930376 + 0.366606i \(0.880520\pi\)
\(740\) 0 0
\(741\) 11.5857 + 4.35748i 0.425612 + 0.160076i
\(742\) −1.77791 −0.0652691
\(743\) 24.6248i 0.903395i 0.892171 + 0.451698i \(0.149181\pi\)
−0.892171 + 0.451698i \(0.850819\pi\)
\(744\) 26.8439 0.984144
\(745\) 0 0
\(746\) 22.3164i 0.817063i
\(747\) 29.6420i 1.08455i
\(748\) 4.61562i 0.168764i
\(749\) 7.46146i 0.272636i
\(750\) 0 0
\(751\) −36.7273 −1.34020 −0.670098 0.742272i \(-0.733748\pi\)
−0.670098 + 0.742272i \(0.733748\pi\)
\(752\) 10.8550i 0.395841i
\(753\) −10.2992 −0.375323
\(754\) 18.7871 + 7.06595i 0.684184 + 0.257327i
\(755\) 0 0
\(756\) 46.4595i 1.68971i
\(757\) 37.0091 1.34512 0.672560 0.740042i \(-0.265195\pi\)
0.672560 + 0.740042i \(0.265195\pi\)
\(758\) −9.74950 −0.354118
\(759\) 32.2485i 1.17055i
\(760\) 0 0
\(761\) 26.6420i 0.965773i 0.875683 + 0.482887i \(0.160412\pi\)
−0.875683 + 0.482887i \(0.839588\pi\)
\(762\) 15.2880i 0.553827i
\(763\) −15.0771 −0.545827
\(764\) 19.4990 0.705449
\(765\) 0 0
\(766\) −24.7871 −0.895593
\(767\) −46.4970 17.4879i −1.67891 0.631451i
\(768\) −3.10548 −0.112059
\(769\) 37.2972i 1.34497i −0.740110 0.672486i \(-0.765227\pi\)
0.740110 0.672486i \(-0.234773\pi\)
\(770\) 0 0
\(771\) −38.6106 −1.39053
\(772\) 2.72110i 0.0979346i
\(773\) 10.5385i 0.379045i −0.981876 0.189522i \(-0.939306\pi\)
0.981876 0.189522i \(-0.0606940\pi\)
\(774\) 26.5761i 0.955258i
\(775\) 0 0
\(776\) 3.78903 0.136018
\(777\) −57.8641 −2.07586
\(778\) 0.749505i 0.0268711i
\(779\) −8.68355 −0.311121
\(780\) 0 0
\(781\) 0 0
\(782\) 20.2485i 0.724085i
\(783\) 62.9980 2.25137
\(784\) −9.85499 −0.351964
\(785\) 0 0
\(786\) 2.68970i 0.0959385i
\(787\) 0.278898i 0.00994165i −0.999988 0.00497083i \(-0.998418\pi\)
0.999988 0.00497083i \(-0.00158227\pi\)
\(788\) 1.61562i 0.0575540i
\(789\) −13.6156 −0.484729
\(790\) 0 0
\(791\) 65.9585i 2.34521i
\(792\) 10.2221 0.363226
\(793\) 18.1714 48.3145i 0.645287 1.71570i
\(794\) 9.67243 0.343262
\(795\) 0 0
\(796\) 22.2485 0.788578
\(797\) −42.0832 −1.49066 −0.745332 0.666693i \(-0.767709\pi\)
−0.745332 + 0.666693i \(0.767709\pi\)
\(798\) 14.0944i 0.498935i
\(799\) 32.5650i 1.15207i
\(800\) 0 0
\(801\) 12.3246i 0.435468i
\(802\) −10.9321 −0.386025
\(803\) −16.5822 −0.585175
\(804\) 11.6440i 0.410653i
\(805\) 0 0
\(806\) −10.9716 + 29.1714i −0.386458 + 1.02752i
\(807\) 17.2880 0.608568
\(808\) 7.18256i 0.252682i
\(809\) −12.6329 −0.444149 −0.222074 0.975030i \(-0.571283\pi\)
−0.222074 + 0.975030i \(0.571283\pi\)
\(810\) 0 0
\(811\) 43.1411i 1.51489i 0.652901 + 0.757444i \(0.273552\pi\)
−0.652901 + 0.757444i \(0.726448\pi\)
\(812\) 22.8550i 0.802053i
\(813\) 29.1714i 1.02309i
\(814\) 6.98272i 0.244744i
\(815\) 0 0
\(816\) −9.31645 −0.326141
\(817\) 4.42193i 0.154704i
\(818\) 26.5669 0.928891
\(819\) 92.0528 + 34.6218i 3.21659 + 1.20978i
\(820\) 0 0
\(821\) 23.0173i 0.803308i 0.915791 + 0.401654i \(0.131565\pi\)
−0.915791 + 0.401654i \(0.868435\pi\)
\(822\) −52.1035 −1.81732
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) 12.5385i 0.436801i
\(825\) 0 0
\(826\) 56.5650i 1.96815i
\(827\) 35.4027i 1.23107i −0.788109 0.615536i \(-0.788940\pi\)
0.788109 0.615536i \(-0.211060\pi\)
\(828\) 44.8439 1.55843
\(829\) −10.6065 −0.368378 −0.184189 0.982891i \(-0.558966\pi\)
−0.184189 + 0.982891i \(0.558966\pi\)
\(830\) 0 0
\(831\) −26.0375 −0.903233
\(832\) 1.26927 3.37475i 0.0440040 0.116998i
\(833\) −29.5650 −1.02437
\(834\) 13.6440i 0.472454i
\(835\) 0 0
\(836\) 1.70083 0.0588244
\(837\) 97.8196i 3.38114i
\(838\) 24.3145i 0.839929i
\(839\) 19.4615i 0.671884i −0.941883 0.335942i \(-0.890945\pi\)
0.941883 0.335942i \(-0.109055\pi\)
\(840\) 0 0
\(841\) 1.99085 0.0686501
\(842\) 6.15416 0.212086
\(843\) 39.2312i 1.35120i
\(844\) −10.2394 −0.352454
\(845\) 0 0
\(846\) −72.1208 −2.47956
\(847\) 35.4422i 1.21781i
\(848\) −0.433057 −0.0148712
\(849\) 41.8327 1.43570
\(850\) 0 0
\(851\) 30.6329i 1.05008i
\(852\) 0 0
\(853\) 15.9807i 0.547170i 0.961848 + 0.273585i \(0.0882095\pi\)
−0.961848 + 0.273585i \(0.911790\pi\)
\(854\) −58.7759 −2.01127
\(855\) 0 0
\(856\) 1.81744i 0.0621188i
\(857\) 38.5669 1.31742 0.658711 0.752396i \(-0.271102\pi\)
0.658711 + 0.752396i \(0.271102\pi\)
\(858\) −6.06445 + 16.1243i −0.207037 + 0.550473i
\(859\) −28.6836 −0.978670 −0.489335 0.872096i \(-0.662760\pi\)
−0.489335 + 0.872096i \(0.662760\pi\)
\(860\) 0 0
\(861\) −100.147 −3.41301
\(862\) −0.828565 −0.0282210
\(863\) 36.4706i 1.24147i −0.784019 0.620737i \(-0.786834\pi\)
0.784019 0.620737i \(-0.213166\pi\)
\(864\) 11.3164i 0.384993i
\(865\) 0 0
\(866\) 15.7008i 0.533536i
\(867\) 24.8439 0.843742
\(868\) 35.4879 1.20454
\(869\) 10.0598i 0.341255i
\(870\) 0 0
\(871\) −12.6537 4.75913i −0.428753 0.161257i
\(872\) −3.67243 −0.124364
\(873\) 25.1744i 0.852025i
\(874\) 7.46146 0.252388
\(875\) 0 0
\(876\) 33.4706i 1.13087i
\(877\) 7.02027i 0.237058i −0.992951 0.118529i \(-0.962182\pi\)
0.992951 0.118529i \(-0.0378178\pi\)
\(878\) 9.17144i 0.309521i
\(879\) 18.6329i 0.628472i
\(880\) 0 0
\(881\) 4.93405 0.166232 0.0831161 0.996540i \(-0.473513\pi\)
0.0831161 + 0.996540i \(0.473513\pi\)
\(882\) 65.4768i 2.20472i
\(883\) −49.9493 −1.68093 −0.840465 0.541866i \(-0.817718\pi\)
−0.840465 + 0.541866i \(0.817718\pi\)
\(884\) 3.80781 10.1243i 0.128070 0.340516i
\(885\) 0 0
\(886\) 15.3164i 0.514566i
\(887\) −3.86413 −0.129745 −0.0648725 0.997894i \(-0.520664\pi\)
−0.0648725 + 0.997894i \(0.520664\pi\)
\(888\) −14.0944 −0.472976
\(889\) 20.2110i 0.677854i
\(890\) 0 0
\(891\) 23.4027i 0.784019i
\(892\) 20.9605i 0.701808i
\(893\) −12.0000 −0.401565
\(894\) 30.1542 1.00851
\(895\) 0 0
\(896\) −4.10548 −0.137155
\(897\) −26.6045 + 70.7364i −0.888298 + 2.36182i
\(898\) 23.4108 0.781229
\(899\) 48.1208i 1.60492i
\(900\) 0 0
\(901\) −1.29917 −0.0432817
\(902\) 12.0852i 0.402393i
\(903\) 50.9980i 1.69711i
\(904\) 16.0660i 0.534346i
\(905\) 0 0
\(906\) 7.73223 0.256886
\(907\) 17.5558 0.582931 0.291466 0.956581i \(-0.405857\pi\)
0.291466 + 0.956581i \(0.405857\pi\)
\(908\) 4.85499i 0.161118i
\(909\) 47.7211 1.58281
\(910\) 0 0
\(911\) −27.9807 −0.927043 −0.463522 0.886086i \(-0.653414\pi\)
−0.463522 + 0.886086i \(0.653414\pi\)
\(912\) 3.43306i 0.113680i
\(913\) −6.86413 −0.227170
\(914\) 22.9321 0.758525
\(915\) 0 0
\(916\) 6.71196i 0.221769i
\(917\) 3.55582i 0.117423i
\(918\) 33.9493i 1.12050i
\(919\) 31.0356 1.02377 0.511884 0.859054i \(-0.328948\pi\)
0.511884 + 0.859054i \(0.328948\pi\)
\(920\) 0 0
\(921\) 43.1430i 1.42161i
\(922\) 13.4615 0.443330
\(923\) 0 0
\(924\) 19.6156 0.645306
\(925\) 0 0
\(926\) 16.0264 0.526661
\(927\) −83.3063 −2.73614
\(928\) 5.56694i 0.182744i
\(929\) 24.0000i 0.787414i 0.919236 + 0.393707i \(0.128808\pi\)
−0.919236 + 0.393707i \(0.871192\pi\)
\(930\) 0 0
\(931\) 10.8945i 0.357053i
\(932\) −14.3651 −0.470545
\(933\) −10.9259 −0.357698
\(934\) 0.866114i 0.0283401i
\(935\) 0 0
\(936\) 22.4219 + 8.43306i 0.732884 + 0.275643i
\(937\) 60.8987 1.98947 0.994737 0.102464i \(-0.0326727\pi\)
0.994737 + 0.102464i \(0.0326727\pi\)
\(938\) 15.3935i 0.502616i
\(939\) 76.2861 2.48950
\(940\) 0 0
\(941\) 32.2485i 1.05127i 0.850710 + 0.525636i \(0.176173\pi\)
−0.850710 + 0.525636i \(0.823827\pi\)
\(942\) 35.3824i 1.15282i
\(943\) 53.0173i 1.72648i
\(944\) 13.7779i 0.448433i
\(945\) 0 0
\(946\) −6.15416 −0.200089
\(947\) 20.4108i 0.663262i 0.943409 + 0.331631i \(0.107599\pi\)
−0.943409 + 0.331631i \(0.892401\pi\)
\(948\) −20.3053 −0.659486
\(949\) −36.3728 13.6801i −1.18071 0.444074i
\(950\) 0 0
\(951\) 4.53854i 0.147172i
\(952\) −12.3164 −0.399178
\(953\) −8.36710 −0.271037 −0.135519 0.990775i \(-0.543270\pi\)
−0.135519 + 0.990775i \(0.543270\pi\)
\(954\) 2.87724i 0.0931541i
\(955\) 0 0
\(956\) 1.14501i 0.0370324i
\(957\) 26.5983i 0.859802i
\(958\) −29.4879 −0.952710
\(959\) −68.8814 −2.22430
\(960\) 0 0
\(961\) −43.7191 −1.41029
\(962\) 5.76063 15.3164i 0.185730 0.493822i
\(963\) −12.0751 −0.389115
\(964\) 20.5669i 0.662417i
\(965\) 0 0
\(966\) 86.0528 2.76870
\(967\) 14.4108i 0.463420i −0.972785 0.231710i \(-0.925568\pi\)
0.972785 0.231710i \(-0.0744321\pi\)
\(968\) 8.63290i 0.277472i
\(969\) 10.2992i 0.330857i
\(970\) 0 0
\(971\) 25.1806 0.808083 0.404042 0.914741i \(-0.367605\pi\)
0.404042 + 0.914741i \(0.367605\pi\)
\(972\) 13.2880 0.426214
\(973\) 18.0375i 0.578257i
\(974\) −35.4503 −1.13590
\(975\) 0 0
\(976\) −14.3164 −0.458258
\(977\) 38.1633i 1.22095i 0.792035 + 0.610476i \(0.209022\pi\)
−0.792035 + 0.610476i \(0.790978\pi\)
\(978\) −52.2201 −1.66982
\(979\) −2.85397 −0.0912133
\(980\) 0 0
\(981\) 24.3997i 0.779022i
\(982\) 32.1319i 1.02537i
\(983\) 49.8906i 1.59126i 0.605782 + 0.795631i \(0.292860\pi\)
−0.605782 + 0.795631i \(0.707140\pi\)
\(984\) −24.3935 −0.777637
\(985\) 0 0
\(986\) 16.7008i 0.531863i
\(987\) −138.396 −4.40518
\(988\) 3.73073 + 1.40316i 0.118690 + 0.0446403i
\(989\) −26.9980 −0.858487
\(990\) 0 0
\(991\) −10.6329 −0.337765 −0.168883 0.985636i \(-0.554016\pi\)
−0.168883 + 0.985636i \(0.554016\pi\)
\(992\) 8.64402 0.274448
\(993\) 56.6420i 1.79748i
\(994\) 0 0
\(995\) 0 0
\(996\) 13.8550i 0.439012i
\(997\) −2.99085 −0.0947213 −0.0473606 0.998878i \(-0.515081\pi\)
−0.0473606 + 0.998878i \(0.515081\pi\)
\(998\) 27.2769 0.863436
\(999\) 51.3601i 1.62496i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.d.c.51.4 yes 6
5.2 odd 4 650.2.c.e.649.6 6
5.3 odd 4 650.2.c.f.649.1 6
5.4 even 2 650.2.d.d.51.3 yes 6
13.5 odd 4 8450.2.a.cd.1.1 3
13.8 odd 4 8450.2.a.br.1.1 3
13.12 even 2 inner 650.2.d.c.51.1 6
65.12 odd 4 650.2.c.f.649.6 6
65.34 odd 4 8450.2.a.ce.1.3 3
65.38 odd 4 650.2.c.e.649.1 6
65.44 odd 4 8450.2.a.bq.1.3 3
65.64 even 2 650.2.d.d.51.6 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.c.e.649.1 6 65.38 odd 4
650.2.c.e.649.6 6 5.2 odd 4
650.2.c.f.649.1 6 5.3 odd 4
650.2.c.f.649.6 6 65.12 odd 4
650.2.d.c.51.1 6 13.12 even 2 inner
650.2.d.c.51.4 yes 6 1.1 even 1 trivial
650.2.d.d.51.3 yes 6 5.4 even 2
650.2.d.d.51.6 yes 6 65.64 even 2
8450.2.a.bq.1.3 3 65.44 odd 4
8450.2.a.br.1.1 3 13.8 odd 4
8450.2.a.cd.1.1 3 13.5 odd 4
8450.2.a.ce.1.3 3 65.34 odd 4