Properties

Label 8450.2.a.bq.1.3
Level $8450$
Weight $2$
Character 8450.1
Self dual yes
Analytic conductor $67.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8450,2,Mod(1,8450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8450.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8450 = 2 \cdot 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,0,0,-3,-3,9,0,-3,0,0,3,0,3,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.4735897080\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.2808.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 9x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 650)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.10548\) of defining polynomial
Character \(\chi\) \(=\) 8450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +3.10548 q^{3} +1.00000 q^{4} -3.10548 q^{6} -4.10548 q^{7} -1.00000 q^{8} +6.64402 q^{9} -1.53854 q^{11} +3.10548 q^{12} +4.10548 q^{14} +1.00000 q^{16} +3.00000 q^{17} -6.64402 q^{18} +1.10548 q^{19} -12.7495 q^{21} +1.53854 q^{22} -6.74950 q^{23} -3.10548 q^{24} +11.3164 q^{27} -4.10548 q^{28} -5.56694 q^{29} -8.64402 q^{31} -1.00000 q^{32} -4.77791 q^{33} -3.00000 q^{34} +6.64402 q^{36} +4.53854 q^{37} -1.10548 q^{38} +7.85499 q^{41} +12.7495 q^{42} +4.00000 q^{43} -1.53854 q^{44} +6.74950 q^{46} +10.8550 q^{47} +3.10548 q^{48} +9.85499 q^{49} +9.31645 q^{51} +0.433057 q^{53} -11.3164 q^{54} +4.10548 q^{56} +3.43306 q^{57} +5.56694 q^{58} -13.7779 q^{59} -14.3164 q^{61} +8.64402 q^{62} -27.2769 q^{63} +1.00000 q^{64} +4.77791 q^{66} -3.74950 q^{67} +3.00000 q^{68} -20.9605 q^{69} -6.64402 q^{72} +10.7779 q^{73} -4.53854 q^{74} +1.10548 q^{76} +6.31645 q^{77} -6.53854 q^{79} +15.2110 q^{81} -7.85499 q^{82} -4.46146 q^{83} -12.7495 q^{84} -4.00000 q^{86} -17.2880 q^{87} +1.53854 q^{88} -1.85499 q^{89} -6.74950 q^{92} -26.8439 q^{93} -10.8550 q^{94} -3.10548 q^{96} -3.78903 q^{97} -9.85499 q^{98} -10.2221 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} - 3 q^{7} - 3 q^{8} + 9 q^{9} - 3 q^{11} + 3 q^{14} + 3 q^{16} + 9 q^{17} - 9 q^{18} - 6 q^{19} - 18 q^{21} + 3 q^{22} + 6 q^{27} - 3 q^{28} - 9 q^{29} - 15 q^{31} - 3 q^{32} + 12 q^{33}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 3.10548 1.79295 0.896476 0.443093i \(-0.146119\pi\)
0.896476 + 0.443093i \(0.146119\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −3.10548 −1.26781
\(7\) −4.10548 −1.55173 −0.775863 0.630901i \(-0.782685\pi\)
−0.775863 + 0.630901i \(0.782685\pi\)
\(8\) −1.00000 −0.353553
\(9\) 6.64402 2.21467
\(10\) 0 0
\(11\) −1.53854 −0.463887 −0.231944 0.972729i \(-0.574508\pi\)
−0.231944 + 0.972729i \(0.574508\pi\)
\(12\) 3.10548 0.896476
\(13\) 0 0
\(14\) 4.10548 1.09724
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) −6.64402 −1.56601
\(19\) 1.10548 0.253615 0.126808 0.991927i \(-0.459527\pi\)
0.126808 + 0.991927i \(0.459527\pi\)
\(20\) 0 0
\(21\) −12.7495 −2.78217
\(22\) 1.53854 0.328018
\(23\) −6.74950 −1.40737 −0.703685 0.710513i \(-0.748463\pi\)
−0.703685 + 0.710513i \(0.748463\pi\)
\(24\) −3.10548 −0.633904
\(25\) 0 0
\(26\) 0 0
\(27\) 11.3164 2.17785
\(28\) −4.10548 −0.775863
\(29\) −5.56694 −1.03376 −0.516878 0.856059i \(-0.672906\pi\)
−0.516878 + 0.856059i \(0.672906\pi\)
\(30\) 0 0
\(31\) −8.64402 −1.55251 −0.776256 0.630418i \(-0.782884\pi\)
−0.776256 + 0.630418i \(0.782884\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.77791 −0.831727
\(34\) −3.00000 −0.514496
\(35\) 0 0
\(36\) 6.64402 1.10734
\(37\) 4.53854 0.746131 0.373066 0.927805i \(-0.378307\pi\)
0.373066 + 0.927805i \(0.378307\pi\)
\(38\) −1.10548 −0.179333
\(39\) 0 0
\(40\) 0 0
\(41\) 7.85499 1.22674 0.613371 0.789795i \(-0.289813\pi\)
0.613371 + 0.789795i \(0.289813\pi\)
\(42\) 12.7495 1.96729
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) −1.53854 −0.231944
\(45\) 0 0
\(46\) 6.74950 0.995160
\(47\) 10.8550 1.58336 0.791681 0.610934i \(-0.209206\pi\)
0.791681 + 0.610934i \(0.209206\pi\)
\(48\) 3.10548 0.448238
\(49\) 9.85499 1.40786
\(50\) 0 0
\(51\) 9.31645 1.30456
\(52\) 0 0
\(53\) 0.433057 0.0594850 0.0297425 0.999558i \(-0.490531\pi\)
0.0297425 + 0.999558i \(0.490531\pi\)
\(54\) −11.3164 −1.53997
\(55\) 0 0
\(56\) 4.10548 0.548618
\(57\) 3.43306 0.454720
\(58\) 5.56694 0.730975
\(59\) −13.7779 −1.79373 −0.896865 0.442304i \(-0.854161\pi\)
−0.896865 + 0.442304i \(0.854161\pi\)
\(60\) 0 0
\(61\) −14.3164 −1.83303 −0.916517 0.399997i \(-0.869011\pi\)
−0.916517 + 0.399997i \(0.869011\pi\)
\(62\) 8.64402 1.09779
\(63\) −27.2769 −3.43657
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 4.77791 0.588120
\(67\) −3.74950 −0.458075 −0.229037 0.973418i \(-0.573558\pi\)
−0.229037 + 0.973418i \(0.573558\pi\)
\(68\) 3.00000 0.363803
\(69\) −20.9605 −2.52334
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −6.64402 −0.783006
\(73\) 10.7779 1.26146 0.630729 0.776003i \(-0.282756\pi\)
0.630729 + 0.776003i \(0.282756\pi\)
\(74\) −4.53854 −0.527595
\(75\) 0 0
\(76\) 1.10548 0.126808
\(77\) 6.31645 0.719826
\(78\) 0 0
\(79\) −6.53854 −0.735643 −0.367822 0.929896i \(-0.619896\pi\)
−0.367822 + 0.929896i \(0.619896\pi\)
\(80\) 0 0
\(81\) 15.2110 1.69011
\(82\) −7.85499 −0.867438
\(83\) −4.46146 −0.489709 −0.244854 0.969560i \(-0.578740\pi\)
−0.244854 + 0.969560i \(0.578740\pi\)
\(84\) −12.7495 −1.39109
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) −17.2880 −1.85347
\(88\) 1.53854 0.164009
\(89\) −1.85499 −0.196628 −0.0983141 0.995155i \(-0.531345\pi\)
−0.0983141 + 0.995155i \(0.531345\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −6.74950 −0.703685
\(93\) −26.8439 −2.78358
\(94\) −10.8550 −1.11961
\(95\) 0 0
\(96\) −3.10548 −0.316952
\(97\) −3.78903 −0.384718 −0.192359 0.981325i \(-0.561614\pi\)
−0.192359 + 0.981325i \(0.561614\pi\)
\(98\) −9.85499 −0.995504
\(99\) −10.2221 −1.02736
\(100\) 0 0
\(101\) −7.18256 −0.714692 −0.357346 0.933972i \(-0.616318\pi\)
−0.357346 + 0.933972i \(0.616318\pi\)
\(102\) −9.31645 −0.922466
\(103\) −12.5385 −1.23546 −0.617730 0.786391i \(-0.711947\pi\)
−0.617730 + 0.786391i \(0.711947\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.433057 −0.0420622
\(107\) 1.81744 0.175698 0.0878492 0.996134i \(-0.472001\pi\)
0.0878492 + 0.996134i \(0.472001\pi\)
\(108\) 11.3164 1.08893
\(109\) −3.67243 −0.351755 −0.175877 0.984412i \(-0.556276\pi\)
−0.175877 + 0.984412i \(0.556276\pi\)
\(110\) 0 0
\(111\) 14.0944 1.33778
\(112\) −4.10548 −0.387932
\(113\) −16.0660 −1.51136 −0.755679 0.654942i \(-0.772693\pi\)
−0.755679 + 0.654942i \(0.772693\pi\)
\(114\) −3.43306 −0.321535
\(115\) 0 0
\(116\) −5.56694 −0.516878
\(117\) 0 0
\(118\) 13.7779 1.26836
\(119\) −12.3164 −1.12905
\(120\) 0 0
\(121\) −8.63290 −0.784809
\(122\) 14.3164 1.29615
\(123\) 24.3935 2.19949
\(124\) −8.64402 −0.776256
\(125\) 0 0
\(126\) 27.2769 2.43002
\(127\) 4.92292 0.436839 0.218419 0.975855i \(-0.429910\pi\)
0.218419 + 0.975855i \(0.429910\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 12.4219 1.09369
\(130\) 0 0
\(131\) 0.866114 0.0756727 0.0378364 0.999284i \(-0.487953\pi\)
0.0378364 + 0.999284i \(0.487953\pi\)
\(132\) −4.77791 −0.415864
\(133\) −4.53854 −0.393541
\(134\) 3.74950 0.323908
\(135\) 0 0
\(136\) −3.00000 −0.257248
\(137\) −16.7779 −1.43343 −0.716717 0.697364i \(-0.754356\pi\)
−0.716717 + 0.697364i \(0.754356\pi\)
\(138\) 20.9605 1.78427
\(139\) −4.39353 −0.372654 −0.186327 0.982488i \(-0.559658\pi\)
−0.186327 + 0.982488i \(0.559658\pi\)
\(140\) 0 0
\(141\) 33.7100 2.83889
\(142\) 0 0
\(143\) 0 0
\(144\) 6.64402 0.553669
\(145\) 0 0
\(146\) −10.7779 −0.891986
\(147\) 30.6045 2.52422
\(148\) 4.53854 0.373066
\(149\) 9.70998 0.795472 0.397736 0.917500i \(-0.369796\pi\)
0.397736 + 0.917500i \(0.369796\pi\)
\(150\) 0 0
\(151\) −2.48986 −0.202622 −0.101311 0.994855i \(-0.532304\pi\)
−0.101311 + 0.994855i \(0.532304\pi\)
\(152\) −1.10548 −0.0896665
\(153\) 19.9321 1.61141
\(154\) −6.31645 −0.508994
\(155\) 0 0
\(156\) 0 0
\(157\) 11.3935 0.909302 0.454651 0.890670i \(-0.349764\pi\)
0.454651 + 0.890670i \(0.349764\pi\)
\(158\) 6.53854 0.520178
\(159\) 1.34485 0.106654
\(160\) 0 0
\(161\) 27.7100 2.18385
\(162\) −15.2110 −1.19509
\(163\) −16.8155 −1.31709 −0.658544 0.752542i \(-0.728827\pi\)
−0.658544 + 0.752542i \(0.728827\pi\)
\(164\) 7.85499 0.613371
\(165\) 0 0
\(166\) 4.46146 0.346276
\(167\) −1.61562 −0.125020 −0.0625102 0.998044i \(-0.519911\pi\)
−0.0625102 + 0.998044i \(0.519911\pi\)
\(168\) 12.7495 0.983646
\(169\) 0 0
\(170\) 0 0
\(171\) 7.34485 0.561675
\(172\) 4.00000 0.304997
\(173\) −12.3164 −0.936402 −0.468201 0.883622i \(-0.655098\pi\)
−0.468201 + 0.883622i \(0.655098\pi\)
\(174\) 17.2880 1.31060
\(175\) 0 0
\(176\) −1.53854 −0.115972
\(177\) −42.7871 −3.21607
\(178\) 1.85499 0.139037
\(179\) −10.1826 −0.761080 −0.380540 0.924764i \(-0.624262\pi\)
−0.380540 + 0.924764i \(0.624262\pi\)
\(180\) 0 0
\(181\) −11.3935 −0.846874 −0.423437 0.905926i \(-0.639177\pi\)
−0.423437 + 0.905926i \(0.639177\pi\)
\(182\) 0 0
\(183\) −44.4595 −3.28654
\(184\) 6.74950 0.497580
\(185\) 0 0
\(186\) 26.8439 1.96829
\(187\) −4.61562 −0.337527
\(188\) 10.8550 0.791681
\(189\) −46.4595 −3.37943
\(190\) 0 0
\(191\) −19.4990 −1.41090 −0.705449 0.708760i \(-0.749255\pi\)
−0.705449 + 0.708760i \(0.749255\pi\)
\(192\) 3.10548 0.224119
\(193\) 2.72110 0.195869 0.0979346 0.995193i \(-0.468776\pi\)
0.0979346 + 0.995193i \(0.468776\pi\)
\(194\) 3.78903 0.272037
\(195\) 0 0
\(196\) 9.85499 0.703928
\(197\) 1.61562 0.115108 0.0575540 0.998342i \(-0.481670\pi\)
0.0575540 + 0.998342i \(0.481670\pi\)
\(198\) 10.2221 0.726452
\(199\) 22.2485 1.57716 0.788578 0.614935i \(-0.210818\pi\)
0.788578 + 0.614935i \(0.210818\pi\)
\(200\) 0 0
\(201\) −11.6440 −0.821306
\(202\) 7.18256 0.505363
\(203\) 22.8550 1.60411
\(204\) 9.31645 0.652282
\(205\) 0 0
\(206\) 12.5385 0.873601
\(207\) −44.8439 −3.11686
\(208\) 0 0
\(209\) −1.70083 −0.117649
\(210\) 0 0
\(211\) 10.2394 0.704907 0.352454 0.935829i \(-0.385347\pi\)
0.352454 + 0.935829i \(0.385347\pi\)
\(212\) 0.433057 0.0297425
\(213\) 0 0
\(214\) −1.81744 −0.124238
\(215\) 0 0
\(216\) −11.3164 −0.769987
\(217\) 35.4879 2.40907
\(218\) 3.67243 0.248728
\(219\) 33.4706 2.26173
\(220\) 0 0
\(221\) 0 0
\(222\) −14.0944 −0.945951
\(223\) −20.9605 −1.40362 −0.701808 0.712366i \(-0.747624\pi\)
−0.701808 + 0.712366i \(0.747624\pi\)
\(224\) 4.10548 0.274309
\(225\) 0 0
\(226\) 16.0660 1.06869
\(227\) 4.85499 0.322237 0.161118 0.986935i \(-0.448490\pi\)
0.161118 + 0.986935i \(0.448490\pi\)
\(228\) 3.43306 0.227360
\(229\) −6.71196 −0.443538 −0.221769 0.975099i \(-0.571183\pi\)
−0.221769 + 0.975099i \(0.571183\pi\)
\(230\) 0 0
\(231\) 19.6156 1.29061
\(232\) 5.56694 0.365488
\(233\) 14.3651 0.941091 0.470545 0.882376i \(-0.344057\pi\)
0.470545 + 0.882376i \(0.344057\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −13.7779 −0.896865
\(237\) −20.3053 −1.31897
\(238\) 12.3164 0.798357
\(239\) 1.14501 0.0740647 0.0370324 0.999314i \(-0.488210\pi\)
0.0370324 + 0.999314i \(0.488210\pi\)
\(240\) 0 0
\(241\) −20.5669 −1.32483 −0.662417 0.749136i \(-0.730469\pi\)
−0.662417 + 0.749136i \(0.730469\pi\)
\(242\) 8.63290 0.554944
\(243\) 13.2880 0.852428
\(244\) −14.3164 −0.916517
\(245\) 0 0
\(246\) −24.3935 −1.55527
\(247\) 0 0
\(248\) 8.64402 0.548896
\(249\) −13.8550 −0.878024
\(250\) 0 0
\(251\) −3.31645 −0.209332 −0.104666 0.994507i \(-0.533377\pi\)
−0.104666 + 0.994507i \(0.533377\pi\)
\(252\) −27.2769 −1.71828
\(253\) 10.3844 0.652860
\(254\) −4.92292 −0.308892
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.4331 0.775553 0.387776 0.921753i \(-0.373243\pi\)
0.387776 + 0.921753i \(0.373243\pi\)
\(258\) −12.4219 −0.773356
\(259\) −18.6329 −1.15779
\(260\) 0 0
\(261\) −36.9869 −2.28943
\(262\) −0.866114 −0.0535087
\(263\) −4.38438 −0.270353 −0.135176 0.990822i \(-0.543160\pi\)
−0.135176 + 0.990822i \(0.543160\pi\)
\(264\) 4.77791 0.294060
\(265\) 0 0
\(266\) 4.53854 0.278276
\(267\) −5.76063 −0.352545
\(268\) −3.74950 −0.229037
\(269\) −5.56694 −0.339423 −0.169711 0.985494i \(-0.554284\pi\)
−0.169711 + 0.985494i \(0.554284\pi\)
\(270\) 0 0
\(271\) 9.39353 0.570616 0.285308 0.958436i \(-0.407904\pi\)
0.285308 + 0.958436i \(0.407904\pi\)
\(272\) 3.00000 0.181902
\(273\) 0 0
\(274\) 16.7779 1.01359
\(275\) 0 0
\(276\) −20.9605 −1.26167
\(277\) 8.38438 0.503769 0.251884 0.967757i \(-0.418950\pi\)
0.251884 + 0.967757i \(0.418950\pi\)
\(278\) 4.39353 0.263506
\(279\) −57.4311 −3.43831
\(280\) 0 0
\(281\) 12.6329 0.753615 0.376808 0.926292i \(-0.377022\pi\)
0.376808 + 0.926292i \(0.377022\pi\)
\(282\) −33.7100 −2.00740
\(283\) −13.4706 −0.800744 −0.400372 0.916353i \(-0.631119\pi\)
−0.400372 + 0.916353i \(0.631119\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −32.2485 −1.90357
\(288\) −6.64402 −0.391503
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) −11.7668 −0.689781
\(292\) 10.7779 0.630729
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) −30.6045 −1.78489
\(295\) 0 0
\(296\) −4.53854 −0.263797
\(297\) −17.4108 −1.01028
\(298\) −9.70998 −0.562484
\(299\) 0 0
\(300\) 0 0
\(301\) −16.4219 −0.946544
\(302\) 2.48986 0.143276
\(303\) −22.3053 −1.28141
\(304\) 1.10548 0.0634038
\(305\) 0 0
\(306\) −19.9321 −1.13944
\(307\) 13.8925 0.792889 0.396444 0.918059i \(-0.370244\pi\)
0.396444 + 0.918059i \(0.370244\pi\)
\(308\) 6.31645 0.359913
\(309\) −38.9382 −2.21512
\(310\) 0 0
\(311\) −3.51827 −0.199503 −0.0997513 0.995012i \(-0.531805\pi\)
−0.0997513 + 0.995012i \(0.531805\pi\)
\(312\) 0 0
\(313\) 24.5650 1.38849 0.694247 0.719737i \(-0.255738\pi\)
0.694247 + 0.719737i \(0.255738\pi\)
\(314\) −11.3935 −0.642974
\(315\) 0 0
\(316\) −6.53854 −0.367822
\(317\) −1.46146 −0.0820838 −0.0410419 0.999157i \(-0.513068\pi\)
−0.0410419 + 0.999157i \(0.513068\pi\)
\(318\) −1.34485 −0.0754155
\(319\) 8.56496 0.479546
\(320\) 0 0
\(321\) 5.64402 0.315019
\(322\) −27.7100 −1.54422
\(323\) 3.31645 0.184532
\(324\) 15.2110 0.845054
\(325\) 0 0
\(326\) 16.8155 0.931322
\(327\) −11.4047 −0.630679
\(328\) −7.85499 −0.433719
\(329\) −44.5650 −2.45695
\(330\) 0 0
\(331\) −18.2394 −1.00253 −0.501263 0.865295i \(-0.667131\pi\)
−0.501263 + 0.865295i \(0.667131\pi\)
\(332\) −4.46146 −0.244854
\(333\) 30.1542 1.65244
\(334\) 1.61562 0.0884027
\(335\) 0 0
\(336\) −12.7495 −0.695543
\(337\) −19.6329 −1.06947 −0.534736 0.845019i \(-0.679589\pi\)
−0.534736 + 0.845019i \(0.679589\pi\)
\(338\) 0 0
\(339\) −49.8925 −2.70979
\(340\) 0 0
\(341\) 13.2992 0.720190
\(342\) −7.34485 −0.397164
\(343\) −11.7211 −0.632880
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 12.3164 0.662136
\(347\) 23.6816 1.27129 0.635647 0.771980i \(-0.280734\pi\)
0.635647 + 0.771980i \(0.280734\pi\)
\(348\) −17.2880 −0.926736
\(349\) −0.154159 −0.00825192 −0.00412596 0.999991i \(-0.501313\pi\)
−0.00412596 + 0.999991i \(0.501313\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.53854 0.0820044
\(353\) 36.6329 1.94977 0.974886 0.222704i \(-0.0714883\pi\)
0.974886 + 0.222704i \(0.0714883\pi\)
\(354\) 42.7871 2.27411
\(355\) 0 0
\(356\) −1.85499 −0.0983141
\(357\) −38.2485 −2.02433
\(358\) 10.1826 0.538165
\(359\) −27.2394 −1.43764 −0.718819 0.695197i \(-0.755317\pi\)
−0.718819 + 0.695197i \(0.755317\pi\)
\(360\) 0 0
\(361\) −17.7779 −0.935679
\(362\) 11.3935 0.598830
\(363\) −26.8093 −1.40712
\(364\) 0 0
\(365\) 0 0
\(366\) 44.4595 2.32393
\(367\) 23.8641 1.24570 0.622849 0.782342i \(-0.285975\pi\)
0.622849 + 0.782342i \(0.285975\pi\)
\(368\) −6.74950 −0.351842
\(369\) 52.1887 2.71684
\(370\) 0 0
\(371\) −1.77791 −0.0923044
\(372\) −26.8439 −1.39179
\(373\) 22.3164 1.15550 0.577751 0.816213i \(-0.303930\pi\)
0.577751 + 0.816213i \(0.303930\pi\)
\(374\) 4.61562 0.238668
\(375\) 0 0
\(376\) −10.8550 −0.559803
\(377\) 0 0
\(378\) 46.4595 2.38962
\(379\) 9.74950 0.500798 0.250399 0.968143i \(-0.419438\pi\)
0.250399 + 0.968143i \(0.419438\pi\)
\(380\) 0 0
\(381\) 15.2880 0.783230
\(382\) 19.4990 0.997656
\(383\) −24.7871 −1.26656 −0.633280 0.773923i \(-0.718292\pi\)
−0.633280 + 0.773923i \(0.718292\pi\)
\(384\) −3.10548 −0.158476
\(385\) 0 0
\(386\) −2.72110 −0.138500
\(387\) 26.5761 1.35094
\(388\) −3.78903 −0.192359
\(389\) 0.749505 0.0380014 0.0190007 0.999819i \(-0.493952\pi\)
0.0190007 + 0.999819i \(0.493952\pi\)
\(390\) 0 0
\(391\) −20.2485 −1.02401
\(392\) −9.85499 −0.497752
\(393\) 2.68970 0.135678
\(394\) −1.61562 −0.0813937
\(395\) 0 0
\(396\) −10.2221 −0.513679
\(397\) −9.67243 −0.485445 −0.242723 0.970096i \(-0.578040\pi\)
−0.242723 + 0.970096i \(0.578040\pi\)
\(398\) −22.2485 −1.11522
\(399\) −14.0944 −0.705600
\(400\) 0 0
\(401\) −10.9321 −0.545921 −0.272961 0.962025i \(-0.588003\pi\)
−0.272961 + 0.962025i \(0.588003\pi\)
\(402\) 11.6440 0.580751
\(403\) 0 0
\(404\) −7.18256 −0.357346
\(405\) 0 0
\(406\) −22.8550 −1.13427
\(407\) −6.98272 −0.346121
\(408\) −9.31645 −0.461233
\(409\) −26.5669 −1.31365 −0.656825 0.754043i \(-0.728101\pi\)
−0.656825 + 0.754043i \(0.728101\pi\)
\(410\) 0 0
\(411\) −52.1035 −2.57008
\(412\) −12.5385 −0.617730
\(413\) 56.5650 2.78338
\(414\) 44.8439 2.20396
\(415\) 0 0
\(416\) 0 0
\(417\) −13.6440 −0.668151
\(418\) 1.70083 0.0831903
\(419\) 24.3145 1.18784 0.593920 0.804524i \(-0.297580\pi\)
0.593920 + 0.804524i \(0.297580\pi\)
\(420\) 0 0
\(421\) −6.15416 −0.299935 −0.149968 0.988691i \(-0.547917\pi\)
−0.149968 + 0.988691i \(0.547917\pi\)
\(422\) −10.2394 −0.498445
\(423\) 72.1208 3.50663
\(424\) −0.433057 −0.0210311
\(425\) 0 0
\(426\) 0 0
\(427\) 58.7759 2.84437
\(428\) 1.81744 0.0878492
\(429\) 0 0
\(430\) 0 0
\(431\) 0.828565 0.0399106 0.0199553 0.999801i \(-0.493648\pi\)
0.0199553 + 0.999801i \(0.493648\pi\)
\(432\) 11.3164 0.544463
\(433\) 15.7008 0.754534 0.377267 0.926105i \(-0.376864\pi\)
0.377267 + 0.926105i \(0.376864\pi\)
\(434\) −35.4879 −1.70347
\(435\) 0 0
\(436\) −3.67243 −0.175877
\(437\) −7.46146 −0.356930
\(438\) −33.4706 −1.59929
\(439\) 9.17144 0.437729 0.218864 0.975755i \(-0.429765\pi\)
0.218864 + 0.975755i \(0.429765\pi\)
\(440\) 0 0
\(441\) 65.4768 3.11794
\(442\) 0 0
\(443\) −15.3164 −0.727706 −0.363853 0.931456i \(-0.618539\pi\)
−0.363853 + 0.931456i \(0.618539\pi\)
\(444\) 14.0944 0.668889
\(445\) 0 0
\(446\) 20.9605 0.992507
\(447\) 30.1542 1.42624
\(448\) −4.10548 −0.193966
\(449\) 23.4108 1.10482 0.552412 0.833571i \(-0.313708\pi\)
0.552412 + 0.833571i \(0.313708\pi\)
\(450\) 0 0
\(451\) −12.0852 −0.569070
\(452\) −16.0660 −0.755679
\(453\) −7.73223 −0.363292
\(454\) −4.85499 −0.227856
\(455\) 0 0
\(456\) −3.43306 −0.160768
\(457\) 22.9321 1.07272 0.536358 0.843990i \(-0.319800\pi\)
0.536358 + 0.843990i \(0.319800\pi\)
\(458\) 6.71196 0.313629
\(459\) 33.9493 1.58462
\(460\) 0 0
\(461\) −13.4615 −0.626963 −0.313481 0.949594i \(-0.601495\pi\)
−0.313481 + 0.949594i \(0.601495\pi\)
\(462\) −19.6156 −0.912601
\(463\) −16.0264 −0.744811 −0.372406 0.928070i \(-0.621467\pi\)
−0.372406 + 0.928070i \(0.621467\pi\)
\(464\) −5.56694 −0.258439
\(465\) 0 0
\(466\) −14.3651 −0.665452
\(467\) −0.866114 −0.0400790 −0.0200395 0.999799i \(-0.506379\pi\)
−0.0200395 + 0.999799i \(0.506379\pi\)
\(468\) 0 0
\(469\) 15.3935 0.710807
\(470\) 0 0
\(471\) 35.3824 1.63033
\(472\) 13.7779 0.634180
\(473\) −6.15416 −0.282969
\(474\) 20.3053 0.932654
\(475\) 0 0
\(476\) −12.3164 −0.564523
\(477\) 2.87724 0.131740
\(478\) −1.14501 −0.0523717
\(479\) −29.4879 −1.34734 −0.673668 0.739034i \(-0.735282\pi\)
−0.673668 + 0.739034i \(0.735282\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 20.5669 0.936799
\(483\) 86.0528 3.91554
\(484\) −8.63290 −0.392404
\(485\) 0 0
\(486\) −13.2880 −0.602758
\(487\) −35.4503 −1.60641 −0.803204 0.595704i \(-0.796873\pi\)
−0.803204 + 0.595704i \(0.796873\pi\)
\(488\) 14.3164 0.648075
\(489\) −52.2201 −2.36148
\(490\) 0 0
\(491\) 32.1319 1.45009 0.725046 0.688700i \(-0.241818\pi\)
0.725046 + 0.688700i \(0.241818\pi\)
\(492\) 24.3935 1.09975
\(493\) −16.7008 −0.752168
\(494\) 0 0
\(495\) 0 0
\(496\) −8.64402 −0.388128
\(497\) 0 0
\(498\) 13.8550 0.620857
\(499\) −27.2769 −1.22108 −0.610541 0.791984i \(-0.709048\pi\)
−0.610541 + 0.791984i \(0.709048\pi\)
\(500\) 0 0
\(501\) −5.01728 −0.224155
\(502\) 3.31645 0.148020
\(503\) −26.9980 −1.20378 −0.601891 0.798578i \(-0.705586\pi\)
−0.601891 + 0.798578i \(0.705586\pi\)
\(504\) 27.2769 1.21501
\(505\) 0 0
\(506\) −10.3844 −0.461642
\(507\) 0 0
\(508\) 4.92292 0.218419
\(509\) 38.8814 1.72339 0.861694 0.507428i \(-0.169404\pi\)
0.861694 + 0.507428i \(0.169404\pi\)
\(510\) 0 0
\(511\) −44.2485 −1.95744
\(512\) −1.00000 −0.0441942
\(513\) 12.5101 0.552336
\(514\) −12.4331 −0.548399
\(515\) 0 0
\(516\) 12.4219 0.546845
\(517\) −16.7008 −0.734502
\(518\) 18.6329 0.818682
\(519\) −38.2485 −1.67892
\(520\) 0 0
\(521\) 4.06595 0.178133 0.0890663 0.996026i \(-0.471612\pi\)
0.0890663 + 0.996026i \(0.471612\pi\)
\(522\) 36.9869 1.61887
\(523\) −34.8723 −1.52486 −0.762429 0.647072i \(-0.775993\pi\)
−0.762429 + 0.647072i \(0.775993\pi\)
\(524\) 0.866114 0.0378364
\(525\) 0 0
\(526\) 4.38438 0.191168
\(527\) −25.9321 −1.12962
\(528\) −4.77791 −0.207932
\(529\) 22.5558 0.980688
\(530\) 0 0
\(531\) −91.5407 −3.97253
\(532\) −4.53854 −0.196771
\(533\) 0 0
\(534\) 5.76063 0.249287
\(535\) 0 0
\(536\) 3.74950 0.161954
\(537\) −31.6218 −1.36458
\(538\) 5.56694 0.240008
\(539\) −15.1623 −0.653086
\(540\) 0 0
\(541\) 37.2282 1.60057 0.800284 0.599622i \(-0.204682\pi\)
0.800284 + 0.599622i \(0.204682\pi\)
\(542\) −9.39353 −0.403487
\(543\) −35.3824 −1.51840
\(544\) −3.00000 −0.128624
\(545\) 0 0
\(546\) 0 0
\(547\) 35.9493 1.53708 0.768541 0.639800i \(-0.220983\pi\)
0.768541 + 0.639800i \(0.220983\pi\)
\(548\) −16.7779 −0.716717
\(549\) −95.1188 −4.05957
\(550\) 0 0
\(551\) −6.15416 −0.262176
\(552\) 20.9605 0.892137
\(553\) 26.8439 1.14152
\(554\) −8.38438 −0.356218
\(555\) 0 0
\(556\) −4.39353 −0.186327
\(557\) 14.0944 0.597197 0.298599 0.954379i \(-0.403481\pi\)
0.298599 + 0.954379i \(0.403481\pi\)
\(558\) 57.4311 2.43125
\(559\) 0 0
\(560\) 0 0
\(561\) −14.3337 −0.605170
\(562\) −12.6329 −0.532887
\(563\) −28.2678 −1.19134 −0.595672 0.803228i \(-0.703114\pi\)
−0.595672 + 0.803228i \(0.703114\pi\)
\(564\) 33.7100 1.41945
\(565\) 0 0
\(566\) 13.4706 0.566212
\(567\) −62.4484 −2.62258
\(568\) 0 0
\(569\) 26.1339 1.09559 0.547795 0.836613i \(-0.315467\pi\)
0.547795 + 0.836613i \(0.315467\pi\)
\(570\) 0 0
\(571\) −10.7871 −0.451424 −0.225712 0.974194i \(-0.572471\pi\)
−0.225712 + 0.974194i \(0.572471\pi\)
\(572\) 0 0
\(573\) −60.5538 −2.52967
\(574\) 32.2485 1.34603
\(575\) 0 0
\(576\) 6.64402 0.276834
\(577\) 12.1228 0.504677 0.252339 0.967639i \(-0.418800\pi\)
0.252339 + 0.967639i \(0.418800\pi\)
\(578\) 8.00000 0.332756
\(579\) 8.45033 0.351184
\(580\) 0 0
\(581\) 18.3164 0.759894
\(582\) 11.7668 0.487749
\(583\) −0.666275 −0.0275943
\(584\) −10.7779 −0.445993
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −35.2485 −1.45486 −0.727431 0.686181i \(-0.759286\pi\)
−0.727431 + 0.686181i \(0.759286\pi\)
\(588\) 30.6045 1.26211
\(589\) −9.55582 −0.393741
\(590\) 0 0
\(591\) 5.01728 0.206383
\(592\) 4.53854 0.186533
\(593\) −11.0862 −0.455257 −0.227628 0.973748i \(-0.573097\pi\)
−0.227628 + 0.973748i \(0.573097\pi\)
\(594\) 17.4108 0.714374
\(595\) 0 0
\(596\) 9.70998 0.397736
\(597\) 69.0924 2.82776
\(598\) 0 0
\(599\) 31.4990 1.28701 0.643507 0.765440i \(-0.277479\pi\)
0.643507 + 0.765440i \(0.277479\pi\)
\(600\) 0 0
\(601\) 19.6329 0.800843 0.400421 0.916331i \(-0.368864\pi\)
0.400421 + 0.916331i \(0.368864\pi\)
\(602\) 16.4219 0.669308
\(603\) −24.9118 −1.01449
\(604\) −2.48986 −0.101311
\(605\) 0 0
\(606\) 22.3053 0.906092
\(607\) −17.6156 −0.714996 −0.357498 0.933914i \(-0.616370\pi\)
−0.357498 + 0.933914i \(0.616370\pi\)
\(608\) −1.10548 −0.0448332
\(609\) 70.9758 2.87608
\(610\) 0 0
\(611\) 0 0
\(612\) 19.9321 0.805706
\(613\) 25.4200 1.02670 0.513351 0.858179i \(-0.328404\pi\)
0.513351 + 0.858179i \(0.328404\pi\)
\(614\) −13.8925 −0.560657
\(615\) 0 0
\(616\) −6.31645 −0.254497
\(617\) 27.7100 1.11556 0.557781 0.829988i \(-0.311653\pi\)
0.557781 + 0.829988i \(0.311653\pi\)
\(618\) 38.9382 1.56632
\(619\) −20.8439 −0.837786 −0.418893 0.908036i \(-0.637582\pi\)
−0.418893 + 0.908036i \(0.637582\pi\)
\(620\) 0 0
\(621\) −76.3804 −3.06504
\(622\) 3.51827 0.141070
\(623\) 7.61562 0.305113
\(624\) 0 0
\(625\) 0 0
\(626\) −24.5650 −0.981813
\(627\) −5.28189 −0.210939
\(628\) 11.3935 0.454651
\(629\) 13.6156 0.542890
\(630\) 0 0
\(631\) −30.7495 −1.22412 −0.612059 0.790812i \(-0.709659\pi\)
−0.612059 + 0.790812i \(0.709659\pi\)
\(632\) 6.53854 0.260089
\(633\) 31.7982 1.26386
\(634\) 1.46146 0.0580420
\(635\) 0 0
\(636\) 1.34485 0.0533268
\(637\) 0 0
\(638\) −8.56496 −0.339090
\(639\) 0 0
\(640\) 0 0
\(641\) −19.0660 −0.753060 −0.376530 0.926404i \(-0.622883\pi\)
−0.376530 + 0.926404i \(0.622883\pi\)
\(642\) −5.64402 −0.222752
\(643\) 45.8641 1.80870 0.904352 0.426786i \(-0.140354\pi\)
0.904352 + 0.426786i \(0.140354\pi\)
\(644\) 27.7100 1.09193
\(645\) 0 0
\(646\) −3.31645 −0.130484
\(647\) 11.0173 0.433134 0.216567 0.976268i \(-0.430514\pi\)
0.216567 + 0.976268i \(0.430514\pi\)
\(648\) −15.2110 −0.597543
\(649\) 21.1979 0.832089
\(650\) 0 0
\(651\) 110.207 4.31935
\(652\) −16.8155 −0.658544
\(653\) 14.5650 0.569971 0.284986 0.958532i \(-0.408011\pi\)
0.284986 + 0.958532i \(0.408011\pi\)
\(654\) 11.4047 0.445957
\(655\) 0 0
\(656\) 7.85499 0.306686
\(657\) 71.6087 2.79372
\(658\) 44.5650 1.73732
\(659\) 19.8174 0.771978 0.385989 0.922503i \(-0.373860\pi\)
0.385989 + 0.922503i \(0.373860\pi\)
\(660\) 0 0
\(661\) −13.4615 −0.523590 −0.261795 0.965123i \(-0.584314\pi\)
−0.261795 + 0.965123i \(0.584314\pi\)
\(662\) 18.2394 0.708893
\(663\) 0 0
\(664\) 4.46146 0.173138
\(665\) 0 0
\(666\) −30.1542 −1.16845
\(667\) 37.5741 1.45488
\(668\) −1.61562 −0.0625102
\(669\) −65.0924 −2.51662
\(670\) 0 0
\(671\) 22.0264 0.850321
\(672\) 12.7495 0.491823
\(673\) −0.0679332 −0.00261863 −0.00130932 0.999999i \(-0.500417\pi\)
−0.00130932 + 0.999999i \(0.500417\pi\)
\(674\) 19.6329 0.756231
\(675\) 0 0
\(676\) 0 0
\(677\) 26.1319 1.00433 0.502165 0.864772i \(-0.332537\pi\)
0.502165 + 0.864772i \(0.332537\pi\)
\(678\) 49.8925 1.91611
\(679\) 15.5558 0.596977
\(680\) 0 0
\(681\) 15.0771 0.577755
\(682\) −13.2992 −0.509252
\(683\) 17.0944 0.654097 0.327049 0.945007i \(-0.393946\pi\)
0.327049 + 0.945007i \(0.393946\pi\)
\(684\) 7.34485 0.280837
\(685\) 0 0
\(686\) 11.7211 0.447514
\(687\) −20.8439 −0.795243
\(688\) 4.00000 0.152499
\(689\) 0 0
\(690\) 0 0
\(691\) −25.3844 −0.965667 −0.482834 0.875712i \(-0.660392\pi\)
−0.482834 + 0.875712i \(0.660392\pi\)
\(692\) −12.3164 −0.468201
\(693\) 41.9666 1.59418
\(694\) −23.6816 −0.898940
\(695\) 0 0
\(696\) 17.2880 0.655302
\(697\) 23.5650 0.892587
\(698\) 0.154159 0.00583499
\(699\) 44.6106 1.68733
\(700\) 0 0
\(701\) −9.43108 −0.356207 −0.178103 0.984012i \(-0.556996\pi\)
−0.178103 + 0.984012i \(0.556996\pi\)
\(702\) 0 0
\(703\) 5.01728 0.189230
\(704\) −1.53854 −0.0579859
\(705\) 0 0
\(706\) −36.6329 −1.37870
\(707\) 29.4879 1.10901
\(708\) −42.7871 −1.60804
\(709\) −20.1734 −0.757629 −0.378814 0.925473i \(-0.623668\pi\)
−0.378814 + 0.925473i \(0.623668\pi\)
\(710\) 0 0
\(711\) −43.4422 −1.62921
\(712\) 1.85499 0.0695186
\(713\) 58.3429 2.18496
\(714\) 38.2485 1.43141
\(715\) 0 0
\(716\) −10.1826 −0.380540
\(717\) 3.55582 0.132794
\(718\) 27.2394 1.01656
\(719\) 31.4990 1.17471 0.587357 0.809328i \(-0.300168\pi\)
0.587357 + 0.809328i \(0.300168\pi\)
\(720\) 0 0
\(721\) 51.4768 1.91709
\(722\) 17.7779 0.661625
\(723\) −63.8703 −2.37536
\(724\) −11.3935 −0.423437
\(725\) 0 0
\(726\) 26.8093 0.994987
\(727\) 22.8814 0.848625 0.424312 0.905516i \(-0.360516\pi\)
0.424312 + 0.905516i \(0.360516\pi\)
\(728\) 0 0
\(729\) −4.36710 −0.161745
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) −44.4595 −1.64327
\(733\) 48.1126 1.77708 0.888541 0.458798i \(-0.151720\pi\)
0.888541 + 0.458798i \(0.151720\pi\)
\(734\) −23.8641 −0.880841
\(735\) 0 0
\(736\) 6.74950 0.248790
\(737\) 5.76876 0.212495
\(738\) −52.1887 −1.92109
\(739\) −19.9321 −0.733213 −0.366606 0.930376i \(-0.619480\pi\)
−0.366606 + 0.930376i \(0.619480\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.77791 0.0652691
\(743\) −24.6248 −0.903395 −0.451698 0.892171i \(-0.649181\pi\)
−0.451698 + 0.892171i \(0.649181\pi\)
\(744\) 26.8439 0.984144
\(745\) 0 0
\(746\) −22.3164 −0.817063
\(747\) −29.6420 −1.08455
\(748\) −4.61562 −0.168764
\(749\) −7.46146 −0.272636
\(750\) 0 0
\(751\) 36.7273 1.34020 0.670098 0.742272i \(-0.266252\pi\)
0.670098 + 0.742272i \(0.266252\pi\)
\(752\) 10.8550 0.395841
\(753\) −10.2992 −0.375323
\(754\) 0 0
\(755\) 0 0
\(756\) −46.4595 −1.68971
\(757\) −37.0091 −1.34512 −0.672560 0.740042i \(-0.734805\pi\)
−0.672560 + 0.740042i \(0.734805\pi\)
\(758\) −9.74950 −0.354118
\(759\) 32.2485 1.17055
\(760\) 0 0
\(761\) −26.6420 −0.965773 −0.482887 0.875683i \(-0.660412\pi\)
−0.482887 + 0.875683i \(0.660412\pi\)
\(762\) −15.2880 −0.553827
\(763\) 15.0771 0.545827
\(764\) −19.4990 −0.705449
\(765\) 0 0
\(766\) 24.7871 0.895593
\(767\) 0 0
\(768\) 3.10548 0.112059
\(769\) −37.2972 −1.34497 −0.672486 0.740110i \(-0.734773\pi\)
−0.672486 + 0.740110i \(0.734773\pi\)
\(770\) 0 0
\(771\) 38.6106 1.39053
\(772\) 2.72110 0.0979346
\(773\) 10.5385 0.379045 0.189522 0.981876i \(-0.439306\pi\)
0.189522 + 0.981876i \(0.439306\pi\)
\(774\) −26.5761 −0.955258
\(775\) 0 0
\(776\) 3.78903 0.136018
\(777\) −57.8641 −2.07586
\(778\) −0.749505 −0.0268711
\(779\) 8.68355 0.311121
\(780\) 0 0
\(781\) 0 0
\(782\) 20.2485 0.724085
\(783\) −62.9980 −2.25137
\(784\) 9.85499 0.351964
\(785\) 0 0
\(786\) −2.68970 −0.0959385
\(787\) −0.278898 −0.00994165 −0.00497083 0.999988i \(-0.501582\pi\)
−0.00497083 + 0.999988i \(0.501582\pi\)
\(788\) 1.61562 0.0575540
\(789\) −13.6156 −0.484729
\(790\) 0 0
\(791\) 65.9585 2.34521
\(792\) 10.2221 0.363226
\(793\) 0 0
\(794\) 9.67243 0.343262
\(795\) 0 0
\(796\) 22.2485 0.788578
\(797\) −42.0832 −1.49066 −0.745332 0.666693i \(-0.767709\pi\)
−0.745332 + 0.666693i \(0.767709\pi\)
\(798\) 14.0944 0.498935
\(799\) 32.5650 1.15207
\(800\) 0 0
\(801\) −12.3246 −0.435468
\(802\) 10.9321 0.386025
\(803\) −16.5822 −0.585175
\(804\) −11.6440 −0.410653
\(805\) 0 0
\(806\) 0 0
\(807\) −17.2880 −0.608568
\(808\) 7.18256 0.252682
\(809\) −12.6329 −0.444149 −0.222074 0.975030i \(-0.571283\pi\)
−0.222074 + 0.975030i \(0.571283\pi\)
\(810\) 0 0
\(811\) 43.1411 1.51489 0.757444 0.652901i \(-0.226448\pi\)
0.757444 + 0.652901i \(0.226448\pi\)
\(812\) 22.8550 0.802053
\(813\) 29.1714 1.02309
\(814\) 6.98272 0.244744
\(815\) 0 0
\(816\) 9.31645 0.326141
\(817\) 4.42193 0.154704
\(818\) 26.5669 0.928891
\(819\) 0 0
\(820\) 0 0
\(821\) 23.0173 0.803308 0.401654 0.915791i \(-0.368435\pi\)
0.401654 + 0.915791i \(0.368435\pi\)
\(822\) 52.1035 1.81732
\(823\) 4.00000 0.139431 0.0697156 0.997567i \(-0.477791\pi\)
0.0697156 + 0.997567i \(0.477791\pi\)
\(824\) 12.5385 0.436801
\(825\) 0 0
\(826\) −56.5650 −1.96815
\(827\) −35.4027 −1.23107 −0.615536 0.788109i \(-0.711060\pi\)
−0.615536 + 0.788109i \(0.711060\pi\)
\(828\) −44.8439 −1.55843
\(829\) 10.6065 0.368378 0.184189 0.982891i \(-0.441034\pi\)
0.184189 + 0.982891i \(0.441034\pi\)
\(830\) 0 0
\(831\) 26.0375 0.903233
\(832\) 0 0
\(833\) 29.5650 1.02437
\(834\) 13.6440 0.472454
\(835\) 0 0
\(836\) −1.70083 −0.0588244
\(837\) −97.8196 −3.38114
\(838\) −24.3145 −0.839929
\(839\) 19.4615 0.671884 0.335942 0.941883i \(-0.390945\pi\)
0.335942 + 0.941883i \(0.390945\pi\)
\(840\) 0 0
\(841\) 1.99085 0.0686501
\(842\) 6.15416 0.212086
\(843\) 39.2312 1.35120
\(844\) 10.2394 0.352454
\(845\) 0 0
\(846\) −72.1208 −2.47956
\(847\) 35.4422 1.21781
\(848\) 0.433057 0.0148712
\(849\) −41.8327 −1.43570
\(850\) 0 0
\(851\) −30.6329 −1.05008
\(852\) 0 0
\(853\) 15.9807 0.547170 0.273585 0.961848i \(-0.411790\pi\)
0.273585 + 0.961848i \(0.411790\pi\)
\(854\) −58.7759 −2.01127
\(855\) 0 0
\(856\) −1.81744 −0.0621188
\(857\) 38.5669 1.31742 0.658711 0.752396i \(-0.271102\pi\)
0.658711 + 0.752396i \(0.271102\pi\)
\(858\) 0 0
\(859\) −28.6836 −0.978670 −0.489335 0.872096i \(-0.662760\pi\)
−0.489335 + 0.872096i \(0.662760\pi\)
\(860\) 0 0
\(861\) −100.147 −3.41301
\(862\) −0.828565 −0.0282210
\(863\) 36.4706 1.24147 0.620737 0.784019i \(-0.286834\pi\)
0.620737 + 0.784019i \(0.286834\pi\)
\(864\) −11.3164 −0.384993
\(865\) 0 0
\(866\) −15.7008 −0.533536
\(867\) −24.8439 −0.843742
\(868\) 35.4879 1.20454
\(869\) 10.0598 0.341255
\(870\) 0 0
\(871\) 0 0
\(872\) 3.67243 0.124364
\(873\) −25.1744 −0.852025
\(874\) 7.46146 0.252388
\(875\) 0 0
\(876\) 33.4706 1.13087
\(877\) 7.02027 0.237058 0.118529 0.992951i \(-0.462182\pi\)
0.118529 + 0.992951i \(0.462182\pi\)
\(878\) −9.17144 −0.309521
\(879\) 18.6329 0.628472
\(880\) 0 0
\(881\) −4.93405 −0.166232 −0.0831161 0.996540i \(-0.526487\pi\)
−0.0831161 + 0.996540i \(0.526487\pi\)
\(882\) −65.4768 −2.20472
\(883\) −49.9493 −1.68093 −0.840465 0.541866i \(-0.817718\pi\)
−0.840465 + 0.541866i \(0.817718\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 15.3164 0.514566
\(887\) 3.86413 0.129745 0.0648725 0.997894i \(-0.479336\pi\)
0.0648725 + 0.997894i \(0.479336\pi\)
\(888\) −14.0944 −0.472976
\(889\) −20.2110 −0.677854
\(890\) 0 0
\(891\) −23.4027 −0.784019
\(892\) −20.9605 −0.701808
\(893\) 12.0000 0.401565
\(894\) −30.1542 −1.00851
\(895\) 0 0
\(896\) 4.10548 0.137155
\(897\) 0 0
\(898\) −23.4108 −0.781229
\(899\) 48.1208 1.60492
\(900\) 0 0
\(901\) 1.29917 0.0432817
\(902\) 12.0852 0.402393
\(903\) −50.9980 −1.69711
\(904\) 16.0660 0.534346
\(905\) 0 0
\(906\) 7.73223 0.256886
\(907\) 17.5558 0.582931 0.291466 0.956581i \(-0.405857\pi\)
0.291466 + 0.956581i \(0.405857\pi\)
\(908\) 4.85499 0.161118
\(909\) −47.7211 −1.58281
\(910\) 0 0
\(911\) −27.9807 −0.927043 −0.463522 0.886086i \(-0.653414\pi\)
−0.463522 + 0.886086i \(0.653414\pi\)
\(912\) 3.43306 0.113680
\(913\) 6.86413 0.227170
\(914\) −22.9321 −0.758525
\(915\) 0 0
\(916\) −6.71196 −0.221769
\(917\) −3.55582 −0.117423
\(918\) −33.9493 −1.12050
\(919\) 31.0356 1.02377 0.511884 0.859054i \(-0.328948\pi\)
0.511884 + 0.859054i \(0.328948\pi\)
\(920\) 0 0
\(921\) 43.1430 1.42161
\(922\) 13.4615 0.443330
\(923\) 0 0
\(924\) 19.6156 0.645306
\(925\) 0 0
\(926\) 16.0264 0.526661
\(927\) −83.3063 −2.73614
\(928\) 5.56694 0.182744
\(929\) 24.0000 0.787414 0.393707 0.919236i \(-0.371192\pi\)
0.393707 + 0.919236i \(0.371192\pi\)
\(930\) 0 0
\(931\) 10.8945 0.357053
\(932\) 14.3651 0.470545
\(933\) −10.9259 −0.357698
\(934\) 0.866114 0.0283401
\(935\) 0 0
\(936\) 0 0
\(937\) −60.8987 −1.98947 −0.994737 0.102464i \(-0.967327\pi\)
−0.994737 + 0.102464i \(0.967327\pi\)
\(938\) −15.3935 −0.502616
\(939\) 76.2861 2.48950
\(940\) 0 0
\(941\) 32.2485 1.05127 0.525636 0.850710i \(-0.323827\pi\)
0.525636 + 0.850710i \(0.323827\pi\)
\(942\) −35.3824 −1.15282
\(943\) −53.0173 −1.72648
\(944\) −13.7779 −0.448433
\(945\) 0 0
\(946\) 6.15416 0.200089
\(947\) 20.4108 0.663262 0.331631 0.943409i \(-0.392401\pi\)
0.331631 + 0.943409i \(0.392401\pi\)
\(948\) −20.3053 −0.659486
\(949\) 0 0
\(950\) 0 0
\(951\) −4.53854 −0.147172
\(952\) 12.3164 0.399178
\(953\) −8.36710 −0.271037 −0.135519 0.990775i \(-0.543270\pi\)
−0.135519 + 0.990775i \(0.543270\pi\)
\(954\) −2.87724 −0.0931541
\(955\) 0 0
\(956\) 1.14501 0.0370324
\(957\) 26.5983 0.859802
\(958\) 29.4879 0.952710
\(959\) 68.8814 2.22430
\(960\) 0 0
\(961\) 43.7191 1.41029
\(962\) 0 0
\(963\) 12.0751 0.389115
\(964\) −20.5669 −0.662417
\(965\) 0 0
\(966\) −86.0528 −2.76870
\(967\) 14.4108 0.463420 0.231710 0.972785i \(-0.425568\pi\)
0.231710 + 0.972785i \(0.425568\pi\)
\(968\) 8.63290 0.277472
\(969\) 10.2992 0.330857
\(970\) 0 0
\(971\) 25.1806 0.808083 0.404042 0.914741i \(-0.367605\pi\)
0.404042 + 0.914741i \(0.367605\pi\)
\(972\) 13.2880 0.426214
\(973\) 18.0375 0.578257
\(974\) 35.4503 1.13590
\(975\) 0 0
\(976\) −14.3164 −0.458258
\(977\) −38.1633 −1.22095 −0.610476 0.792035i \(-0.709022\pi\)
−0.610476 + 0.792035i \(0.709022\pi\)
\(978\) 52.2201 1.66982
\(979\) 2.85397 0.0912133
\(980\) 0 0
\(981\) −24.3997 −0.779022
\(982\) −32.1319 −1.02537
\(983\) 49.8906 1.59126 0.795631 0.605782i \(-0.207140\pi\)
0.795631 + 0.605782i \(0.207140\pi\)
\(984\) −24.3935 −0.777637
\(985\) 0 0
\(986\) 16.7008 0.531863
\(987\) −138.396 −4.40518
\(988\) 0 0
\(989\) −26.9980 −0.858487
\(990\) 0 0
\(991\) −10.6329 −0.337765 −0.168883 0.985636i \(-0.554016\pi\)
−0.168883 + 0.985636i \(0.554016\pi\)
\(992\) 8.64402 0.274448
\(993\) −56.6420 −1.79748
\(994\) 0 0
\(995\) 0 0
\(996\) −13.8550 −0.439012
\(997\) 2.99085 0.0947213 0.0473606 0.998878i \(-0.484919\pi\)
0.0473606 + 0.998878i \(0.484919\pi\)
\(998\) 27.2769 0.863436
\(999\) 51.3601 1.62496
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8450.2.a.bq.1.3 3
5.4 even 2 8450.2.a.cd.1.1 3
13.5 odd 4 650.2.d.d.51.6 yes 6
13.8 odd 4 650.2.d.d.51.3 yes 6
13.12 even 2 8450.2.a.ce.1.3 3
65.8 even 4 650.2.c.e.649.6 6
65.18 even 4 650.2.c.f.649.6 6
65.34 odd 4 650.2.d.c.51.4 yes 6
65.44 odd 4 650.2.d.c.51.1 6
65.47 even 4 650.2.c.f.649.1 6
65.57 even 4 650.2.c.e.649.1 6
65.64 even 2 8450.2.a.br.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.c.e.649.1 6 65.57 even 4
650.2.c.e.649.6 6 65.8 even 4
650.2.c.f.649.1 6 65.47 even 4
650.2.c.f.649.6 6 65.18 even 4
650.2.d.c.51.1 6 65.44 odd 4
650.2.d.c.51.4 yes 6 65.34 odd 4
650.2.d.d.51.3 yes 6 13.8 odd 4
650.2.d.d.51.6 yes 6 13.5 odd 4
8450.2.a.bq.1.3 3 1.1 even 1 trivial
8450.2.a.br.1.1 3 65.64 even 2
8450.2.a.cd.1.1 3 5.4 even 2
8450.2.a.ce.1.3 3 13.12 even 2