Properties

Label 650.2.c.e.649.1
Level $650$
Weight $2$
Character 650.649
Analytic conductor $5.190$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(649,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,0,6,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.126157824.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-3.10548i\) of defining polynomial
Character \(\chi\) \(=\) 650.649
Dual form 650.2.c.e.649.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -3.10548i q^{3} +1.00000 q^{4} +3.10548i q^{6} +4.10548 q^{7} -1.00000 q^{8} -6.64402 q^{9} -1.53854i q^{11} -3.10548i q^{12} +(3.37475 - 1.26927i) q^{13} -4.10548 q^{14} +1.00000 q^{16} -3.00000i q^{17} +6.64402 q^{18} +1.10548i q^{19} -12.7495i q^{21} +1.53854i q^{22} -6.74950i q^{23} +3.10548i q^{24} +(-3.37475 + 1.26927i) q^{26} +11.3164i q^{27} +4.10548 q^{28} +5.56694 q^{29} +8.64402i q^{31} -1.00000 q^{32} -4.77791 q^{33} +3.00000i q^{34} -6.64402 q^{36} -4.53854 q^{37} -1.10548i q^{38} +(-3.94170 - 10.4802i) q^{39} -7.85499i q^{41} +12.7495i q^{42} +4.00000i q^{43} -1.53854i q^{44} +6.74950i q^{46} -10.8550 q^{47} -3.10548i q^{48} +9.85499 q^{49} -9.31645 q^{51} +(3.37475 - 1.26927i) q^{52} -0.433057i q^{53} -11.3164i q^{54} -4.10548 q^{56} +3.43306 q^{57} -5.56694 q^{58} +13.7779i q^{59} -14.3164 q^{61} -8.64402i q^{62} -27.2769 q^{63} +1.00000 q^{64} +4.77791 q^{66} -3.74950 q^{67} -3.00000i q^{68} -20.9605 q^{69} +6.64402 q^{72} +10.7779 q^{73} +4.53854 q^{74} +1.10548i q^{76} -6.31645i q^{77} +(3.94170 + 10.4802i) q^{78} +6.53854 q^{79} +15.2110 q^{81} +7.85499i q^{82} +4.46146 q^{83} -12.7495i q^{84} -4.00000i q^{86} -17.2880i q^{87} +1.53854i q^{88} +1.85499i q^{89} +(13.8550 - 5.21097i) q^{91} -6.74950i q^{92} +26.8439 q^{93} +10.8550 q^{94} +3.10548i q^{96} -3.78903 q^{97} -9.85499 q^{98} +10.2221i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{4} + 6 q^{7} - 6 q^{8} - 18 q^{9} - 6 q^{14} + 6 q^{16} + 18 q^{18} + 6 q^{28} + 18 q^{29} - 6 q^{32} + 24 q^{33} - 18 q^{36} - 24 q^{37} + 12 q^{39} - 6 q^{47} - 6 q^{56} + 36 q^{57}+ \cdots - 60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 3.10548i 1.79295i −0.443093 0.896476i \(-0.646119\pi\)
0.443093 0.896476i \(-0.353881\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 3.10548i 1.26781i
\(7\) 4.10548 1.55173 0.775863 0.630901i \(-0.217315\pi\)
0.775863 + 0.630901i \(0.217315\pi\)
\(8\) −1.00000 −0.353553
\(9\) −6.64402 −2.21467
\(10\) 0 0
\(11\) 1.53854i 0.463887i −0.972729 0.231944i \(-0.925492\pi\)
0.972729 0.231944i \(-0.0745085\pi\)
\(12\) 3.10548i 0.896476i
\(13\) 3.37475 1.26927i 0.935988 0.352032i
\(14\) −4.10548 −1.09724
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.00000i 0.727607i −0.931476 0.363803i \(-0.881478\pi\)
0.931476 0.363803i \(-0.118522\pi\)
\(18\) 6.64402 1.56601
\(19\) 1.10548i 0.253615i 0.991927 + 0.126808i \(0.0404731\pi\)
−0.991927 + 0.126808i \(0.959527\pi\)
\(20\) 0 0
\(21\) 12.7495i 2.78217i
\(22\) 1.53854i 0.328018i
\(23\) 6.74950i 1.40737i −0.710513 0.703685i \(-0.751537\pi\)
0.710513 0.703685i \(-0.248463\pi\)
\(24\) 3.10548i 0.633904i
\(25\) 0 0
\(26\) −3.37475 + 1.26927i −0.661843 + 0.248924i
\(27\) 11.3164i 2.17785i
\(28\) 4.10548 0.775863
\(29\) 5.56694 1.03376 0.516878 0.856059i \(-0.327094\pi\)
0.516878 + 0.856059i \(0.327094\pi\)
\(30\) 0 0
\(31\) 8.64402i 1.55251i 0.630418 + 0.776256i \(0.282884\pi\)
−0.630418 + 0.776256i \(0.717116\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.77791 −0.831727
\(34\) 3.00000i 0.514496i
\(35\) 0 0
\(36\) −6.64402 −1.10734
\(37\) −4.53854 −0.746131 −0.373066 0.927805i \(-0.621693\pi\)
−0.373066 + 0.927805i \(0.621693\pi\)
\(38\) 1.10548i 0.179333i
\(39\) −3.94170 10.4802i −0.631176 1.67818i
\(40\) 0 0
\(41\) 7.85499i 1.22674i −0.789795 0.613371i \(-0.789813\pi\)
0.789795 0.613371i \(-0.210187\pi\)
\(42\) 12.7495i 1.96729i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 1.53854i 0.231944i
\(45\) 0 0
\(46\) 6.74950i 0.995160i
\(47\) −10.8550 −1.58336 −0.791681 0.610934i \(-0.790794\pi\)
−0.791681 + 0.610934i \(0.790794\pi\)
\(48\) 3.10548i 0.448238i
\(49\) 9.85499 1.40786
\(50\) 0 0
\(51\) −9.31645 −1.30456
\(52\) 3.37475 1.26927i 0.467994 0.176016i
\(53\) 0.433057i 0.0594850i −0.999558 0.0297425i \(-0.990531\pi\)
0.999558 0.0297425i \(-0.00946872\pi\)
\(54\) 11.3164i 1.53997i
\(55\) 0 0
\(56\) −4.10548 −0.548618
\(57\) 3.43306 0.454720
\(58\) −5.56694 −0.730975
\(59\) 13.7779i 1.79373i 0.442304 + 0.896865i \(0.354161\pi\)
−0.442304 + 0.896865i \(0.645839\pi\)
\(60\) 0 0
\(61\) −14.3164 −1.83303 −0.916517 0.399997i \(-0.869011\pi\)
−0.916517 + 0.399997i \(0.869011\pi\)
\(62\) 8.64402i 1.09779i
\(63\) −27.2769 −3.43657
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 4.77791 0.588120
\(67\) −3.74950 −0.458075 −0.229037 0.973418i \(-0.573558\pi\)
−0.229037 + 0.973418i \(0.573558\pi\)
\(68\) 3.00000i 0.363803i
\(69\) −20.9605 −2.52334
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 6.64402 0.783006
\(73\) 10.7779 1.26146 0.630729 0.776003i \(-0.282756\pi\)
0.630729 + 0.776003i \(0.282756\pi\)
\(74\) 4.53854 0.527595
\(75\) 0 0
\(76\) 1.10548i 0.126808i
\(77\) 6.31645i 0.719826i
\(78\) 3.94170 + 10.4802i 0.446309 + 1.18665i
\(79\) 6.53854 0.735643 0.367822 0.929896i \(-0.380104\pi\)
0.367822 + 0.929896i \(0.380104\pi\)
\(80\) 0 0
\(81\) 15.2110 1.69011
\(82\) 7.85499i 0.867438i
\(83\) 4.46146 0.489709 0.244854 0.969560i \(-0.421260\pi\)
0.244854 + 0.969560i \(0.421260\pi\)
\(84\) 12.7495i 1.39109i
\(85\) 0 0
\(86\) 4.00000i 0.431331i
\(87\) 17.2880i 1.85347i
\(88\) 1.53854i 0.164009i
\(89\) 1.85499i 0.196628i 0.995155 + 0.0983141i \(0.0313450\pi\)
−0.995155 + 0.0983141i \(0.968655\pi\)
\(90\) 0 0
\(91\) 13.8550 5.21097i 1.45240 0.546258i
\(92\) 6.74950i 0.703685i
\(93\) 26.8439 2.78358
\(94\) 10.8550 1.11961
\(95\) 0 0
\(96\) 3.10548i 0.316952i
\(97\) −3.78903 −0.384718 −0.192359 0.981325i \(-0.561614\pi\)
−0.192359 + 0.981325i \(0.561614\pi\)
\(98\) −9.85499 −0.995504
\(99\) 10.2221i 1.02736i
\(100\) 0 0
\(101\) 7.18256 0.714692 0.357346 0.933972i \(-0.383682\pi\)
0.357346 + 0.933972i \(0.383682\pi\)
\(102\) 9.31645 0.922466
\(103\) 12.5385i 1.23546i −0.786391 0.617730i \(-0.788053\pi\)
0.786391 0.617730i \(-0.211947\pi\)
\(104\) −3.37475 + 1.26927i −0.330922 + 0.124462i
\(105\) 0 0
\(106\) 0.433057i 0.0420622i
\(107\) 1.81744i 0.175698i 0.996134 + 0.0878492i \(0.0279994\pi\)
−0.996134 + 0.0878492i \(0.972001\pi\)
\(108\) 11.3164i 1.08893i
\(109\) 3.67243i 0.351755i −0.984412 0.175877i \(-0.943724\pi\)
0.984412 0.175877i \(-0.0562762\pi\)
\(110\) 0 0
\(111\) 14.0944i 1.33778i
\(112\) 4.10548 0.387932
\(113\) 16.0660i 1.51136i 0.654942 + 0.755679i \(0.272693\pi\)
−0.654942 + 0.755679i \(0.727307\pi\)
\(114\) −3.43306 −0.321535
\(115\) 0 0
\(116\) 5.56694 0.516878
\(117\) −22.4219 + 8.43306i −2.07291 + 0.779636i
\(118\) 13.7779i 1.26836i
\(119\) 12.3164i 1.12905i
\(120\) 0 0
\(121\) 8.63290 0.784809
\(122\) 14.3164 1.29615
\(123\) −24.3935 −2.19949
\(124\) 8.64402i 0.776256i
\(125\) 0 0
\(126\) 27.2769 2.43002
\(127\) 4.92292i 0.436839i −0.975855 0.218419i \(-0.929910\pi\)
0.975855 0.218419i \(-0.0700900\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 12.4219 1.09369
\(130\) 0 0
\(131\) 0.866114 0.0756727 0.0378364 0.999284i \(-0.487953\pi\)
0.0378364 + 0.999284i \(0.487953\pi\)
\(132\) −4.77791 −0.415864
\(133\) 4.53854i 0.393541i
\(134\) 3.74950 0.323908
\(135\) 0 0
\(136\) 3.00000i 0.257248i
\(137\) 16.7779 1.43343 0.716717 0.697364i \(-0.245644\pi\)
0.716717 + 0.697364i \(0.245644\pi\)
\(138\) 20.9605 1.78427
\(139\) 4.39353 0.372654 0.186327 0.982488i \(-0.440342\pi\)
0.186327 + 0.982488i \(0.440342\pi\)
\(140\) 0 0
\(141\) 33.7100i 2.83889i
\(142\) 0 0
\(143\) −1.95282 5.19219i −0.163303 0.434193i
\(144\) −6.64402 −0.553669
\(145\) 0 0
\(146\) −10.7779 −0.891986
\(147\) 30.6045i 2.52422i
\(148\) −4.53854 −0.373066
\(149\) 9.70998i 0.795472i 0.917500 + 0.397736i \(0.130204\pi\)
−0.917500 + 0.397736i \(0.869796\pi\)
\(150\) 0 0
\(151\) 2.48986i 0.202622i −0.994855 0.101311i \(-0.967696\pi\)
0.994855 0.101311i \(-0.0323038\pi\)
\(152\) 1.10548i 0.0896665i
\(153\) 19.9321i 1.61141i
\(154\) 6.31645i 0.508994i
\(155\) 0 0
\(156\) −3.94170 10.4802i −0.315588 0.839090i
\(157\) 11.3935i 0.909302i 0.890670 + 0.454651i \(0.150236\pi\)
−0.890670 + 0.454651i \(0.849764\pi\)
\(158\) −6.53854 −0.520178
\(159\) −1.34485 −0.106654
\(160\) 0 0
\(161\) 27.7100i 2.18385i
\(162\) −15.2110 −1.19509
\(163\) −16.8155 −1.31709 −0.658544 0.752542i \(-0.728827\pi\)
−0.658544 + 0.752542i \(0.728827\pi\)
\(164\) 7.85499i 0.613371i
\(165\) 0 0
\(166\) −4.46146 −0.346276
\(167\) 1.61562 0.125020 0.0625102 0.998044i \(-0.480089\pi\)
0.0625102 + 0.998044i \(0.480089\pi\)
\(168\) 12.7495i 0.983646i
\(169\) 9.77791 8.56694i 0.752147 0.658996i
\(170\) 0 0
\(171\) 7.34485i 0.561675i
\(172\) 4.00000i 0.304997i
\(173\) 12.3164i 0.936402i −0.883622 0.468201i \(-0.844902\pi\)
0.883622 0.468201i \(-0.155098\pi\)
\(174\) 17.2880i 1.31060i
\(175\) 0 0
\(176\) 1.53854i 0.115972i
\(177\) 42.7871 3.21607
\(178\) 1.85499i 0.139037i
\(179\) −10.1826 −0.761080 −0.380540 0.924764i \(-0.624262\pi\)
−0.380540 + 0.924764i \(0.624262\pi\)
\(180\) 0 0
\(181\) 11.3935 0.846874 0.423437 0.905926i \(-0.360823\pi\)
0.423437 + 0.905926i \(0.360823\pi\)
\(182\) −13.8550 + 5.21097i −1.02700 + 0.386262i
\(183\) 44.4595i 3.28654i
\(184\) 6.74950i 0.497580i
\(185\) 0 0
\(186\) −26.8439 −1.96829
\(187\) −4.61562 −0.337527
\(188\) −10.8550 −0.791681
\(189\) 46.4595i 3.37943i
\(190\) 0 0
\(191\) −19.4990 −1.41090 −0.705449 0.708760i \(-0.749255\pi\)
−0.705449 + 0.708760i \(0.749255\pi\)
\(192\) 3.10548i 0.224119i
\(193\) 2.72110 0.195869 0.0979346 0.995193i \(-0.468776\pi\)
0.0979346 + 0.995193i \(0.468776\pi\)
\(194\) 3.78903 0.272037
\(195\) 0 0
\(196\) 9.85499 0.703928
\(197\) 1.61562 0.115108 0.0575540 0.998342i \(-0.481670\pi\)
0.0575540 + 0.998342i \(0.481670\pi\)
\(198\) 10.2221i 0.726452i
\(199\) 22.2485 1.57716 0.788578 0.614935i \(-0.210818\pi\)
0.788578 + 0.614935i \(0.210818\pi\)
\(200\) 0 0
\(201\) 11.6440i 0.821306i
\(202\) −7.18256 −0.505363
\(203\) 22.8550 1.60411
\(204\) −9.31645 −0.652282
\(205\) 0 0
\(206\) 12.5385i 0.873601i
\(207\) 44.8439i 3.11686i
\(208\) 3.37475 1.26927i 0.233997 0.0880080i
\(209\) 1.70083 0.117649
\(210\) 0 0
\(211\) 10.2394 0.704907 0.352454 0.935829i \(-0.385347\pi\)
0.352454 + 0.935829i \(0.385347\pi\)
\(212\) 0.433057i 0.0297425i
\(213\) 0 0
\(214\) 1.81744i 0.124238i
\(215\) 0 0
\(216\) 11.3164i 0.769987i
\(217\) 35.4879i 2.40907i
\(218\) 3.67243i 0.248728i
\(219\) 33.4706i 2.26173i
\(220\) 0 0
\(221\) −3.80781 10.1243i −0.256141 0.681031i
\(222\) 14.0944i 0.945951i
\(223\) 20.9605 1.40362 0.701808 0.712366i \(-0.252376\pi\)
0.701808 + 0.712366i \(0.252376\pi\)
\(224\) −4.10548 −0.274309
\(225\) 0 0
\(226\) 16.0660i 1.06869i
\(227\) 4.85499 0.322237 0.161118 0.986935i \(-0.448490\pi\)
0.161118 + 0.986935i \(0.448490\pi\)
\(228\) 3.43306 0.227360
\(229\) 6.71196i 0.443538i 0.975099 + 0.221769i \(0.0711832\pi\)
−0.975099 + 0.221769i \(0.928817\pi\)
\(230\) 0 0
\(231\) −19.6156 −1.29061
\(232\) −5.56694 −0.365488
\(233\) 14.3651i 0.941091i 0.882376 + 0.470545i \(0.155943\pi\)
−0.882376 + 0.470545i \(0.844057\pi\)
\(234\) 22.4219 8.43306i 1.46577 0.551286i
\(235\) 0 0
\(236\) 13.7779i 0.896865i
\(237\) 20.3053i 1.31897i
\(238\) 12.3164i 0.798357i
\(239\) 1.14501i 0.0740647i 0.999314 + 0.0370324i \(0.0117905\pi\)
−0.999314 + 0.0370324i \(0.988210\pi\)
\(240\) 0 0
\(241\) 20.5669i 1.32483i −0.749136 0.662417i \(-0.769531\pi\)
0.749136 0.662417i \(-0.230469\pi\)
\(242\) −8.63290 −0.554944
\(243\) 13.2880i 0.852428i
\(244\) −14.3164 −0.916517
\(245\) 0 0
\(246\) 24.3935 1.55527
\(247\) 1.40316 + 3.73073i 0.0892807 + 0.237381i
\(248\) 8.64402i 0.548896i
\(249\) 13.8550i 0.878024i
\(250\) 0 0
\(251\) 3.31645 0.209332 0.104666 0.994507i \(-0.466623\pi\)
0.104666 + 0.994507i \(0.466623\pi\)
\(252\) −27.2769 −1.71828
\(253\) −10.3844 −0.652860
\(254\) 4.92292i 0.308892i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.4331i 0.775553i −0.921753 0.387776i \(-0.873243\pi\)
0.921753 0.387776i \(-0.126757\pi\)
\(258\) −12.4219 −0.773356
\(259\) −18.6329 −1.15779
\(260\) 0 0
\(261\) −36.9869 −2.28943
\(262\) −0.866114 −0.0535087
\(263\) 4.38438i 0.270353i 0.990822 + 0.135176i \(0.0431601\pi\)
−0.990822 + 0.135176i \(0.956840\pi\)
\(264\) 4.77791 0.294060
\(265\) 0 0
\(266\) 4.53854i 0.278276i
\(267\) 5.76063 0.352545
\(268\) −3.74950 −0.229037
\(269\) 5.56694 0.339423 0.169711 0.985494i \(-0.445716\pi\)
0.169711 + 0.985494i \(0.445716\pi\)
\(270\) 0 0
\(271\) 9.39353i 0.570616i 0.958436 + 0.285308i \(0.0920959\pi\)
−0.958436 + 0.285308i \(0.907904\pi\)
\(272\) 3.00000i 0.181902i
\(273\) −16.1826 43.0264i −0.979413 2.60408i
\(274\) −16.7779 −1.01359
\(275\) 0 0
\(276\) −20.9605 −1.26167
\(277\) 8.38438i 0.503769i −0.967757 0.251884i \(-0.918950\pi\)
0.967757 0.251884i \(-0.0810502\pi\)
\(278\) −4.39353 −0.263506
\(279\) 57.4311i 3.43831i
\(280\) 0 0
\(281\) 12.6329i 0.753615i 0.926292 + 0.376808i \(0.122978\pi\)
−0.926292 + 0.376808i \(0.877022\pi\)
\(282\) 33.7100i 2.00740i
\(283\) 13.4706i 0.800744i −0.916353 0.400372i \(-0.868881\pi\)
0.916353 0.400372i \(-0.131119\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 1.95282 + 5.19219i 0.115473 + 0.307021i
\(287\) 32.2485i 1.90357i
\(288\) 6.64402 0.391503
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) 11.7668i 0.689781i
\(292\) 10.7779 0.630729
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 30.6045i 1.78489i
\(295\) 0 0
\(296\) 4.53854 0.263797
\(297\) 17.4108 1.01028
\(298\) 9.70998i 0.562484i
\(299\) −8.56694 22.7779i −0.495439 1.31728i
\(300\) 0 0
\(301\) 16.4219i 0.946544i
\(302\) 2.48986i 0.143276i
\(303\) 22.3053i 1.28141i
\(304\) 1.10548i 0.0634038i
\(305\) 0 0
\(306\) 19.9321i 1.13944i
\(307\) −13.8925 −0.792889 −0.396444 0.918059i \(-0.629756\pi\)
−0.396444 + 0.918059i \(0.629756\pi\)
\(308\) 6.31645i 0.359913i
\(309\) −38.9382 −2.21512
\(310\) 0 0
\(311\) 3.51827 0.199503 0.0997513 0.995012i \(-0.468195\pi\)
0.0997513 + 0.995012i \(0.468195\pi\)
\(312\) 3.94170 + 10.4802i 0.223155 + 0.593326i
\(313\) 24.5650i 1.38849i −0.719737 0.694247i \(-0.755738\pi\)
0.719737 0.694247i \(-0.244262\pi\)
\(314\) 11.3935i 0.642974i
\(315\) 0 0
\(316\) 6.53854 0.367822
\(317\) −1.46146 −0.0820838 −0.0410419 0.999157i \(-0.513068\pi\)
−0.0410419 + 0.999157i \(0.513068\pi\)
\(318\) 1.34485 0.0754155
\(319\) 8.56496i 0.479546i
\(320\) 0 0
\(321\) 5.64402 0.315019
\(322\) 27.7100i 1.54422i
\(323\) 3.31645 0.184532
\(324\) 15.2110 0.845054
\(325\) 0 0
\(326\) 16.8155 0.931322
\(327\) −11.4047 −0.630679
\(328\) 7.85499i 0.433719i
\(329\) −44.5650 −2.45695
\(330\) 0 0
\(331\) 18.2394i 1.00253i 0.865295 + 0.501263i \(0.167131\pi\)
−0.865295 + 0.501263i \(0.832869\pi\)
\(332\) 4.46146 0.244854
\(333\) 30.1542 1.65244
\(334\) −1.61562 −0.0884027
\(335\) 0 0
\(336\) 12.7495i 0.695543i
\(337\) 19.6329i 1.06947i 0.845019 + 0.534736i \(0.179589\pi\)
−0.845019 + 0.534736i \(0.820411\pi\)
\(338\) −9.77791 + 8.56694i −0.531848 + 0.465980i
\(339\) 49.8925 2.70979
\(340\) 0 0
\(341\) 13.2992 0.720190
\(342\) 7.34485i 0.397164i
\(343\) 11.7211 0.632880
\(344\) 4.00000i 0.215666i
\(345\) 0 0
\(346\) 12.3164i 0.662136i
\(347\) 23.6816i 1.27129i 0.771980 + 0.635647i \(0.219266\pi\)
−0.771980 + 0.635647i \(0.780734\pi\)
\(348\) 17.2880i 0.926736i
\(349\) 0.154159i 0.00825192i 0.999991 + 0.00412596i \(0.00131334\pi\)
−0.999991 + 0.00412596i \(0.998687\pi\)
\(350\) 0 0
\(351\) 14.3636 + 38.1902i 0.766674 + 2.03844i
\(352\) 1.53854i 0.0820044i
\(353\) −36.6329 −1.94977 −0.974886 0.222704i \(-0.928512\pi\)
−0.974886 + 0.222704i \(0.928512\pi\)
\(354\) −42.7871 −2.27411
\(355\) 0 0
\(356\) 1.85499i 0.0983141i
\(357\) −38.2485 −2.02433
\(358\) 10.1826 0.538165
\(359\) 27.2394i 1.43764i 0.695197 + 0.718819i \(0.255317\pi\)
−0.695197 + 0.718819i \(0.744683\pi\)
\(360\) 0 0
\(361\) 17.7779 0.935679
\(362\) −11.3935 −0.598830
\(363\) 26.8093i 1.40712i
\(364\) 13.8550 5.21097i 0.726199 0.273129i
\(365\) 0 0
\(366\) 44.4595i 2.32393i
\(367\) 23.8641i 1.24570i 0.782342 + 0.622849i \(0.214025\pi\)
−0.782342 + 0.622849i \(0.785975\pi\)
\(368\) 6.74950i 0.351842i
\(369\) 52.1887i 2.71684i
\(370\) 0 0
\(371\) 1.77791i 0.0923044i
\(372\) 26.8439 1.39179
\(373\) 22.3164i 1.15550i −0.816213 0.577751i \(-0.803930\pi\)
0.816213 0.577751i \(-0.196070\pi\)
\(374\) 4.61562 0.238668
\(375\) 0 0
\(376\) 10.8550 0.559803
\(377\) 18.7871 7.06595i 0.967583 0.363915i
\(378\) 46.4595i 2.38962i
\(379\) 9.74950i 0.500798i 0.968143 + 0.250399i \(0.0805619\pi\)
−0.968143 + 0.250399i \(0.919438\pi\)
\(380\) 0 0
\(381\) −15.2880 −0.783230
\(382\) 19.4990 0.997656
\(383\) 24.7871 1.26656 0.633280 0.773923i \(-0.281708\pi\)
0.633280 + 0.773923i \(0.281708\pi\)
\(384\) 3.10548i 0.158476i
\(385\) 0 0
\(386\) −2.72110 −0.138500
\(387\) 26.5761i 1.35094i
\(388\) −3.78903 −0.192359
\(389\) 0.749505 0.0380014 0.0190007 0.999819i \(-0.493952\pi\)
0.0190007 + 0.999819i \(0.493952\pi\)
\(390\) 0 0
\(391\) −20.2485 −1.02401
\(392\) −9.85499 −0.497752
\(393\) 2.68970i 0.135678i
\(394\) −1.61562 −0.0813937
\(395\) 0 0
\(396\) 10.2221i 0.513679i
\(397\) 9.67243 0.485445 0.242723 0.970096i \(-0.421960\pi\)
0.242723 + 0.970096i \(0.421960\pi\)
\(398\) −22.2485 −1.11522
\(399\) 14.0944 0.705600
\(400\) 0 0
\(401\) 10.9321i 0.545921i −0.962025 0.272961i \(-0.911997\pi\)
0.962025 0.272961i \(-0.0880029\pi\)
\(402\) 11.6440i 0.580751i
\(403\) 10.9716 + 29.1714i 0.546534 + 1.45313i
\(404\) 7.18256 0.357346
\(405\) 0 0
\(406\) −22.8550 −1.13427
\(407\) 6.98272i 0.346121i
\(408\) 9.31645 0.461233
\(409\) 26.5669i 1.31365i −0.754043 0.656825i \(-0.771899\pi\)
0.754043 0.656825i \(-0.228101\pi\)
\(410\) 0 0
\(411\) 52.1035i 2.57008i
\(412\) 12.5385i 0.617730i
\(413\) 56.5650i 2.78338i
\(414\) 44.8439i 2.20396i
\(415\) 0 0
\(416\) −3.37475 + 1.26927i −0.165461 + 0.0622311i
\(417\) 13.6440i 0.668151i
\(418\) −1.70083 −0.0831903
\(419\) −24.3145 −1.18784 −0.593920 0.804524i \(-0.702420\pi\)
−0.593920 + 0.804524i \(0.702420\pi\)
\(420\) 0 0
\(421\) 6.15416i 0.299935i 0.988691 + 0.149968i \(0.0479170\pi\)
−0.988691 + 0.149968i \(0.952083\pi\)
\(422\) −10.2394 −0.498445
\(423\) 72.1208 3.50663
\(424\) 0.433057i 0.0210311i
\(425\) 0 0
\(426\) 0 0
\(427\) −58.7759 −2.84437
\(428\) 1.81744i 0.0878492i
\(429\) −16.1243 + 6.06445i −0.778486 + 0.292795i
\(430\) 0 0
\(431\) 0.828565i 0.0399106i −0.999801 0.0199553i \(-0.993648\pi\)
0.999801 0.0199553i \(-0.00635238\pi\)
\(432\) 11.3164i 0.544463i
\(433\) 15.7008i 0.754534i 0.926105 + 0.377267i \(0.123136\pi\)
−0.926105 + 0.377267i \(0.876864\pi\)
\(434\) 35.4879i 1.70347i
\(435\) 0 0
\(436\) 3.67243i 0.175877i
\(437\) 7.46146 0.356930
\(438\) 33.4706i 1.59929i
\(439\) 9.17144 0.437729 0.218864 0.975755i \(-0.429765\pi\)
0.218864 + 0.975755i \(0.429765\pi\)
\(440\) 0 0
\(441\) −65.4768 −3.11794
\(442\) 3.80781 + 10.1243i 0.181119 + 0.481562i
\(443\) 15.3164i 0.727706i 0.931456 + 0.363853i \(0.118539\pi\)
−0.931456 + 0.363853i \(0.881461\pi\)
\(444\) 14.0944i 0.668889i
\(445\) 0 0
\(446\) −20.9605 −0.992507
\(447\) 30.1542 1.42624
\(448\) 4.10548 0.193966
\(449\) 23.4108i 1.10482i −0.833571 0.552412i \(-0.813708\pi\)
0.833571 0.552412i \(-0.186292\pi\)
\(450\) 0 0
\(451\) −12.0852 −0.569070
\(452\) 16.0660i 0.755679i
\(453\) −7.73223 −0.363292
\(454\) −4.85499 −0.227856
\(455\) 0 0
\(456\) −3.43306 −0.160768
\(457\) 22.9321 1.07272 0.536358 0.843990i \(-0.319800\pi\)
0.536358 + 0.843990i \(0.319800\pi\)
\(458\) 6.71196i 0.313629i
\(459\) 33.9493 1.58462
\(460\) 0 0
\(461\) 13.4615i 0.626963i 0.949594 + 0.313481i \(0.101495\pi\)
−0.949594 + 0.313481i \(0.898505\pi\)
\(462\) 19.6156 0.912601
\(463\) −16.0264 −0.744811 −0.372406 0.928070i \(-0.621467\pi\)
−0.372406 + 0.928070i \(0.621467\pi\)
\(464\) 5.56694 0.258439
\(465\) 0 0
\(466\) 14.3651i 0.665452i
\(467\) 0.866114i 0.0400790i 0.999799 + 0.0200395i \(0.00637919\pi\)
−0.999799 + 0.0200395i \(0.993621\pi\)
\(468\) −22.4219 + 8.43306i −1.03645 + 0.389818i
\(469\) −15.3935 −0.710807
\(470\) 0 0
\(471\) 35.3824 1.63033
\(472\) 13.7779i 0.634180i
\(473\) 6.15416 0.282969
\(474\) 20.3053i 0.932654i
\(475\) 0 0
\(476\) 12.3164i 0.564523i
\(477\) 2.87724i 0.131740i
\(478\) 1.14501i 0.0523717i
\(479\) 29.4879i 1.34734i 0.739034 + 0.673668i \(0.235282\pi\)
−0.739034 + 0.673668i \(0.764718\pi\)
\(480\) 0 0
\(481\) −15.3164 + 5.76063i −0.698370 + 0.262662i
\(482\) 20.5669i 0.936799i
\(483\) −86.0528 −3.91554
\(484\) 8.63290 0.392404
\(485\) 0 0
\(486\) 13.2880i 0.602758i
\(487\) −35.4503 −1.60641 −0.803204 0.595704i \(-0.796873\pi\)
−0.803204 + 0.595704i \(0.796873\pi\)
\(488\) 14.3164 0.648075
\(489\) 52.2201i 2.36148i
\(490\) 0 0
\(491\) −32.1319 −1.45009 −0.725046 0.688700i \(-0.758182\pi\)
−0.725046 + 0.688700i \(0.758182\pi\)
\(492\) −24.3935 −1.09975
\(493\) 16.7008i 0.752168i
\(494\) −1.40316 3.73073i −0.0631310 0.167853i
\(495\) 0 0
\(496\) 8.64402i 0.388128i
\(497\) 0 0
\(498\) 13.8550i 0.620857i
\(499\) 27.2769i 1.22108i −0.791984 0.610541i \(-0.790952\pi\)
0.791984 0.610541i \(-0.209048\pi\)
\(500\) 0 0
\(501\) 5.01728i 0.224155i
\(502\) −3.31645 −0.148020
\(503\) 26.9980i 1.20378i 0.798578 + 0.601891i \(0.205586\pi\)
−0.798578 + 0.601891i \(0.794414\pi\)
\(504\) 27.2769 1.21501
\(505\) 0 0
\(506\) 10.3844 0.461642
\(507\) −26.6045 30.3651i −1.18155 1.34856i
\(508\) 4.92292i 0.218419i
\(509\) 38.8814i 1.72339i 0.507428 + 0.861694i \(0.330596\pi\)
−0.507428 + 0.861694i \(0.669404\pi\)
\(510\) 0 0
\(511\) 44.2485 1.95744
\(512\) −1.00000 −0.0441942
\(513\) −12.5101 −0.552336
\(514\) 12.4331i 0.548399i
\(515\) 0 0
\(516\) 12.4219 0.546845
\(517\) 16.7008i 0.734502i
\(518\) 18.6329 0.818682
\(519\) −38.2485 −1.67892
\(520\) 0 0
\(521\) 4.06595 0.178133 0.0890663 0.996026i \(-0.471612\pi\)
0.0890663 + 0.996026i \(0.471612\pi\)
\(522\) 36.9869 1.61887
\(523\) 34.8723i 1.52486i 0.647072 + 0.762429i \(0.275993\pi\)
−0.647072 + 0.762429i \(0.724007\pi\)
\(524\) 0.866114 0.0378364
\(525\) 0 0
\(526\) 4.38438i 0.191168i
\(527\) 25.9321 1.12962
\(528\) −4.77791 −0.207932
\(529\) −22.5558 −0.980688
\(530\) 0 0
\(531\) 91.5407i 3.97253i
\(532\) 4.53854i 0.196771i
\(533\) −9.97010 26.5086i −0.431853 1.14822i
\(534\) −5.76063 −0.249287
\(535\) 0 0
\(536\) 3.74950 0.161954
\(537\) 31.6218i 1.36458i
\(538\) −5.56694 −0.240008
\(539\) 15.1623i 0.653086i
\(540\) 0 0
\(541\) 37.2282i 1.60057i 0.599622 + 0.800284i \(0.295318\pi\)
−0.599622 + 0.800284i \(0.704682\pi\)
\(542\) 9.39353i 0.403487i
\(543\) 35.3824i 1.51840i
\(544\) 3.00000i 0.128624i
\(545\) 0 0
\(546\) 16.1826 + 43.0264i 0.692550 + 1.84136i
\(547\) 35.9493i 1.53708i 0.639800 + 0.768541i \(0.279017\pi\)
−0.639800 + 0.768541i \(0.720983\pi\)
\(548\) 16.7779 0.716717
\(549\) 95.1188 4.05957
\(550\) 0 0
\(551\) 6.15416i 0.262176i
\(552\) 20.9605 0.892137
\(553\) 26.8439 1.14152
\(554\) 8.38438i 0.356218i
\(555\) 0 0
\(556\) 4.39353 0.186327
\(557\) −14.0944 −0.597197 −0.298599 0.954379i \(-0.596519\pi\)
−0.298599 + 0.954379i \(0.596519\pi\)
\(558\) 57.4311i 2.43125i
\(559\) 5.07708 + 13.4990i 0.214738 + 0.570947i
\(560\) 0 0
\(561\) 14.3337i 0.605170i
\(562\) 12.6329i 0.532887i
\(563\) 28.2678i 1.19134i −0.803228 0.595672i \(-0.796886\pi\)
0.803228 0.595672i \(-0.203114\pi\)
\(564\) 33.7100i 1.41945i
\(565\) 0 0
\(566\) 13.4706i 0.566212i
\(567\) 62.4484 2.62258
\(568\) 0 0
\(569\) 26.1339 1.09559 0.547795 0.836613i \(-0.315467\pi\)
0.547795 + 0.836613i \(0.315467\pi\)
\(570\) 0 0
\(571\) 10.7871 0.451424 0.225712 0.974194i \(-0.427529\pi\)
0.225712 + 0.974194i \(0.427529\pi\)
\(572\) −1.95282 5.19219i −0.0816516 0.217096i
\(573\) 60.5538i 2.52967i
\(574\) 32.2485i 1.34603i
\(575\) 0 0
\(576\) −6.64402 −0.276834
\(577\) 12.1228 0.504677 0.252339 0.967639i \(-0.418800\pi\)
0.252339 + 0.967639i \(0.418800\pi\)
\(578\) −8.00000 −0.332756
\(579\) 8.45033i 0.351184i
\(580\) 0 0
\(581\) 18.3164 0.759894
\(582\) 11.7668i 0.487749i
\(583\) −0.666275 −0.0275943
\(584\) −10.7779 −0.445993
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) −35.2485 −1.45486 −0.727431 0.686181i \(-0.759286\pi\)
−0.727431 + 0.686181i \(0.759286\pi\)
\(588\) 30.6045i 1.26211i
\(589\) −9.55582 −0.393741
\(590\) 0 0
\(591\) 5.01728i 0.206383i
\(592\) −4.53854 −0.186533
\(593\) −11.0862 −0.455257 −0.227628 0.973748i \(-0.573097\pi\)
−0.227628 + 0.973748i \(0.573097\pi\)
\(594\) −17.4108 −0.714374
\(595\) 0 0
\(596\) 9.70998i 0.397736i
\(597\) 69.0924i 2.82776i
\(598\) 8.56694 + 22.7779i 0.350328 + 0.931458i
\(599\) −31.4990 −1.28701 −0.643507 0.765440i \(-0.722521\pi\)
−0.643507 + 0.765440i \(0.722521\pi\)
\(600\) 0 0
\(601\) 19.6329 0.800843 0.400421 0.916331i \(-0.368864\pi\)
0.400421 + 0.916331i \(0.368864\pi\)
\(602\) 16.4219i 0.669308i
\(603\) 24.9118 1.01449
\(604\) 2.48986i 0.101311i
\(605\) 0 0
\(606\) 22.3053i 0.906092i
\(607\) 17.6156i 0.714996i −0.933914 0.357498i \(-0.883630\pi\)
0.933914 0.357498i \(-0.116370\pi\)
\(608\) 1.10548i 0.0448332i
\(609\) 70.9758i 2.87608i
\(610\) 0 0
\(611\) −36.6329 + 13.7779i −1.48201 + 0.557395i
\(612\) 19.9321i 0.805706i
\(613\) −25.4200 −1.02670 −0.513351 0.858179i \(-0.671596\pi\)
−0.513351 + 0.858179i \(0.671596\pi\)
\(614\) 13.8925 0.560657
\(615\) 0 0
\(616\) 6.31645i 0.254497i
\(617\) 27.7100 1.11556 0.557781 0.829988i \(-0.311653\pi\)
0.557781 + 0.829988i \(0.311653\pi\)
\(618\) 38.9382 1.56632
\(619\) 20.8439i 0.837786i 0.908036 + 0.418893i \(0.137582\pi\)
−0.908036 + 0.418893i \(0.862418\pi\)
\(620\) 0 0
\(621\) 76.3804 3.06504
\(622\) −3.51827 −0.141070
\(623\) 7.61562i 0.305113i
\(624\) −3.94170 10.4802i −0.157794 0.419545i
\(625\) 0 0
\(626\) 24.5650i 0.981813i
\(627\) 5.28189i 0.210939i
\(628\) 11.3935i 0.454651i
\(629\) 13.6156i 0.542890i
\(630\) 0 0
\(631\) 30.7495i 1.22412i −0.790812 0.612059i \(-0.790341\pi\)
0.790812 0.612059i \(-0.209659\pi\)
\(632\) −6.53854 −0.260089
\(633\) 31.7982i 1.26386i
\(634\) 1.46146 0.0580420
\(635\) 0 0
\(636\) −1.34485 −0.0533268
\(637\) 33.2581 12.5086i 1.31774 0.495610i
\(638\) 8.56496i 0.339090i
\(639\) 0 0
\(640\) 0 0
\(641\) 19.0660 0.753060 0.376530 0.926404i \(-0.377117\pi\)
0.376530 + 0.926404i \(0.377117\pi\)
\(642\) −5.64402 −0.222752
\(643\) −45.8641 −1.80870 −0.904352 0.426786i \(-0.859646\pi\)
−0.904352 + 0.426786i \(0.859646\pi\)
\(644\) 27.7100i 1.09193i
\(645\) 0 0
\(646\) −3.31645 −0.130484
\(647\) 11.0173i 0.433134i −0.976268 0.216567i \(-0.930514\pi\)
0.976268 0.216567i \(-0.0694860\pi\)
\(648\) −15.2110 −0.597543
\(649\) 21.1979 0.832089
\(650\) 0 0
\(651\) 110.207 4.31935
\(652\) −16.8155 −0.658544
\(653\) 14.5650i 0.569971i −0.958532 0.284986i \(-0.908011\pi\)
0.958532 0.284986i \(-0.0919888\pi\)
\(654\) 11.4047 0.445957
\(655\) 0 0
\(656\) 7.85499i 0.306686i
\(657\) −71.6087 −2.79372
\(658\) 44.5650 1.73732
\(659\) −19.8174 −0.771978 −0.385989 0.922503i \(-0.626140\pi\)
−0.385989 + 0.922503i \(0.626140\pi\)
\(660\) 0 0
\(661\) 13.4615i 0.523590i −0.965123 0.261795i \(-0.915686\pi\)
0.965123 0.261795i \(-0.0843145\pi\)
\(662\) 18.2394i 0.708893i
\(663\) −31.4407 + 11.8251i −1.22106 + 0.459248i
\(664\) −4.46146 −0.173138
\(665\) 0 0
\(666\) −30.1542 −1.16845
\(667\) 37.5741i 1.45488i
\(668\) 1.61562 0.0625102
\(669\) 65.0924i 2.51662i
\(670\) 0 0
\(671\) 22.0264i 0.850321i
\(672\) 12.7495i 0.491823i
\(673\) 0.0679332i 0.00261863i −0.999999 0.00130932i \(-0.999583\pi\)
0.999999 0.00130932i \(-0.000416768\pi\)
\(674\) 19.6329i 0.756231i
\(675\) 0 0
\(676\) 9.77791 8.56694i 0.376073 0.329498i
\(677\) 26.1319i 1.00433i 0.864772 + 0.502165i \(0.167463\pi\)
−0.864772 + 0.502165i \(0.832537\pi\)
\(678\) −49.8925 −1.91611
\(679\) −15.5558 −0.596977
\(680\) 0 0
\(681\) 15.0771i 0.577755i
\(682\) −13.2992 −0.509252
\(683\) 17.0944 0.654097 0.327049 0.945007i \(-0.393946\pi\)
0.327049 + 0.945007i \(0.393946\pi\)
\(684\) 7.34485i 0.280837i
\(685\) 0 0
\(686\) −11.7211 −0.447514
\(687\) 20.8439 0.795243
\(688\) 4.00000i 0.152499i
\(689\) −0.549666 1.46146i −0.0209406 0.0556772i
\(690\) 0 0
\(691\) 25.3844i 0.965667i 0.875712 + 0.482834i \(0.160392\pi\)
−0.875712 + 0.482834i \(0.839608\pi\)
\(692\) 12.3164i 0.468201i
\(693\) 41.9666i 1.59418i
\(694\) 23.6816i 0.898940i
\(695\) 0 0
\(696\) 17.2880i 0.655302i
\(697\) −23.5650 −0.892587
\(698\) 0.154159i 0.00583499i
\(699\) 44.6106 1.68733
\(700\) 0 0
\(701\) 9.43108 0.356207 0.178103 0.984012i \(-0.443004\pi\)
0.178103 + 0.984012i \(0.443004\pi\)
\(702\) −14.3636 38.1902i −0.542120 1.44140i
\(703\) 5.01728i 0.189230i
\(704\) 1.53854i 0.0579859i
\(705\) 0 0
\(706\) 36.6329 1.37870
\(707\) 29.4879 1.10901
\(708\) 42.7871 1.60804
\(709\) 20.1734i 0.757629i 0.925473 + 0.378814i \(0.123668\pi\)
−0.925473 + 0.378814i \(0.876332\pi\)
\(710\) 0 0
\(711\) −43.4422 −1.62921
\(712\) 1.85499i 0.0695186i
\(713\) 58.3429 2.18496
\(714\) 38.2485 1.43141
\(715\) 0 0
\(716\) −10.1826 −0.380540
\(717\) 3.55582 0.132794
\(718\) 27.2394i 1.01656i
\(719\) 31.4990 1.17471 0.587357 0.809328i \(-0.300168\pi\)
0.587357 + 0.809328i \(0.300168\pi\)
\(720\) 0 0
\(721\) 51.4768i 1.91709i
\(722\) −17.7779 −0.661625
\(723\) −63.8703 −2.37536
\(724\) 11.3935 0.423437
\(725\) 0 0
\(726\) 26.8093i 0.994987i
\(727\) 22.8814i 0.848625i −0.905516 0.424312i \(-0.860516\pi\)
0.905516 0.424312i \(-0.139484\pi\)
\(728\) −13.8550 + 5.21097i −0.513500 + 0.193131i
\(729\) 4.36710 0.161745
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 44.4595i 1.64327i
\(733\) −48.1126 −1.77708 −0.888541 0.458798i \(-0.848280\pi\)
−0.888541 + 0.458798i \(0.848280\pi\)
\(734\) 23.8641i 0.880841i
\(735\) 0 0
\(736\) 6.74950i 0.248790i
\(737\) 5.76876i 0.212495i
\(738\) 52.1887i 1.92109i
\(739\) 19.9321i 0.733213i 0.930376 + 0.366606i \(0.119480\pi\)
−0.930376 + 0.366606i \(0.880520\pi\)
\(740\) 0 0
\(741\) 11.5857 4.35748i 0.425612 0.160076i
\(742\) 1.77791i 0.0652691i
\(743\) 24.6248 0.903395 0.451698 0.892171i \(-0.350819\pi\)
0.451698 + 0.892171i \(0.350819\pi\)
\(744\) −26.8439 −0.984144
\(745\) 0 0
\(746\) 22.3164i 0.817063i
\(747\) −29.6420 −1.08455
\(748\) −4.61562 −0.168764
\(749\) 7.46146i 0.272636i
\(750\) 0 0
\(751\) −36.7273 −1.34020 −0.670098 0.742272i \(-0.733748\pi\)
−0.670098 + 0.742272i \(0.733748\pi\)
\(752\) −10.8550 −0.395841
\(753\) 10.2992i 0.375323i
\(754\) −18.7871 + 7.06595i −0.684184 + 0.257327i
\(755\) 0 0
\(756\) 46.4595i 1.68971i
\(757\) 37.0091i 1.34512i −0.740042 0.672560i \(-0.765195\pi\)
0.740042 0.672560i \(-0.234805\pi\)
\(758\) 9.74950i 0.354118i
\(759\) 32.2485i 1.17055i
\(760\) 0 0
\(761\) 26.6420i 0.965773i −0.875683 0.482887i \(-0.839588\pi\)
0.875683 0.482887i \(-0.160412\pi\)
\(762\) 15.2880 0.553827
\(763\) 15.0771i 0.545827i
\(764\) −19.4990 −0.705449
\(765\) 0 0
\(766\) −24.7871 −0.895593
\(767\) 17.4879 + 46.4970i 0.631451 + 1.67891i
\(768\) 3.10548i 0.112059i
\(769\) 37.2972i 1.34497i −0.740110 0.672486i \(-0.765227\pi\)
0.740110 0.672486i \(-0.234773\pi\)
\(770\) 0 0
\(771\) −38.6106 −1.39053
\(772\) 2.72110 0.0979346
\(773\) −10.5385 −0.379045 −0.189522 0.981876i \(-0.560694\pi\)
−0.189522 + 0.981876i \(0.560694\pi\)
\(774\) 26.5761i 0.955258i
\(775\) 0 0
\(776\) 3.78903 0.136018
\(777\) 57.8641i 2.07586i
\(778\) −0.749505 −0.0268711
\(779\) 8.68355 0.311121
\(780\) 0 0
\(781\) 0 0
\(782\) 20.2485 0.724085
\(783\) 62.9980i 2.25137i
\(784\) 9.85499 0.351964
\(785\) 0 0
\(786\) 2.68970i 0.0959385i
\(787\) 0.278898 0.00994165 0.00497083 0.999988i \(-0.498418\pi\)
0.00497083 + 0.999988i \(0.498418\pi\)
\(788\) 1.61562 0.0575540
\(789\) 13.6156 0.484729
\(790\) 0 0
\(791\) 65.9585i 2.34521i
\(792\) 10.2221i 0.363226i
\(793\) −48.3145 + 18.1714i −1.71570 + 0.645287i
\(794\) −9.67243 −0.343262
\(795\) 0 0
\(796\) 22.2485 0.788578
\(797\) 42.0832i 1.49066i 0.666693 + 0.745332i \(0.267709\pi\)
−0.666693 + 0.745332i \(0.732291\pi\)
\(798\) −14.0944 −0.498935
\(799\) 32.5650i 1.15207i
\(800\) 0 0
\(801\) 12.3246i 0.435468i
\(802\) 10.9321i 0.386025i
\(803\) 16.5822i 0.585175i
\(804\) 11.6440i 0.410653i
\(805\) 0 0
\(806\) −10.9716 29.1714i −0.386458 1.02752i
\(807\) 17.2880i 0.608568i
\(808\) −7.18256 −0.252682
\(809\) 12.6329 0.444149 0.222074 0.975030i \(-0.428717\pi\)
0.222074 + 0.975030i \(0.428717\pi\)
\(810\) 0 0
\(811\) 43.1411i 1.51489i −0.652901 0.757444i \(-0.726448\pi\)
0.652901 0.757444i \(-0.273552\pi\)
\(812\) 22.8550 0.802053
\(813\) 29.1714 1.02309
\(814\) 6.98272i 0.244744i
\(815\) 0 0
\(816\) −9.31645 −0.326141
\(817\) −4.42193 −0.154704
\(818\) 26.5669i 0.928891i
\(819\) −92.0528 + 34.6218i −3.21659 + 1.20978i
\(820\) 0 0
\(821\) 23.0173i 0.803308i −0.915791 0.401654i \(-0.868435\pi\)
0.915791 0.401654i \(-0.131565\pi\)
\(822\) 52.1035i 1.81732i
\(823\) 4.00000i 0.139431i 0.997567 + 0.0697156i \(0.0222092\pi\)
−0.997567 + 0.0697156i \(0.977791\pi\)
\(824\) 12.5385i 0.436801i
\(825\) 0 0
\(826\) 56.5650i 1.96815i
\(827\) 35.4027 1.23107 0.615536 0.788109i \(-0.288940\pi\)
0.615536 + 0.788109i \(0.288940\pi\)
\(828\) 44.8439i 1.55843i
\(829\) 10.6065 0.368378 0.184189 0.982891i \(-0.441034\pi\)
0.184189 + 0.982891i \(0.441034\pi\)
\(830\) 0 0
\(831\) −26.0375 −0.903233
\(832\) 3.37475 1.26927i 0.116998 0.0440040i
\(833\) 29.5650i 1.02437i
\(834\) 13.6440i 0.472454i
\(835\) 0 0
\(836\) 1.70083 0.0588244
\(837\) −97.8196 −3.38114
\(838\) 24.3145 0.839929
\(839\) 19.4615i 0.671884i −0.941883 0.335942i \(-0.890945\pi\)
0.941883 0.335942i \(-0.109055\pi\)
\(840\) 0 0
\(841\) 1.99085 0.0686501
\(842\) 6.15416i 0.212086i
\(843\) 39.2312 1.35120
\(844\) 10.2394 0.352454
\(845\) 0 0
\(846\) −72.1208 −2.47956
\(847\) 35.4422 1.21781
\(848\) 0.433057i 0.0148712i
\(849\) −41.8327 −1.43570
\(850\) 0 0
\(851\) 30.6329i 1.05008i
\(852\) 0 0
\(853\) 15.9807 0.547170 0.273585 0.961848i \(-0.411790\pi\)
0.273585 + 0.961848i \(0.411790\pi\)
\(854\) 58.7759 2.01127
\(855\) 0 0
\(856\) 1.81744i 0.0621188i
\(857\) 38.5669i 1.31742i −0.752396 0.658711i \(-0.771102\pi\)
0.752396 0.658711i \(-0.228898\pi\)
\(858\) 16.1243 6.06445i 0.550473 0.207037i
\(859\) 28.6836 0.978670 0.489335 0.872096i \(-0.337240\pi\)
0.489335 + 0.872096i \(0.337240\pi\)
\(860\) 0 0
\(861\) −100.147 −3.41301
\(862\) 0.828565i 0.0282210i
\(863\) −36.4706 −1.24147 −0.620737 0.784019i \(-0.713166\pi\)
−0.620737 + 0.784019i \(0.713166\pi\)
\(864\) 11.3164i 0.384993i
\(865\) 0 0
\(866\) 15.7008i 0.533536i
\(867\) 24.8439i 0.843742i
\(868\) 35.4879i 1.20454i
\(869\) 10.0598i 0.341255i
\(870\) 0 0
\(871\) −12.6537 + 4.75913i −0.428753 + 0.161257i
\(872\) 3.67243i 0.124364i
\(873\) 25.1744 0.852025
\(874\) −7.46146 −0.252388
\(875\) 0 0
\(876\) 33.4706i 1.13087i
\(877\) 7.02027 0.237058 0.118529 0.992951i \(-0.462182\pi\)
0.118529 + 0.992951i \(0.462182\pi\)
\(878\) −9.17144 −0.309521
\(879\) 18.6329i 0.628472i
\(880\) 0 0
\(881\) 4.93405 0.166232 0.0831161 0.996540i \(-0.473513\pi\)
0.0831161 + 0.996540i \(0.473513\pi\)
\(882\) 65.4768 2.20472
\(883\) 49.9493i 1.68093i −0.541866 0.840465i \(-0.682282\pi\)
0.541866 0.840465i \(-0.317718\pi\)
\(884\) −3.80781 10.1243i −0.128070 0.340516i
\(885\) 0 0
\(886\) 15.3164i 0.514566i
\(887\) 3.86413i 0.129745i 0.997894 + 0.0648725i \(0.0206641\pi\)
−0.997894 + 0.0648725i \(0.979336\pi\)
\(888\) 14.0944i 0.472976i
\(889\) 20.2110i 0.677854i
\(890\) 0 0
\(891\) 23.4027i 0.784019i
\(892\) 20.9605 0.701808
\(893\) 12.0000i 0.401565i
\(894\) −30.1542 −1.00851
\(895\) 0 0
\(896\) −4.10548 −0.137155
\(897\) −70.7364 + 26.6045i −2.36182 + 0.888298i
\(898\) 23.4108i 0.781229i
\(899\) 48.1208i 1.60492i
\(900\) 0 0
\(901\) −1.29917 −0.0432817
\(902\) 12.0852 0.402393
\(903\) 50.9980 1.69711
\(904\) 16.0660i 0.534346i
\(905\) 0 0
\(906\) 7.73223 0.256886
\(907\) 17.5558i 0.582931i −0.956581 0.291466i \(-0.905857\pi\)
0.956581 0.291466i \(-0.0941429\pi\)
\(908\) 4.85499 0.161118
\(909\) −47.7211 −1.58281
\(910\) 0 0
\(911\) −27.9807 −0.927043 −0.463522 0.886086i \(-0.653414\pi\)
−0.463522 + 0.886086i \(0.653414\pi\)
\(912\) 3.43306 0.113680
\(913\) 6.86413i 0.227170i
\(914\) −22.9321 −0.758525
\(915\) 0 0
\(916\) 6.71196i 0.221769i
\(917\) 3.55582 0.117423
\(918\) −33.9493 −1.12050
\(919\) −31.0356 −1.02377 −0.511884 0.859054i \(-0.671052\pi\)
−0.511884 + 0.859054i \(0.671052\pi\)
\(920\) 0 0
\(921\) 43.1430i 1.42161i
\(922\) 13.4615i 0.443330i
\(923\) 0 0
\(924\) −19.6156 −0.645306
\(925\) 0 0
\(926\) 16.0264 0.526661
\(927\) 83.3063i 2.73614i
\(928\) −5.56694 −0.182744
\(929\) 24.0000i 0.787414i 0.919236 + 0.393707i \(0.128808\pi\)
−0.919236 + 0.393707i \(0.871192\pi\)
\(930\) 0 0
\(931\) 10.8945i 0.357053i
\(932\) 14.3651i 0.470545i
\(933\) 10.9259i 0.357698i
\(934\) 0.866114i 0.0283401i
\(935\) 0 0
\(936\) 22.4219 8.43306i 0.732884 0.275643i
\(937\) 60.8987i 1.98947i −0.102464 0.994737i \(-0.532673\pi\)
0.102464 0.994737i \(-0.467327\pi\)
\(938\) 15.3935 0.502616
\(939\) −76.2861 −2.48950
\(940\) 0 0
\(941\) 32.2485i 1.05127i −0.850710 0.525636i \(-0.823827\pi\)
0.850710 0.525636i \(-0.176173\pi\)
\(942\) −35.3824 −1.15282
\(943\) −53.0173 −1.72648
\(944\) 13.7779i 0.448433i
\(945\) 0 0
\(946\) −6.15416 −0.200089
\(947\) −20.4108 −0.663262 −0.331631 0.943409i \(-0.607599\pi\)
−0.331631 + 0.943409i \(0.607599\pi\)
\(948\) 20.3053i 0.659486i
\(949\) 36.3728 13.6801i 1.18071 0.444074i
\(950\) 0 0
\(951\) 4.53854i 0.147172i
\(952\) 12.3164i 0.399178i
\(953\) 8.36710i 0.271037i −0.990775 0.135519i \(-0.956730\pi\)
0.990775 0.135519i \(-0.0432700\pi\)
\(954\) 2.87724i 0.0931541i
\(955\) 0 0
\(956\) 1.14501i 0.0370324i
\(957\) −26.5983 −0.859802
\(958\) 29.4879i 0.952710i
\(959\) 68.8814 2.22430
\(960\) 0 0
\(961\) −43.7191 −1.41029
\(962\) 15.3164 5.76063i 0.493822 0.185730i
\(963\) 12.0751i 0.389115i
\(964\) 20.5669i 0.662417i
\(965\) 0 0
\(966\) 86.0528 2.76870
\(967\) 14.4108 0.463420 0.231710 0.972785i \(-0.425568\pi\)
0.231710 + 0.972785i \(0.425568\pi\)
\(968\) −8.63290 −0.277472
\(969\) 10.2992i 0.330857i
\(970\) 0 0
\(971\) 25.1806 0.808083 0.404042 0.914741i \(-0.367605\pi\)
0.404042 + 0.914741i \(0.367605\pi\)
\(972\) 13.2880i 0.426214i
\(973\) 18.0375 0.578257
\(974\) 35.4503 1.13590
\(975\) 0 0
\(976\) −14.3164 −0.458258
\(977\) −38.1633 −1.22095 −0.610476 0.792035i \(-0.709022\pi\)
−0.610476 + 0.792035i \(0.709022\pi\)
\(978\) 52.2201i 1.66982i
\(979\) 2.85397 0.0912133
\(980\) 0 0
\(981\) 24.3997i 0.779022i
\(982\) 32.1319 1.02537
\(983\) 49.8906 1.59126 0.795631 0.605782i \(-0.207140\pi\)
0.795631 + 0.605782i \(0.207140\pi\)
\(984\) 24.3935 0.777637
\(985\) 0 0
\(986\) 16.7008i 0.531863i
\(987\) 138.396i 4.40518i
\(988\) 1.40316 + 3.73073i 0.0446403 + 0.118690i
\(989\) 26.9980 0.858487
\(990\) 0 0
\(991\) −10.6329 −0.337765 −0.168883 0.985636i \(-0.554016\pi\)
−0.168883 + 0.985636i \(0.554016\pi\)
\(992\) 8.64402i 0.274448i
\(993\) 56.6420 1.79748
\(994\) 0 0
\(995\) 0 0
\(996\) 13.8550i 0.439012i
\(997\) 2.99085i 0.0947213i 0.998878 + 0.0473606i \(0.0150810\pi\)
−0.998878 + 0.0473606i \(0.984919\pi\)
\(998\) 27.2769i 0.863436i
\(999\) 51.3601i 1.62496i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 650.2.c.e.649.1 6
5.2 odd 4 650.2.d.c.51.1 6
5.3 odd 4 650.2.d.d.51.6 yes 6
5.4 even 2 650.2.c.f.649.6 6
13.12 even 2 650.2.c.f.649.1 6
65.8 even 4 8450.2.a.bq.1.3 3
65.12 odd 4 650.2.d.c.51.4 yes 6
65.18 even 4 8450.2.a.ce.1.3 3
65.38 odd 4 650.2.d.d.51.3 yes 6
65.47 even 4 8450.2.a.cd.1.1 3
65.57 even 4 8450.2.a.br.1.1 3
65.64 even 2 inner 650.2.c.e.649.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
650.2.c.e.649.1 6 1.1 even 1 trivial
650.2.c.e.649.6 6 65.64 even 2 inner
650.2.c.f.649.1 6 13.12 even 2
650.2.c.f.649.6 6 5.4 even 2
650.2.d.c.51.1 6 5.2 odd 4
650.2.d.c.51.4 yes 6 65.12 odd 4
650.2.d.d.51.3 yes 6 65.38 odd 4
650.2.d.d.51.6 yes 6 5.3 odd 4
8450.2.a.bq.1.3 3 65.8 even 4
8450.2.a.br.1.1 3 65.57 even 4
8450.2.a.cd.1.1 3 65.47 even 4
8450.2.a.ce.1.3 3 65.18 even 4