L(s) = 1 | − 2-s − 3.10i·3-s + 4-s + 3.10i·6-s + 4.10·7-s − 8-s − 6.64·9-s − 1.53i·11-s − 3.10i·12-s + (3.37 − 1.26i)13-s − 4.10·14-s + 16-s − 3i·17-s + 6.64·18-s + 1.10i·19-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 1.79i·3-s + 0.5·4-s + 1.26i·6-s + 1.55·7-s − 0.353·8-s − 2.21·9-s − 0.463i·11-s − 0.896i·12-s + (0.935 − 0.352i)13-s − 1.09·14-s + 0.250·16-s − 0.727i·17-s + 1.56·18-s + 0.253i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.679 + 0.733i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.679 + 0.733i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.486034 - 1.11310i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.486034 - 1.11310i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-3.37 + 1.26i)T \) |
good | 3 | \( 1 + 3.10iT - 3T^{2} \) |
| 7 | \( 1 - 4.10T + 7T^{2} \) |
| 11 | \( 1 + 1.53iT - 11T^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 - 1.10iT - 19T^{2} \) |
| 23 | \( 1 + 6.74iT - 23T^{2} \) |
| 29 | \( 1 - 5.56T + 29T^{2} \) |
| 31 | \( 1 - 8.64iT - 31T^{2} \) |
| 37 | \( 1 + 4.53T + 37T^{2} \) |
| 41 | \( 1 + 7.85iT - 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + 10.8T + 47T^{2} \) |
| 53 | \( 1 + 0.433iT - 53T^{2} \) |
| 59 | \( 1 - 13.7iT - 59T^{2} \) |
| 61 | \( 1 + 14.3T + 61T^{2} \) |
| 67 | \( 1 + 3.74T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 10.7T + 73T^{2} \) |
| 79 | \( 1 - 6.53T + 79T^{2} \) |
| 83 | \( 1 - 4.46T + 83T^{2} \) |
| 89 | \( 1 - 1.85iT - 89T^{2} \) |
| 97 | \( 1 + 3.78T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55548412064494475507797870333, −8.748430372543159106688707892872, −8.439872953591965742027394247661, −7.73166099885854251656047432197, −6.87533945692530101753134202991, −6.07227418559170845867135145854, −4.96621917570163232772085458609, −2.97474790498175009554043921491, −1.77859796780718848558916974733, −0.903845166584992108886098823729,
1.77468728970257667617167050330, 3.43123729708044969637221129068, 4.42827005798387104995198927036, 5.18725115539176659199629696688, 6.26591697288867019438187009254, 7.85017287609683636269354406212, 8.404914945757337497951234867368, 9.281477166382507000611069562766, 9.934152169832102945991429135548, 10.89161127905485905050468508667