Properties

Label 650.2.d.c
Level $650$
Weight $2$
Character orbit 650.d
Analytic conductor $5.190$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [650,2,Mod(51,650)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(650, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("650.51"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 650 = 2 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 650.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,18,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.19027613138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.126157824.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 18x^{4} + 81x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - \beta_{3} q^{3} - q^{4} + \beta_1 q^{6} + ( - \beta_{2} + \beta_1) q^{7} - \beta_{2} q^{8} + (\beta_{5} - \beta_{4} + \beta_{3} + 3) q^{9} + ( - \beta_{5} - \beta_{4} + \beta_{2}) q^{11}+ \cdots + ( - \beta_{5} - \beta_{4} + \cdots + 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} + 18 q^{9} - 6 q^{13} + 6 q^{14} + 6 q^{16} + 18 q^{17} - 6 q^{22} - 12 q^{27} - 18 q^{29} - 18 q^{36} + 12 q^{38} - 12 q^{39} - 36 q^{42} + 24 q^{43} + 6 q^{52} - 18 q^{53} - 6 q^{56} - 30 q^{61}+ \cdots - 6 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 18x^{4} + 81x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 9\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 9\nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + \nu^{4} + 15\nu^{3} + 11\nu^{2} + 52\nu + 12 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} - \nu^{4} + 15\nu^{3} - 11\nu^{2} + 52\nu - 12 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{5} + \beta_{4} - \beta_{3} - 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} - 9\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 9\beta_{5} - 9\beta_{4} + 11\beta_{3} + 54 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{5} + 2\beta_{4} - 30\beta_{2} + 83\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/650\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
51.1
3.10548i
0.223462i
2.88202i
3.10548i
0.223462i
2.88202i
1.00000i −3.10548 −1.00000 0 3.10548i 4.10548i 1.00000i 6.64402 0
51.2 1.00000i 0.223462 −1.00000 0 0.223462i 0.776538i 1.00000i −2.95006 0
51.3 1.00000i 2.88202 −1.00000 0 2.88202i 1.88202i 1.00000i 5.30604 0
51.4 1.00000i −3.10548 −1.00000 0 3.10548i 4.10548i 1.00000i 6.64402 0
51.5 1.00000i 0.223462 −1.00000 0 0.223462i 0.776538i 1.00000i −2.95006 0
51.6 1.00000i 2.88202 −1.00000 0 2.88202i 1.88202i 1.00000i 5.30604 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 51.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 650.2.d.c 6
5.b even 2 1 650.2.d.d yes 6
5.c odd 4 1 650.2.c.e 6
5.c odd 4 1 650.2.c.f 6
13.b even 2 1 inner 650.2.d.c 6
13.d odd 4 1 8450.2.a.br 3
13.d odd 4 1 8450.2.a.cd 3
65.d even 2 1 650.2.d.d yes 6
65.g odd 4 1 8450.2.a.bq 3
65.g odd 4 1 8450.2.a.ce 3
65.h odd 4 1 650.2.c.e 6
65.h odd 4 1 650.2.c.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
650.2.c.e 6 5.c odd 4 1
650.2.c.e 6 65.h odd 4 1
650.2.c.f 6 5.c odd 4 1
650.2.c.f 6 65.h odd 4 1
650.2.d.c 6 1.a even 1 1 trivial
650.2.d.c 6 13.b even 2 1 inner
650.2.d.d yes 6 5.b even 2 1
650.2.d.d yes 6 65.d even 2 1
8450.2.a.bq 3 65.g odd 4 1
8450.2.a.br 3 13.d odd 4 1
8450.2.a.cd 3 13.d odd 4 1
8450.2.a.ce 3 65.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 9T_{3} + 2 \) acting on \(S_{2}^{\mathrm{new}}(650, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T^{3} - 9 T + 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 21 T^{4} + \cdots + 36 \) Copy content Toggle raw display
$11$ \( T^{6} + 63 T^{4} + \cdots + 2025 \) Copy content Toggle raw display
$13$ \( T^{6} + 6 T^{5} + \cdots + 2197 \) Copy content Toggle raw display
$17$ \( (T - 3)^{6} \) Copy content Toggle raw display
$19$ \( T^{6} + 30 T^{4} + \cdots + 144 \) Copy content Toggle raw display
$23$ \( (T^{3} - 42 T + 24)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} + 9 T^{2} + \cdots - 240)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 129 T^{4} + \cdots + 3600 \) Copy content Toggle raw display
$37$ \( T^{6} + 108 T^{4} + \cdots + 5184 \) Copy content Toggle raw display
$41$ \( T^{6} + 162 T^{4} + \cdots + 129600 \) Copy content Toggle raw display
$43$ \( (T - 4)^{6} \) Copy content Toggle raw display
$47$ \( T^{6} + 153 T^{4} + \cdots + 20736 \) Copy content Toggle raw display
$53$ \( (T^{3} + 9 T^{2} - 24 T - 12)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 369 T^{4} + \cdots + 1498176 \) Copy content Toggle raw display
$61$ \( (T^{3} + 15 T^{2} + \cdots - 226)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 111 T^{4} + \cdots + 15129 \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} + 306 T^{4} + \cdots + 810000 \) Copy content Toggle raw display
$79$ \( (T^{3} + 18 T^{2} + \cdots + 20)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 135 T^{4} + \cdots + 81 \) Copy content Toggle raw display
$89$ \( T^{6} + 342 T^{4} + \cdots + 93636 \) Copy content Toggle raw display
$97$ \( T^{6} + 372 T^{4} + \cdots + 389376 \) Copy content Toggle raw display
show more
show less