L(s) = 1 | + i·2-s − 3.10·3-s − 4-s − 3.10i·6-s − 4.10i·7-s − i·8-s + 6.64·9-s + 1.53i·11-s + 3.10·12-s + (−1.26 + 3.37i)13-s + 4.10·14-s + 16-s + 3·17-s + 6.64i·18-s + 1.10i·19-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.79·3-s − 0.5·4-s − 1.26i·6-s − 1.55i·7-s − 0.353i·8-s + 2.21·9-s + 0.463i·11-s + 0.896·12-s + (−0.352 + 0.935i)13-s + 1.09·14-s + 0.250·16-s + 0.727·17-s + 1.56i·18-s + 0.253i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.935 - 0.352i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.935 - 0.352i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0519697 + 0.285805i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0519697 + 0.285805i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (1.26 - 3.37i)T \) |
good | 3 | \( 1 + 3.10T + 3T^{2} \) |
| 7 | \( 1 + 4.10iT - 7T^{2} \) |
| 11 | \( 1 - 1.53iT - 11T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 - 1.10iT - 19T^{2} \) |
| 23 | \( 1 + 6.74T + 23T^{2} \) |
| 29 | \( 1 + 5.56T + 29T^{2} \) |
| 31 | \( 1 + 8.64iT - 31T^{2} \) |
| 37 | \( 1 - 4.53iT - 37T^{2} \) |
| 41 | \( 1 - 7.85iT - 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 - 10.8iT - 47T^{2} \) |
| 53 | \( 1 + 0.433T + 53T^{2} \) |
| 59 | \( 1 - 13.7iT - 59T^{2} \) |
| 61 | \( 1 + 14.3T + 61T^{2} \) |
| 67 | \( 1 - 3.74iT - 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 10.7iT - 73T^{2} \) |
| 79 | \( 1 + 6.53T + 79T^{2} \) |
| 83 | \( 1 - 4.46iT - 83T^{2} \) |
| 89 | \( 1 - 1.85iT - 89T^{2} \) |
| 97 | \( 1 - 3.78iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.94813139245981654525645139334, −10.02628139538757264968958390132, −9.632925048952766338410627618643, −7.74285711157645616856218635330, −7.32152738124582596236492201277, −6.38035929936936798423121604957, −5.73675751433122860082023157444, −4.47267322201668258080984084349, −4.14067081897080512563816941189, −1.28785765409939002045806210630,
0.21906021071654883319821472588, 1.93062192838150712137672572950, 3.44878849751279892031049119075, 4.93666724027625939723634345295, 5.58303482469784302203427372505, 6.08155006976769597520581385817, 7.45525235001863316773384925291, 8.614662053243494881541147347407, 9.621916422348969033957904797477, 10.44730222702377354652527360503