Properties

Label 600.3.p.b.499.5
Level $600$
Weight $3$
Character 600.499
Analytic conductor $16.349$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,3,Mod(499,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.499"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 499.5
Character \(\chi\) \(=\) 600.499
Dual form 600.3.p.b.499.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64881 - 1.13200i) q^{2} -1.73205i q^{3} +(1.43715 + 3.73291i) q^{4} +(-1.96068 + 2.85582i) q^{6} -11.6935 q^{7} +(1.85607 - 7.78171i) q^{8} -3.00000 q^{9} +19.3398 q^{11} +(6.46559 - 2.48921i) q^{12} +12.9092 q^{13} +(19.2803 + 13.2370i) q^{14} +(-11.8692 + 10.7295i) q^{16} +3.08243i q^{17} +(4.94643 + 3.39600i) q^{18} +10.1462 q^{19} +20.2537i q^{21} +(-31.8876 - 21.8926i) q^{22} -12.5038 q^{23} +(-13.4783 - 3.21481i) q^{24} +(-21.2849 - 14.6133i) q^{26} +5.19615i q^{27} +(-16.8053 - 43.6507i) q^{28} -0.924932i q^{29} -32.5955i q^{31} +(31.7159 - 4.25493i) q^{32} -33.4975i q^{33} +(3.48931 - 5.08233i) q^{34} +(-4.31144 - 11.1987i) q^{36} +3.15307 q^{37} +(-16.7292 - 11.4855i) q^{38} -22.3595i q^{39} -68.9305 q^{41} +(22.9272 - 33.3945i) q^{42} -69.7882i q^{43} +(27.7941 + 72.1936i) q^{44} +(20.6164 + 14.1543i) q^{46} +46.2730 q^{47} +(18.5840 + 20.5581i) q^{48} +87.7376 q^{49} +5.33892 q^{51} +(18.5525 + 48.1890i) q^{52} +16.7503 q^{53} +(5.88205 - 8.56747i) q^{54} +(-21.7039 + 90.9953i) q^{56} -17.5737i q^{57} +(-1.04702 + 1.52504i) q^{58} -72.0926 q^{59} -37.8730i q^{61} +(-36.8981 + 53.7438i) q^{62} +35.0805 q^{63} +(-57.1100 - 28.8868i) q^{64} +(-37.9192 + 55.2310i) q^{66} -121.224i q^{67} +(-11.5064 + 4.42990i) q^{68} +21.6572i q^{69} -67.4107i q^{71} +(-5.56821 + 23.3451i) q^{72} +14.7754i q^{73} +(-5.19881 - 3.56928i) q^{74} +(14.5816 + 37.8748i) q^{76} -226.149 q^{77} +(-25.3109 + 36.8665i) q^{78} -132.433i q^{79} +9.00000 q^{81} +(113.653 + 78.0294i) q^{82} +33.3714i q^{83} +(-75.6052 + 29.1076i) q^{84} +(-79.0003 + 115.068i) q^{86} -1.60203 q^{87} +(35.8960 - 150.497i) q^{88} +60.3607 q^{89} -150.954 q^{91} +(-17.9698 - 46.6755i) q^{92} -56.4571 q^{93} +(-76.2953 - 52.3810i) q^{94} +(-7.36975 - 54.9335i) q^{96} -13.2188i q^{97} +(-144.663 - 99.3190i) q^{98} -58.0193 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 28 q^{4} + 12 q^{6} - 96 q^{9} + 128 q^{11} + 40 q^{14} - 28 q^{16} + 64 q^{19} + 108 q^{24} + 72 q^{26} + 144 q^{34} + 84 q^{36} + 200 q^{44} + 424 q^{46} + 160 q^{49} + 192 q^{51} - 36 q^{54} - 232 q^{56}+ \cdots - 384 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.64881 1.13200i −0.824405 0.566000i
\(3\) 1.73205i 0.577350i
\(4\) 1.43715 + 3.73291i 0.359287 + 0.933227i
\(5\) 0 0
\(6\) −1.96068 + 2.85582i −0.326780 + 0.475970i
\(7\) −11.6935 −1.67050 −0.835249 0.549872i \(-0.814676\pi\)
−0.835249 + 0.549872i \(0.814676\pi\)
\(8\) 1.85607 7.78171i 0.232009 0.972714i
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 19.3398 1.75816 0.879081 0.476673i \(-0.158157\pi\)
0.879081 + 0.476673i \(0.158157\pi\)
\(12\) 6.46559 2.48921i 0.538799 0.207434i
\(13\) 12.9092 0.993019 0.496510 0.868031i \(-0.334615\pi\)
0.496510 + 0.868031i \(0.334615\pi\)
\(14\) 19.2803 + 13.2370i 1.37717 + 0.945502i
\(15\) 0 0
\(16\) −11.8692 + 10.7295i −0.741826 + 0.670593i
\(17\) 3.08243i 0.181319i 0.995882 + 0.0906596i \(0.0288975\pi\)
−0.995882 + 0.0906596i \(0.971102\pi\)
\(18\) 4.94643 + 3.39600i 0.274802 + 0.188667i
\(19\) 10.1462 0.534010 0.267005 0.963695i \(-0.413966\pi\)
0.267005 + 0.963695i \(0.413966\pi\)
\(20\) 0 0
\(21\) 20.2537i 0.964462i
\(22\) −31.8876 21.8926i −1.44944 0.995120i
\(23\) −12.5038 −0.543643 −0.271821 0.962348i \(-0.587626\pi\)
−0.271821 + 0.962348i \(0.587626\pi\)
\(24\) −13.4783 3.21481i −0.561596 0.133950i
\(25\) 0 0
\(26\) −21.2849 14.6133i −0.818650 0.562049i
\(27\) 5.19615i 0.192450i
\(28\) −16.8053 43.6507i −0.600188 1.55895i
\(29\) 0.924932i 0.0318942i −0.999873 0.0159471i \(-0.994924\pi\)
0.999873 0.0159471i \(-0.00507633\pi\)
\(30\) 0 0
\(31\) 32.5955i 1.05147i −0.850649 0.525734i \(-0.823791\pi\)
0.850649 0.525734i \(-0.176209\pi\)
\(32\) 31.7159 4.25493i 0.991121 0.132966i
\(33\) 33.4975i 1.01508i
\(34\) 3.48931 5.08233i 0.102627 0.149480i
\(35\) 0 0
\(36\) −4.31144 11.1987i −0.119762 0.311076i
\(37\) 3.15307 0.0852181 0.0426090 0.999092i \(-0.486433\pi\)
0.0426090 + 0.999092i \(0.486433\pi\)
\(38\) −16.7292 11.4855i −0.440241 0.302250i
\(39\) 22.3595i 0.573320i
\(40\) 0 0
\(41\) −68.9305 −1.68123 −0.840616 0.541631i \(-0.817807\pi\)
−0.840616 + 0.541631i \(0.817807\pi\)
\(42\) 22.9272 33.3945i 0.545886 0.795108i
\(43\) 69.7882i 1.62298i −0.584365 0.811491i \(-0.698656\pi\)
0.584365 0.811491i \(-0.301344\pi\)
\(44\) 27.7941 + 72.1936i 0.631685 + 1.64076i
\(45\) 0 0
\(46\) 20.6164 + 14.1543i 0.448182 + 0.307702i
\(47\) 46.2730 0.984531 0.492265 0.870445i \(-0.336169\pi\)
0.492265 + 0.870445i \(0.336169\pi\)
\(48\) 18.5840 + 20.5581i 0.387167 + 0.428293i
\(49\) 87.7376 1.79056
\(50\) 0 0
\(51\) 5.33892 0.104685
\(52\) 18.5525 + 48.1890i 0.356779 + 0.926712i
\(53\) 16.7503 0.316043 0.158021 0.987436i \(-0.449488\pi\)
0.158021 + 0.987436i \(0.449488\pi\)
\(54\) 5.88205 8.56747i 0.108927 0.158657i
\(55\) 0 0
\(56\) −21.7039 + 90.9953i −0.387570 + 1.62492i
\(57\) 17.5737i 0.308311i
\(58\) −1.04702 + 1.52504i −0.0180521 + 0.0262937i
\(59\) −72.0926 −1.22191 −0.610954 0.791666i \(-0.709214\pi\)
−0.610954 + 0.791666i \(0.709214\pi\)
\(60\) 0 0
\(61\) 37.8730i 0.620869i −0.950595 0.310434i \(-0.899526\pi\)
0.950595 0.310434i \(-0.100474\pi\)
\(62\) −36.8981 + 53.7438i −0.595131 + 0.866835i
\(63\) 35.0805 0.556833
\(64\) −57.1100 28.8868i −0.892344 0.451356i
\(65\) 0 0
\(66\) −37.9192 + 55.2310i −0.574533 + 0.836833i
\(67\) 121.224i 1.80931i −0.426148 0.904654i \(-0.640130\pi\)
0.426148 0.904654i \(-0.359870\pi\)
\(68\) −11.5064 + 4.42990i −0.169212 + 0.0651456i
\(69\) 21.6572i 0.313872i
\(70\) 0 0
\(71\) 67.4107i 0.949447i −0.880135 0.474724i \(-0.842548\pi\)
0.880135 0.474724i \(-0.157452\pi\)
\(72\) −5.56821 + 23.3451i −0.0773363 + 0.324238i
\(73\) 14.7754i 0.202402i 0.994866 + 0.101201i \(0.0322685\pi\)
−0.994866 + 0.101201i \(0.967731\pi\)
\(74\) −5.19881 3.56928i −0.0702542 0.0482335i
\(75\) 0 0
\(76\) 14.5816 + 37.8748i 0.191863 + 0.498353i
\(77\) −226.149 −2.93701
\(78\) −25.3109 + 36.8665i −0.324499 + 0.472648i
\(79\) 132.433i 1.67637i −0.545390 0.838183i \(-0.683618\pi\)
0.545390 0.838183i \(-0.316382\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 113.653 + 78.0294i 1.38602 + 0.951578i
\(83\) 33.3714i 0.402065i 0.979585 + 0.201033i \(0.0644297\pi\)
−0.979585 + 0.201033i \(0.935570\pi\)
\(84\) −75.6052 + 29.1076i −0.900062 + 0.346519i
\(85\) 0 0
\(86\) −79.0003 + 115.068i −0.918608 + 1.33799i
\(87\) −1.60203 −0.0184141
\(88\) 35.8960 150.497i 0.407909 1.71019i
\(89\) 60.3607 0.678210 0.339105 0.940749i \(-0.389876\pi\)
0.339105 + 0.940749i \(0.389876\pi\)
\(90\) 0 0
\(91\) −150.954 −1.65884
\(92\) −17.9698 46.6755i −0.195324 0.507342i
\(93\) −56.4571 −0.607065
\(94\) −76.2953 52.3810i −0.811652 0.557245i
\(95\) 0 0
\(96\) −7.36975 54.9335i −0.0767682 0.572224i
\(97\) 13.2188i 0.136277i −0.997676 0.0681383i \(-0.978294\pi\)
0.997676 0.0681383i \(-0.0217059\pi\)
\(98\) −144.663 99.3190i −1.47615 1.01346i
\(99\) −58.0193 −0.586054
\(100\) 0 0
\(101\) 148.736i 1.47263i −0.676636 0.736317i \(-0.736563\pi\)
0.676636 0.736317i \(-0.263437\pi\)
\(102\) −8.80286 6.04366i −0.0863025 0.0592516i
\(103\) −133.780 −1.29883 −0.649416 0.760434i \(-0.724986\pi\)
−0.649416 + 0.760434i \(0.724986\pi\)
\(104\) 23.9605 100.456i 0.230389 0.965923i
\(105\) 0 0
\(106\) −27.6180 18.9613i −0.260547 0.178880i
\(107\) 55.2036i 0.515921i 0.966155 + 0.257961i \(0.0830505\pi\)
−0.966155 + 0.257961i \(0.916949\pi\)
\(108\) −19.3968 + 7.46764i −0.179600 + 0.0691448i
\(109\) 77.6680i 0.712550i 0.934381 + 0.356275i \(0.115953\pi\)
−0.934381 + 0.356275i \(0.884047\pi\)
\(110\) 0 0
\(111\) 5.46128i 0.0492007i
\(112\) 138.792 125.465i 1.23922 1.12022i
\(113\) 90.7924i 0.803472i 0.915755 + 0.401736i \(0.131593\pi\)
−0.915755 + 0.401736i \(0.868407\pi\)
\(114\) −19.8935 + 28.9757i −0.174504 + 0.254173i
\(115\) 0 0
\(116\) 3.45268 1.32926i 0.0297645 0.0114592i
\(117\) −38.7277 −0.331006
\(118\) 118.867 + 81.6088i 1.00735 + 0.691600i
\(119\) 36.0443i 0.302893i
\(120\) 0 0
\(121\) 253.027 2.09113
\(122\) −42.8723 + 62.4454i −0.351412 + 0.511847i
\(123\) 119.391i 0.970660i
\(124\) 121.676 46.8446i 0.981258 0.377779i
\(125\) 0 0
\(126\) −57.8410 39.7111i −0.459056 0.315167i
\(127\) −45.7755 −0.360437 −0.180219 0.983627i \(-0.557681\pi\)
−0.180219 + 0.983627i \(0.557681\pi\)
\(128\) 61.4636 + 112.277i 0.480185 + 0.877167i
\(129\) −120.877 −0.937029
\(130\) 0 0
\(131\) 186.279 1.42197 0.710987 0.703205i \(-0.248248\pi\)
0.710987 + 0.703205i \(0.248248\pi\)
\(132\) 125.043 48.1408i 0.947296 0.364703i
\(133\) −118.644 −0.892063
\(134\) −137.225 + 199.875i −1.02407 + 1.49160i
\(135\) 0 0
\(136\) 23.9865 + 5.72120i 0.176372 + 0.0420677i
\(137\) 32.9523i 0.240528i 0.992742 + 0.120264i \(0.0383741\pi\)
−0.992742 + 0.120264i \(0.961626\pi\)
\(138\) 24.5160 35.7086i 0.177652 0.258758i
\(139\) 83.8571 0.603289 0.301644 0.953421i \(-0.402464\pi\)
0.301644 + 0.953421i \(0.402464\pi\)
\(140\) 0 0
\(141\) 80.1471i 0.568419i
\(142\) −76.3090 + 111.148i −0.537387 + 0.782729i
\(143\) 249.662 1.74589
\(144\) 35.6076 32.1885i 0.247275 0.223531i
\(145\) 0 0
\(146\) 16.7257 24.3618i 0.114560 0.166861i
\(147\) 151.966i 1.03378i
\(148\) 4.53143 + 11.7701i 0.0306178 + 0.0795278i
\(149\) 81.4421i 0.546591i 0.961930 + 0.273296i \(0.0881137\pi\)
−0.961930 + 0.273296i \(0.911886\pi\)
\(150\) 0 0
\(151\) 84.7219i 0.561072i 0.959843 + 0.280536i \(0.0905123\pi\)
−0.959843 + 0.280536i \(0.909488\pi\)
\(152\) 18.8321 78.9548i 0.123895 0.519439i
\(153\) 9.24728i 0.0604397i
\(154\) 372.877 + 256.001i 2.42128 + 1.66235i
\(155\) 0 0
\(156\) 83.4659 32.1339i 0.535038 0.205986i
\(157\) −167.846 −1.06908 −0.534540 0.845143i \(-0.679515\pi\)
−0.534540 + 0.845143i \(0.679515\pi\)
\(158\) −149.914 + 218.357i −0.948823 + 1.38200i
\(159\) 29.0123i 0.182467i
\(160\) 0 0
\(161\) 146.213 0.908154
\(162\) −14.8393 10.1880i −0.0916006 0.0628889i
\(163\) 82.8713i 0.508413i −0.967150 0.254206i \(-0.918186\pi\)
0.967150 0.254206i \(-0.0818142\pi\)
\(164\) −99.0634 257.311i −0.604045 1.56897i
\(165\) 0 0
\(166\) 37.7765 55.0231i 0.227569 0.331464i
\(167\) 37.2973 0.223337 0.111669 0.993746i \(-0.464380\pi\)
0.111669 + 0.993746i \(0.464380\pi\)
\(168\) 157.608 + 37.5923i 0.938146 + 0.223764i
\(169\) −2.35134 −0.0139132
\(170\) 0 0
\(171\) −30.4386 −0.178003
\(172\) 260.513 100.296i 1.51461 0.583116i
\(173\) 211.828 1.22444 0.612218 0.790689i \(-0.290277\pi\)
0.612218 + 0.790689i \(0.290277\pi\)
\(174\) 2.64144 + 1.81350i 0.0151807 + 0.0104224i
\(175\) 0 0
\(176\) −229.548 + 207.506i −1.30425 + 1.17901i
\(177\) 124.868i 0.705469i
\(178\) −99.5233 68.3283i −0.559120 0.383867i
\(179\) −86.4715 −0.483081 −0.241540 0.970391i \(-0.577653\pi\)
−0.241540 + 0.970391i \(0.577653\pi\)
\(180\) 0 0
\(181\) 79.4036i 0.438694i −0.975647 0.219347i \(-0.929607\pi\)
0.975647 0.219347i \(-0.0703926\pi\)
\(182\) 248.895 + 170.880i 1.36755 + 0.938902i
\(183\) −65.5979 −0.358459
\(184\) −23.2079 + 97.3008i −0.126130 + 0.528809i
\(185\) 0 0
\(186\) 93.0870 + 63.9094i 0.500468 + 0.343599i
\(187\) 59.6134i 0.318788i
\(188\) 66.5011 + 172.733i 0.353729 + 0.918791i
\(189\) 60.7611i 0.321487i
\(190\) 0 0
\(191\) 290.341i 1.52011i −0.649858 0.760056i \(-0.725172\pi\)
0.649858 0.760056i \(-0.274828\pi\)
\(192\) −50.0334 + 98.9174i −0.260591 + 0.515195i
\(193\) 182.850i 0.947408i −0.880684 0.473704i \(-0.842917\pi\)
0.880684 0.473704i \(-0.157083\pi\)
\(194\) −14.9637 + 21.7953i −0.0771326 + 0.112347i
\(195\) 0 0
\(196\) 126.092 + 327.516i 0.643326 + 1.67100i
\(197\) 98.1640 0.498295 0.249147 0.968466i \(-0.419850\pi\)
0.249147 + 0.968466i \(0.419850\pi\)
\(198\) 95.6629 + 65.6779i 0.483146 + 0.331707i
\(199\) 225.355i 1.13244i −0.824255 0.566218i \(-0.808406\pi\)
0.824255 0.566218i \(-0.191594\pi\)
\(200\) 0 0
\(201\) −209.965 −1.04460
\(202\) −168.369 + 245.238i −0.833512 + 1.21405i
\(203\) 10.8157i 0.0532792i
\(204\) 7.67282 + 19.9297i 0.0376118 + 0.0976946i
\(205\) 0 0
\(206\) 220.577 + 151.439i 1.07076 + 0.735139i
\(207\) 37.5113 0.181214
\(208\) −153.223 + 138.510i −0.736647 + 0.665911i
\(209\) 196.225 0.938877
\(210\) 0 0
\(211\) 302.658 1.43440 0.717199 0.696869i \(-0.245424\pi\)
0.717199 + 0.696869i \(0.245424\pi\)
\(212\) 24.0726 + 62.5272i 0.113550 + 0.294940i
\(213\) −116.759 −0.548164
\(214\) 62.4905 91.0202i 0.292012 0.425328i
\(215\) 0 0
\(216\) 40.4349 + 9.64443i 0.187199 + 0.0446501i
\(217\) 381.155i 1.75647i
\(218\) 87.9202 128.060i 0.403304 0.587430i
\(219\) 25.5917 0.116857
\(220\) 0 0
\(221\) 39.7918i 0.180053i
\(222\) −6.18217 + 9.00460i −0.0278476 + 0.0405613i
\(223\) 432.537 1.93963 0.969815 0.243842i \(-0.0784079\pi\)
0.969815 + 0.243842i \(0.0784079\pi\)
\(224\) −370.869 + 49.7549i −1.65566 + 0.222120i
\(225\) 0 0
\(226\) 102.777 149.699i 0.454766 0.662387i
\(227\) 359.320i 1.58291i −0.611230 0.791453i \(-0.709325\pi\)
0.611230 0.791453i \(-0.290675\pi\)
\(228\) 65.6011 25.2561i 0.287724 0.110772i
\(229\) 212.212i 0.926688i 0.886179 + 0.463344i \(0.153351\pi\)
−0.886179 + 0.463344i \(0.846649\pi\)
\(230\) 0 0
\(231\) 391.702i 1.69568i
\(232\) −7.19755 1.71674i −0.0310239 0.00739974i
\(233\) 276.656i 1.18736i 0.804699 + 0.593682i \(0.202326\pi\)
−0.804699 + 0.593682i \(0.797674\pi\)
\(234\) 63.8547 + 43.8398i 0.272883 + 0.187350i
\(235\) 0 0
\(236\) −103.608 269.115i −0.439016 1.14032i
\(237\) −229.380 −0.967850
\(238\) −40.8022 + 59.4302i −0.171438 + 0.249707i
\(239\) 27.9106i 0.116781i 0.998294 + 0.0583904i \(0.0185968\pi\)
−0.998294 + 0.0583904i \(0.981403\pi\)
\(240\) 0 0
\(241\) −115.420 −0.478920 −0.239460 0.970906i \(-0.576970\pi\)
−0.239460 + 0.970906i \(0.576970\pi\)
\(242\) −417.194 286.427i −1.72394 1.18358i
\(243\) 15.5885i 0.0641500i
\(244\) 141.376 54.4291i 0.579411 0.223070i
\(245\) 0 0
\(246\) 135.151 196.853i 0.549394 0.800217i
\(247\) 130.980 0.530282
\(248\) −253.649 60.4996i −1.02278 0.243950i
\(249\) 57.8010 0.232132
\(250\) 0 0
\(251\) −26.6696 −0.106253 −0.0531267 0.998588i \(-0.516919\pi\)
−0.0531267 + 0.998588i \(0.516919\pi\)
\(252\) 50.4158 + 130.952i 0.200063 + 0.519651i
\(253\) −241.820 −0.955812
\(254\) 75.4752 + 51.8179i 0.297146 + 0.204008i
\(255\) 0 0
\(256\) 25.7563 254.701i 0.100610 0.994926i
\(257\) 170.155i 0.662082i 0.943616 + 0.331041i \(0.107400\pi\)
−0.943616 + 0.331041i \(0.892600\pi\)
\(258\) 199.303 + 136.833i 0.772491 + 0.530359i
\(259\) −36.8704 −0.142357
\(260\) 0 0
\(261\) 2.77479i 0.0106314i
\(262\) −307.138 210.868i −1.17228 0.804838i
\(263\) 105.658 0.401741 0.200870 0.979618i \(-0.435623\pi\)
0.200870 + 0.979618i \(0.435623\pi\)
\(264\) −260.668 62.1737i −0.987378 0.235506i
\(265\) 0 0
\(266\) 195.622 + 134.306i 0.735421 + 0.504908i
\(267\) 104.548i 0.391565i
\(268\) 452.517 174.216i 1.68849 0.650061i
\(269\) 206.889i 0.769103i 0.923104 + 0.384551i \(0.125644\pi\)
−0.923104 + 0.384551i \(0.874356\pi\)
\(270\) 0 0
\(271\) 247.759i 0.914241i −0.889405 0.457120i \(-0.848881\pi\)
0.889405 0.457120i \(-0.151119\pi\)
\(272\) −33.0728 36.5860i −0.121591 0.134507i
\(273\) 261.460i 0.957729i
\(274\) 37.3020 54.3321i 0.136139 0.198292i
\(275\) 0 0
\(276\) −80.8443 + 31.1246i −0.292914 + 0.112770i
\(277\) −26.9487 −0.0972879 −0.0486439 0.998816i \(-0.515490\pi\)
−0.0486439 + 0.998816i \(0.515490\pi\)
\(278\) −138.264 94.9264i −0.497354 0.341462i
\(279\) 97.7865i 0.350489i
\(280\) 0 0
\(281\) −289.489 −1.03021 −0.515106 0.857127i \(-0.672247\pi\)
−0.515106 + 0.857127i \(0.672247\pi\)
\(282\) −90.7266 + 132.147i −0.321725 + 0.468608i
\(283\) 3.01272i 0.0106457i −0.999986 0.00532283i \(-0.998306\pi\)
0.999986 0.00532283i \(-0.00169432\pi\)
\(284\) 251.638 96.8792i 0.886050 0.341124i
\(285\) 0 0
\(286\) −411.645 282.618i −1.43932 0.988173i
\(287\) 806.038 2.80849
\(288\) −95.1476 + 12.7648i −0.330374 + 0.0443221i
\(289\) 279.499 0.967123
\(290\) 0 0
\(291\) −22.8957 −0.0786794
\(292\) −55.1551 + 21.2344i −0.188887 + 0.0727205i
\(293\) −95.1952 −0.324898 −0.162449 0.986717i \(-0.551939\pi\)
−0.162449 + 0.986717i \(0.551939\pi\)
\(294\) −172.026 + 250.563i −0.585121 + 0.852255i
\(295\) 0 0
\(296\) 5.85232 24.5363i 0.0197714 0.0828928i
\(297\) 100.492i 0.338358i
\(298\) 92.1925 134.282i 0.309371 0.450612i
\(299\) −161.414 −0.539848
\(300\) 0 0
\(301\) 816.068i 2.71119i
\(302\) 95.9053 139.690i 0.317567 0.462551i
\(303\) −257.618 −0.850226
\(304\) −120.427 + 108.863i −0.396143 + 0.358104i
\(305\) 0 0
\(306\) −10.4679 + 15.2470i −0.0342089 + 0.0498268i
\(307\) 167.348i 0.545108i 0.962140 + 0.272554i \(0.0878684\pi\)
−0.962140 + 0.272554i \(0.912132\pi\)
\(308\) −325.010 844.195i −1.05523 2.74089i
\(309\) 231.713i 0.749881i
\(310\) 0 0
\(311\) 299.478i 0.962951i 0.876460 + 0.481475i \(0.159899\pi\)
−0.876460 + 0.481475i \(0.840101\pi\)
\(312\) −173.995 41.5008i −0.557676 0.133015i
\(313\) 123.623i 0.394963i 0.980307 + 0.197481i \(0.0632762\pi\)
−0.980307 + 0.197481i \(0.936724\pi\)
\(314\) 276.746 + 190.001i 0.881356 + 0.605100i
\(315\) 0 0
\(316\) 494.360 190.326i 1.56443 0.602296i
\(317\) 135.949 0.428862 0.214431 0.976739i \(-0.431210\pi\)
0.214431 + 0.976739i \(0.431210\pi\)
\(318\) −32.8420 + 47.8358i −0.103277 + 0.150427i
\(319\) 17.8880i 0.0560752i
\(320\) 0 0
\(321\) 95.6154 0.297867
\(322\) −241.077 165.513i −0.748687 0.514016i
\(323\) 31.2749i 0.0968263i
\(324\) 12.9343 + 33.5962i 0.0399208 + 0.103692i
\(325\) 0 0
\(326\) −93.8104 + 136.639i −0.287762 + 0.419138i
\(327\) 134.525 0.411391
\(328\) −127.940 + 536.397i −0.390061 + 1.63536i
\(329\) −541.092 −1.64466
\(330\) 0 0
\(331\) −41.1886 −0.124437 −0.0622185 0.998063i \(-0.519818\pi\)
−0.0622185 + 0.998063i \(0.519818\pi\)
\(332\) −124.572 + 47.9597i −0.375218 + 0.144457i
\(333\) −9.45921 −0.0284060
\(334\) −61.4962 42.2206i −0.184120 0.126409i
\(335\) 0 0
\(336\) −217.312 240.396i −0.646762 0.715463i
\(337\) 565.599i 1.67834i −0.543873 0.839168i \(-0.683043\pi\)
0.543873 0.839168i \(-0.316957\pi\)
\(338\) 3.87690 + 2.66171i 0.0114701 + 0.00787489i
\(339\) 157.257 0.463885
\(340\) 0 0
\(341\) 630.390i 1.84865i
\(342\) 50.1875 + 34.4565i 0.146747 + 0.100750i
\(343\) −452.977 −1.32063
\(344\) −543.072 129.532i −1.57870 0.376546i
\(345\) 0 0
\(346\) −349.263 239.789i −1.00943 0.693032i
\(347\) 134.668i 0.388092i 0.980992 + 0.194046i \(0.0621612\pi\)
−0.980992 + 0.194046i \(0.937839\pi\)
\(348\) −2.30235 5.98023i −0.00661596 0.0171846i
\(349\) 461.309i 1.32180i −0.750473 0.660901i \(-0.770174\pi\)
0.750473 0.660901i \(-0.229826\pi\)
\(350\) 0 0
\(351\) 67.0784i 0.191107i
\(352\) 613.378 82.2893i 1.74255 0.233777i
\(353\) 429.790i 1.21754i 0.793349 + 0.608768i \(0.208336\pi\)
−0.793349 + 0.608768i \(0.791664\pi\)
\(354\) 141.351 205.884i 0.399296 0.581592i
\(355\) 0 0
\(356\) 86.7473 + 225.321i 0.243672 + 0.632924i
\(357\) −62.4305 −0.174875
\(358\) 142.575 + 97.8858i 0.398254 + 0.273424i
\(359\) 312.402i 0.870200i −0.900382 0.435100i \(-0.856713\pi\)
0.900382 0.435100i \(-0.143287\pi\)
\(360\) 0 0
\(361\) −258.055 −0.714833
\(362\) −89.8849 + 130.921i −0.248301 + 0.361661i
\(363\) 438.256i 1.20732i
\(364\) −216.943 563.498i −0.595998 1.54807i
\(365\) 0 0
\(366\) 108.159 + 74.2569i 0.295515 + 0.202888i
\(367\) −138.931 −0.378558 −0.189279 0.981923i \(-0.560615\pi\)
−0.189279 + 0.981923i \(0.560615\pi\)
\(368\) 148.410 134.159i 0.403288 0.364563i
\(369\) 206.792 0.560411
\(370\) 0 0
\(371\) −195.869 −0.527949
\(372\) −81.1372 210.749i −0.218111 0.566530i
\(373\) −422.559 −1.13287 −0.566433 0.824108i \(-0.691677\pi\)
−0.566433 + 0.824108i \(0.691677\pi\)
\(374\) 67.4824 98.2912i 0.180434 0.262811i
\(375\) 0 0
\(376\) 85.8859 360.083i 0.228420 0.957667i
\(377\) 11.9402i 0.0316715i
\(378\) −68.7816 + 100.184i −0.181962 + 0.265036i
\(379\) −419.245 −1.10619 −0.553094 0.833119i \(-0.686553\pi\)
−0.553094 + 0.833119i \(0.686553\pi\)
\(380\) 0 0
\(381\) 79.2856i 0.208099i
\(382\) −328.667 + 478.718i −0.860384 + 1.25319i
\(383\) 306.762 0.800944 0.400472 0.916309i \(-0.368846\pi\)
0.400472 + 0.916309i \(0.368846\pi\)
\(384\) 194.470 106.458i 0.506433 0.277235i
\(385\) 0 0
\(386\) −206.986 + 301.485i −0.536234 + 0.781048i
\(387\) 209.365i 0.540994i
\(388\) 49.3447 18.9974i 0.127177 0.0489624i
\(389\) 441.866i 1.13590i −0.823062 0.567951i \(-0.807736\pi\)
0.823062 0.567951i \(-0.192264\pi\)
\(390\) 0 0
\(391\) 38.5420i 0.0985728i
\(392\) 162.847 682.748i 0.415426 1.74170i
\(393\) 322.644i 0.820978i
\(394\) −161.854 111.122i −0.410797 0.282035i
\(395\) 0 0
\(396\) −83.3824 216.581i −0.210562 0.546921i
\(397\) 160.391 0.404007 0.202004 0.979385i \(-0.435255\pi\)
0.202004 + 0.979385i \(0.435255\pi\)
\(398\) −255.102 + 371.567i −0.640960 + 0.933587i
\(399\) 205.498i 0.515033i
\(400\) 0 0
\(401\) 193.791 0.483270 0.241635 0.970367i \(-0.422316\pi\)
0.241635 + 0.970367i \(0.422316\pi\)
\(402\) 346.193 + 237.681i 0.861177 + 0.591246i
\(403\) 420.783i 1.04413i
\(404\) 555.218 213.756i 1.37430 0.529099i
\(405\) 0 0
\(406\) 12.2434 17.8330i 0.0301560 0.0439236i
\(407\) 60.9797 0.149827
\(408\) 9.90941 41.5459i 0.0242878 0.101828i
\(409\) 459.509 1.12349 0.561747 0.827309i \(-0.310130\pi\)
0.561747 + 0.827309i \(0.310130\pi\)
\(410\) 0 0
\(411\) 57.0751 0.138869
\(412\) −192.261 499.387i −0.466653 1.21210i
\(413\) 843.013 2.04119
\(414\) −61.8491 42.4629i −0.149394 0.102567i
\(415\) 0 0
\(416\) 409.428 54.9279i 0.984202 0.132038i
\(417\) 145.245i 0.348309i
\(418\) −323.538 222.127i −0.774015 0.531405i
\(419\) −223.442 −0.533274 −0.266637 0.963797i \(-0.585912\pi\)
−0.266637 + 0.963797i \(0.585912\pi\)
\(420\) 0 0
\(421\) 753.492i 1.78977i 0.446299 + 0.894884i \(0.352742\pi\)
−0.446299 + 0.894884i \(0.647258\pi\)
\(422\) −499.025 342.609i −1.18252 0.811870i
\(423\) −138.819 −0.328177
\(424\) 31.0897 130.346i 0.0733247 0.307419i
\(425\) 0 0
\(426\) 192.513 + 132.171i 0.451909 + 0.310261i
\(427\) 442.867i 1.03716i
\(428\) −206.070 + 79.3357i −0.481472 + 0.185364i
\(429\) 432.427i 1.00799i
\(430\) 0 0
\(431\) 801.595i 1.85985i 0.367752 + 0.929924i \(0.380128\pi\)
−0.367752 + 0.929924i \(0.619872\pi\)
\(432\) −55.7520 61.6742i −0.129056 0.142764i
\(433\) 725.058i 1.67450i −0.546822 0.837249i \(-0.684162\pi\)
0.546822 0.837249i \(-0.315838\pi\)
\(434\) 431.468 628.452i 0.994165 1.44805i
\(435\) 0 0
\(436\) −289.927 + 111.620i −0.664971 + 0.256010i
\(437\) −126.866 −0.290311
\(438\) −42.1958 28.9698i −0.0963374 0.0661411i
\(439\) 551.061i 1.25526i 0.778510 + 0.627632i \(0.215976\pi\)
−0.778510 + 0.627632i \(0.784024\pi\)
\(440\) 0 0
\(441\) −263.213 −0.596854
\(442\) 45.0443 65.6091i 0.101910 0.148437i
\(443\) 36.7779i 0.0830201i −0.999138 0.0415100i \(-0.986783\pi\)
0.999138 0.0415100i \(-0.0132169\pi\)
\(444\) 20.3864 7.84866i 0.0459154 0.0176772i
\(445\) 0 0
\(446\) −713.172 489.633i −1.59904 1.09783i
\(447\) 141.062 0.315574
\(448\) 667.815 + 337.787i 1.49066 + 0.753990i
\(449\) −332.641 −0.740849 −0.370424 0.928863i \(-0.620788\pi\)
−0.370424 + 0.928863i \(0.620788\pi\)
\(450\) 0 0
\(451\) −1333.10 −2.95588
\(452\) −338.920 + 130.482i −0.749822 + 0.288677i
\(453\) 146.743 0.323935
\(454\) −406.750 + 592.450i −0.895926 + 1.30496i
\(455\) 0 0
\(456\) −136.754 32.6181i −0.299898 0.0715309i
\(457\) 343.279i 0.751158i −0.926790 0.375579i \(-0.877444\pi\)
0.926790 0.375579i \(-0.122556\pi\)
\(458\) 240.224 349.896i 0.524506 0.763966i
\(459\) −16.0168 −0.0348949
\(460\) 0 0
\(461\) 208.768i 0.452859i −0.974028 0.226429i \(-0.927295\pi\)
0.974028 0.226429i \(-0.0727053\pi\)
\(462\) 443.407 645.843i 0.959756 1.39793i
\(463\) −239.500 −0.517278 −0.258639 0.965974i \(-0.583274\pi\)
−0.258639 + 0.965974i \(0.583274\pi\)
\(464\) 9.92404 + 10.9782i 0.0213880 + 0.0236599i
\(465\) 0 0
\(466\) 313.175 456.153i 0.672049 0.978869i
\(467\) 295.094i 0.631892i −0.948777 0.315946i \(-0.897678\pi\)
0.948777 0.315946i \(-0.102322\pi\)
\(468\) −55.6575 144.567i −0.118926 0.308904i
\(469\) 1417.53i 3.02244i
\(470\) 0 0
\(471\) 290.717i 0.617234i
\(472\) −133.809 + 561.003i −0.283493 + 1.18857i
\(473\) 1349.69i 2.85346i
\(474\) 378.205 + 259.659i 0.797900 + 0.547803i
\(475\) 0 0
\(476\) 134.550 51.8010i 0.282668 0.108826i
\(477\) −50.2508 −0.105348
\(478\) 31.5948 46.0193i 0.0660979 0.0962746i
\(479\) 533.361i 1.11349i 0.830684 + 0.556745i \(0.187950\pi\)
−0.830684 + 0.556745i \(0.812050\pi\)
\(480\) 0 0
\(481\) 40.7037 0.0846232
\(482\) 190.305 + 130.655i 0.394824 + 0.271069i
\(483\) 253.248i 0.524323i
\(484\) 363.637 + 944.527i 0.751317 + 1.95150i
\(485\) 0 0
\(486\) −17.6461 + 25.7024i −0.0363089 + 0.0528856i
\(487\) −285.675 −0.586601 −0.293301 0.956020i \(-0.594754\pi\)
−0.293301 + 0.956020i \(0.594754\pi\)
\(488\) −294.717 70.2950i −0.603927 0.144047i
\(489\) −143.537 −0.293532
\(490\) 0 0
\(491\) 188.244 0.383388 0.191694 0.981455i \(-0.438602\pi\)
0.191694 + 0.981455i \(0.438602\pi\)
\(492\) −445.676 + 171.583i −0.905846 + 0.348746i
\(493\) 2.85103 0.00578303
\(494\) −215.961 148.269i −0.437167 0.300140i
\(495\) 0 0
\(496\) 349.733 + 386.883i 0.705107 + 0.780006i
\(497\) 788.266i 1.58605i
\(498\) −95.3028 65.4307i −0.191371 0.131387i
\(499\) −625.534 −1.25357 −0.626787 0.779190i \(-0.715631\pi\)
−0.626787 + 0.779190i \(0.715631\pi\)
\(500\) 0 0
\(501\) 64.6008i 0.128944i
\(502\) 43.9731 + 30.1900i 0.0875959 + 0.0601395i
\(503\) 232.863 0.462949 0.231474 0.972841i \(-0.425645\pi\)
0.231474 + 0.972841i \(0.425645\pi\)
\(504\) 65.1118 272.986i 0.129190 0.541639i
\(505\) 0 0
\(506\) 398.716 + 273.741i 0.787976 + 0.540990i
\(507\) 4.07263i 0.00803280i
\(508\) −65.7862 170.876i −0.129500 0.336370i
\(509\) 615.343i 1.20893i 0.796633 + 0.604463i \(0.206612\pi\)
−0.796633 + 0.604463i \(0.793388\pi\)
\(510\) 0 0
\(511\) 172.775i 0.338112i
\(512\) −330.789 + 390.797i −0.646072 + 0.763276i
\(513\) 52.7212i 0.102770i
\(514\) 192.616 280.553i 0.374739 0.545823i
\(515\) 0 0
\(516\) −173.718 451.222i −0.336662 0.874461i
\(517\) 894.909 1.73096
\(518\) 60.7922 + 41.7373i 0.117359 + 0.0805739i
\(519\) 366.896i 0.706929i
\(520\) 0 0
\(521\) 132.731 0.254761 0.127381 0.991854i \(-0.459343\pi\)
0.127381 + 0.991854i \(0.459343\pi\)
\(522\) 3.14107 4.57511i 0.00601738 0.00876458i
\(523\) 911.886i 1.74357i 0.489890 + 0.871784i \(0.337037\pi\)
−0.489890 + 0.871784i \(0.662963\pi\)
\(524\) 267.710 + 695.361i 0.510897 + 1.32703i
\(525\) 0 0
\(526\) −174.210 119.605i −0.331197 0.227385i
\(527\) 100.473 0.190651
\(528\) 359.411 + 397.589i 0.680702 + 0.753009i
\(529\) −372.655 −0.704453
\(530\) 0 0
\(531\) 216.278 0.407303
\(532\) −170.510 442.889i −0.320507 0.832497i
\(533\) −889.841 −1.66950
\(534\) −118.348 + 172.379i −0.221626 + 0.322808i
\(535\) 0 0
\(536\) −943.327 225.000i −1.75994 0.419775i
\(537\) 149.773i 0.278907i
\(538\) 234.198 341.120i 0.435313 0.634052i
\(539\) 1696.83 3.14810
\(540\) 0 0
\(541\) 373.215i 0.689861i 0.938628 + 0.344931i \(0.112098\pi\)
−0.938628 + 0.344931i \(0.887902\pi\)
\(542\) −280.464 + 408.508i −0.517461 + 0.753705i
\(543\) −137.531 −0.253280
\(544\) 13.1155 + 97.7618i 0.0241094 + 0.179709i
\(545\) 0 0
\(546\) 295.973 431.098i 0.542075 0.789557i
\(547\) 175.297i 0.320469i −0.987079 0.160235i \(-0.948775\pi\)
0.987079 0.160235i \(-0.0512251\pi\)
\(548\) −123.008 + 47.3573i −0.224467 + 0.0864185i
\(549\) 113.619i 0.206956i
\(550\) 0 0
\(551\) 9.38454i 0.0170318i
\(552\) 168.530 + 40.1973i 0.305308 + 0.0728212i
\(553\) 1548.60i 2.80036i
\(554\) 44.4334 + 30.5060i 0.0802046 + 0.0550650i
\(555\) 0 0
\(556\) 120.515 + 313.031i 0.216754 + 0.563005i
\(557\) −403.527 −0.724466 −0.362233 0.932088i \(-0.617985\pi\)
−0.362233 + 0.932088i \(0.617985\pi\)
\(558\) 110.694 161.231i 0.198377 0.288945i
\(559\) 900.913i 1.61165i
\(560\) 0 0
\(561\) 103.253 0.184053
\(562\) 477.313 + 327.702i 0.849311 + 0.583100i
\(563\) 236.345i 0.419796i 0.977723 + 0.209898i \(0.0673132\pi\)
−0.977723 + 0.209898i \(0.932687\pi\)
\(564\) 299.182 115.183i 0.530464 0.204226i
\(565\) 0 0
\(566\) −3.41041 + 4.96741i −0.00602545 + 0.00877634i
\(567\) −105.241 −0.185611
\(568\) −524.571 125.119i −0.923540 0.220280i
\(569\) 757.837 1.33187 0.665937 0.746008i \(-0.268032\pi\)
0.665937 + 0.746008i \(0.268032\pi\)
\(570\) 0 0
\(571\) 198.009 0.346775 0.173388 0.984854i \(-0.444529\pi\)
0.173388 + 0.984854i \(0.444529\pi\)
\(572\) 358.801 + 931.965i 0.627275 + 1.62931i
\(573\) −502.886 −0.877637
\(574\) −1329.00 912.436i −2.31534 1.58961i
\(575\) 0 0
\(576\) 171.330 + 86.6604i 0.297448 + 0.150452i
\(577\) 479.109i 0.830346i −0.909743 0.415173i \(-0.863721\pi\)
0.909743 0.415173i \(-0.136279\pi\)
\(578\) −460.840 316.393i −0.797301 0.547392i
\(579\) −316.705 −0.546986
\(580\) 0 0
\(581\) 390.228i 0.671649i
\(582\) 37.7506 + 25.9179i 0.0648637 + 0.0445326i
\(583\) 323.947 0.555654
\(584\) 114.978 + 27.4241i 0.196879 + 0.0469591i
\(585\) 0 0
\(586\) 156.959 + 107.761i 0.267848 + 0.183893i
\(587\) 658.065i 1.12106i −0.828133 0.560532i \(-0.810597\pi\)
0.828133 0.560532i \(-0.189403\pi\)
\(588\) 567.275 218.398i 0.964753 0.371424i
\(589\) 330.720i 0.561495i
\(590\) 0 0
\(591\) 170.025i 0.287691i
\(592\) −37.4244 + 33.8308i −0.0632169 + 0.0571466i
\(593\) 202.971i 0.342279i −0.985247 0.171139i \(-0.945255\pi\)
0.985247 0.171139i \(-0.0547448\pi\)
\(594\) 113.758 165.693i 0.191511 0.278944i
\(595\) 0 0
\(596\) −304.016 + 117.044i −0.510094 + 0.196383i
\(597\) −390.326 −0.653813
\(598\) 266.142 + 182.721i 0.445053 + 0.305554i
\(599\) 11.7767i 0.0196605i −0.999952 0.00983027i \(-0.996871\pi\)
0.999952 0.00983027i \(-0.00312912\pi\)
\(600\) 0 0
\(601\) 206.863 0.344198 0.172099 0.985080i \(-0.444945\pi\)
0.172099 + 0.985080i \(0.444945\pi\)
\(602\) 923.789 1345.54i 1.53453 2.23512i
\(603\) 363.671i 0.603102i
\(604\) −316.259 + 121.758i −0.523608 + 0.201586i
\(605\) 0 0
\(606\) 424.764 + 291.624i 0.700931 + 0.481228i
\(607\) −885.649 −1.45906 −0.729529 0.683950i \(-0.760261\pi\)
−0.729529 + 0.683950i \(0.760261\pi\)
\(608\) 321.795 43.1713i 0.529269 0.0710055i
\(609\) 18.7333 0.0307607
\(610\) 0 0
\(611\) 597.349 0.977658
\(612\) 34.5192 13.2897i 0.0564040 0.0217152i
\(613\) 979.091 1.59721 0.798606 0.601855i \(-0.205571\pi\)
0.798606 + 0.601855i \(0.205571\pi\)
\(614\) 189.438 275.925i 0.308531 0.449390i
\(615\) 0 0
\(616\) −419.749 + 1759.83i −0.681411 + 2.85687i
\(617\) 1064.97i 1.72604i 0.505171 + 0.863019i \(0.331429\pi\)
−0.505171 + 0.863019i \(0.668571\pi\)
\(618\) 262.299 382.051i 0.424433 0.618205i
\(619\) 658.875 1.06442 0.532209 0.846613i \(-0.321362\pi\)
0.532209 + 0.846613i \(0.321362\pi\)
\(620\) 0 0
\(621\) 64.9716i 0.104624i
\(622\) 339.009 493.782i 0.545030 0.793861i
\(623\) −705.827 −1.13295
\(624\) 239.906 + 265.389i 0.384464 + 0.425303i
\(625\) 0 0
\(626\) 139.942 203.831i 0.223549 0.325609i
\(627\) 339.872i 0.542061i
\(628\) −241.219 626.553i −0.384107 0.997695i
\(629\) 9.71910i 0.0154517i
\(630\) 0 0
\(631\) 1074.30i 1.70253i −0.524736 0.851265i \(-0.675836\pi\)
0.524736 0.851265i \(-0.324164\pi\)
\(632\) −1030.55 245.805i −1.63062 0.388932i
\(633\) 524.219i 0.828150i
\(634\) −224.154 153.895i −0.353556 0.242736i
\(635\) 0 0
\(636\) 108.300 41.6950i 0.170284 0.0655582i
\(637\) 1132.63 1.77806
\(638\) −20.2492 + 29.4939i −0.0317386 + 0.0462286i
\(639\) 202.232i 0.316482i
\(640\) 0 0
\(641\) 170.402 0.265838 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(642\) −157.652 108.237i −0.245563 0.168593i
\(643\) 387.322i 0.602367i 0.953566 + 0.301183i \(0.0973816\pi\)
−0.953566 + 0.301183i \(0.902618\pi\)
\(644\) 210.129 + 545.799i 0.326288 + 0.847514i
\(645\) 0 0
\(646\) 35.4032 51.5664i 0.0548037 0.0798241i
\(647\) −1098.39 −1.69766 −0.848830 0.528665i \(-0.822693\pi\)
−0.848830 + 0.528665i \(0.822693\pi\)
\(648\) 16.7046 70.0354i 0.0257788 0.108079i
\(649\) −1394.25 −2.14831
\(650\) 0 0
\(651\) 660.180 1.01410
\(652\) 309.351 119.098i 0.474465 0.182666i
\(653\) 801.196 1.22695 0.613473 0.789716i \(-0.289772\pi\)
0.613473 + 0.789716i \(0.289772\pi\)
\(654\) −221.806 152.282i −0.339153 0.232848i
\(655\) 0 0
\(656\) 818.151 739.589i 1.24718 1.12742i
\(657\) 44.3261i 0.0674674i
\(658\) 892.158 + 612.517i 1.35586 + 0.930876i
\(659\) 204.225 0.309901 0.154950 0.987922i \(-0.450478\pi\)
0.154950 + 0.987922i \(0.450478\pi\)
\(660\) 0 0
\(661\) 283.821i 0.429382i 0.976682 + 0.214691i \(0.0688744\pi\)
−0.976682 + 0.214691i \(0.931126\pi\)
\(662\) 67.9122 + 46.6255i 0.102586 + 0.0704313i
\(663\) 68.9214 0.103954
\(664\) 259.687 + 61.9397i 0.391094 + 0.0932827i
\(665\) 0 0
\(666\) 15.5964 + 10.7078i 0.0234181 + 0.0160778i
\(667\) 11.5651i 0.0173390i
\(668\) 53.6018 + 139.227i 0.0802422 + 0.208424i
\(669\) 749.177i 1.11985i
\(670\) 0 0
\(671\) 732.455i 1.09159i
\(672\) 86.1780 + 642.364i 0.128241 + 0.955898i
\(673\) 371.454i 0.551937i 0.961167 + 0.275969i \(0.0889986\pi\)
−0.961167 + 0.275969i \(0.911001\pi\)
\(674\) −640.258 + 932.565i −0.949938 + 1.38363i
\(675\) 0 0
\(676\) −3.37922 8.77732i −0.00499884 0.0129842i
\(677\) 1084.06 1.60127 0.800637 0.599150i \(-0.204495\pi\)
0.800637 + 0.599150i \(0.204495\pi\)
\(678\) −259.287 178.015i −0.382429 0.262559i
\(679\) 154.574i 0.227650i
\(680\) 0 0
\(681\) −622.360 −0.913891
\(682\) −713.602 + 1039.39i −1.04634 + 1.52404i
\(683\) 580.301i 0.849636i 0.905279 + 0.424818i \(0.139662\pi\)
−0.905279 + 0.424818i \(0.860338\pi\)
\(684\) −43.7448 113.624i −0.0639543 0.166118i
\(685\) 0 0
\(686\) 746.873 + 512.771i 1.08874 + 0.747479i
\(687\) 367.561 0.535023
\(688\) 748.792 + 828.331i 1.08836 + 1.20397i
\(689\) 216.233 0.313837
\(690\) 0 0
\(691\) −438.911 −0.635183 −0.317592 0.948228i \(-0.602874\pi\)
−0.317592 + 0.948228i \(0.602874\pi\)
\(692\) 304.428 + 790.733i 0.439924 + 1.14268i
\(693\) 678.448 0.979002
\(694\) 152.444 222.042i 0.219660 0.319945i
\(695\) 0 0
\(696\) −2.97348 + 12.4665i −0.00427224 + 0.0179117i
\(697\) 212.473i 0.304840i
\(698\) −522.202 + 760.611i −0.748141 + 1.08970i
\(699\) 479.182 0.685525
\(700\) 0 0
\(701\) 173.658i 0.247730i 0.992299 + 0.123865i \(0.0395289\pi\)
−0.992299 + 0.123865i \(0.960471\pi\)
\(702\) 75.9328 110.600i 0.108166 0.157549i
\(703\) 31.9917 0.0455073
\(704\) −1104.49 558.665i −1.56888 0.793558i
\(705\) 0 0
\(706\) 486.523 708.642i 0.689125 1.00374i
\(707\) 1739.24i 2.46003i
\(708\) −466.121 + 179.454i −0.658363 + 0.253466i
\(709\) 1231.35i 1.73674i −0.495913 0.868372i \(-0.665166\pi\)
0.495913 0.868372i \(-0.334834\pi\)
\(710\) 0 0
\(711\) 397.299i 0.558788i
\(712\) 112.034 469.709i 0.157351 0.659704i
\(713\) 407.567i 0.571623i
\(714\) 102.936 + 70.6714i 0.144168 + 0.0989796i
\(715\) 0 0
\(716\) −124.272 322.790i −0.173565 0.450824i
\(717\) 48.3426 0.0674234
\(718\) −353.639 + 515.091i −0.492533 + 0.717397i
\(719\) 327.782i 0.455885i 0.973675 + 0.227943i \(0.0731999\pi\)
−0.973675 + 0.227943i \(0.926800\pi\)
\(720\) 0 0
\(721\) 1564.35 2.16970
\(722\) 425.483 + 292.118i 0.589312 + 0.404596i
\(723\) 199.913i 0.276505i
\(724\) 296.406 114.115i 0.409401 0.157617i
\(725\) 0 0
\(726\) −496.106 + 722.600i −0.683341 + 0.995317i
\(727\) 217.872 0.299686 0.149843 0.988710i \(-0.452123\pi\)
0.149843 + 0.988710i \(0.452123\pi\)
\(728\) −280.182 + 1174.68i −0.384865 + 1.61357i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 215.117 0.294278
\(732\) −94.2740 244.871i −0.128790 0.334523i
\(733\) 154.099 0.210231 0.105115 0.994460i \(-0.466479\pi\)
0.105115 + 0.994460i \(0.466479\pi\)
\(734\) 229.071 + 157.270i 0.312085 + 0.214264i
\(735\) 0 0
\(736\) −396.568 + 53.2027i −0.538815 + 0.0722862i
\(737\) 2344.44i 3.18106i
\(738\) −340.960 234.088i −0.462005 0.317193i
\(739\) −497.686 −0.673459 −0.336729 0.941601i \(-0.609321\pi\)
−0.336729 + 0.941601i \(0.609321\pi\)
\(740\) 0 0
\(741\) 226.864i 0.306159i
\(742\) 322.951 + 221.724i 0.435244 + 0.298819i
\(743\) 657.468 0.884883 0.442441 0.896797i \(-0.354112\pi\)
0.442441 + 0.896797i \(0.354112\pi\)
\(744\) −104.788 + 439.332i −0.140845 + 0.590501i
\(745\) 0 0
\(746\) 696.720 + 478.337i 0.933940 + 0.641203i
\(747\) 100.114i 0.134022i
\(748\) −222.531 + 85.6733i −0.297502 + 0.114537i
\(749\) 645.522i 0.861846i
\(750\) 0 0
\(751\) 379.552i 0.505396i 0.967545 + 0.252698i \(0.0813179\pi\)
−0.967545 + 0.252698i \(0.918682\pi\)
\(752\) −549.223 + 496.485i −0.730350 + 0.660219i
\(753\) 46.1931i 0.0613455i
\(754\) −13.5163 + 19.6871i −0.0179261 + 0.0261102i
\(755\) 0 0
\(756\) 226.816 87.3227i 0.300021 0.115506i
\(757\) −195.966 −0.258872 −0.129436 0.991588i \(-0.541317\pi\)
−0.129436 + 0.991588i \(0.541317\pi\)
\(758\) 691.255 + 474.586i 0.911946 + 0.626103i
\(759\) 418.845i 0.551838i
\(760\) 0 0
\(761\) −963.030 −1.26548 −0.632740 0.774364i \(-0.718070\pi\)
−0.632740 + 0.774364i \(0.718070\pi\)
\(762\) 89.7513 130.727i 0.117784 0.171557i
\(763\) 908.209i 1.19031i
\(764\) 1083.82 417.264i 1.41861 0.546156i
\(765\) 0 0
\(766\) −505.792 347.254i −0.660302 0.453335i
\(767\) −930.661 −1.21338
\(768\) −441.155 44.6112i −0.574421 0.0580875i
\(769\) −81.3670 −0.105809 −0.0529044 0.998600i \(-0.516848\pi\)
−0.0529044 + 0.998600i \(0.516848\pi\)
\(770\) 0 0
\(771\) 294.717 0.382253
\(772\) 682.562 262.782i 0.884147 0.340392i
\(773\) −781.463 −1.01095 −0.505474 0.862842i \(-0.668682\pi\)
−0.505474 + 0.862842i \(0.668682\pi\)
\(774\) 237.001 345.203i 0.306203 0.445998i
\(775\) 0 0
\(776\) −102.865 24.5351i −0.132558 0.0316174i
\(777\) 63.8613i 0.0821896i
\(778\) −500.193 + 728.553i −0.642921 + 0.936443i
\(779\) −699.383 −0.897795
\(780\) 0 0
\(781\) 1303.71i 1.66928i
\(782\) −43.6296 + 63.5484i −0.0557923 + 0.0812639i
\(783\) 4.80609 0.00613804
\(784\) −1041.38 + 941.379i −1.32829 + 1.20074i
\(785\) 0 0
\(786\) −365.234 + 531.979i −0.464674 + 0.676818i
\(787\) 1030.41i 1.30929i 0.755937 + 0.654644i \(0.227182\pi\)
−0.755937 + 0.654644i \(0.772818\pi\)
\(788\) 141.076 + 366.437i 0.179031 + 0.465022i
\(789\) 183.005i 0.231945i
\(790\) 0 0
\(791\) 1061.68i 1.34220i
\(792\) −107.688 + 451.490i −0.135970 + 0.570063i
\(793\) 488.912i 0.616534i
\(794\) −264.454 181.563i −0.333066 0.228668i
\(795\) 0 0
\(796\) 841.229 323.868i 1.05682 0.406870i
\(797\) 85.4710 0.107241 0.0536205 0.998561i \(-0.482924\pi\)
0.0536205 + 0.998561i \(0.482924\pi\)
\(798\) 232.624 338.827i 0.291509 0.424596i
\(799\) 142.633i 0.178514i
\(800\) 0 0
\(801\) −181.082 −0.226070
\(802\) −319.525 219.372i −0.398410 0.273531i
\(803\) 285.752i 0.355856i
\(804\) −301.751 783.782i −0.375313 0.974853i
\(805\) 0 0
\(806\) −476.327 + 693.792i −0.590977 + 0.860784i
\(807\) 358.342 0.444042
\(808\) −1157.42 276.065i −1.43245 0.341664i
\(809\) −749.874 −0.926915 −0.463458 0.886119i \(-0.653391\pi\)
−0.463458 + 0.886119i \(0.653391\pi\)
\(810\) 0 0
\(811\) −454.606 −0.560550 −0.280275 0.959920i \(-0.590426\pi\)
−0.280275 + 0.959920i \(0.590426\pi\)
\(812\) −40.3739 + 15.5437i −0.0497216 + 0.0191425i
\(813\) −429.132 −0.527837
\(814\) −100.544 69.0290i −0.123518 0.0848022i
\(815\) 0 0
\(816\) −63.3687 + 57.2838i −0.0776578 + 0.0702008i
\(817\) 708.085i 0.866689i
\(818\) −757.643 520.164i −0.926214 0.635898i
\(819\) 452.862 0.552945
\(820\) 0 0
\(821\) 40.2949i 0.0490802i 0.999699 + 0.0245401i \(0.00781214\pi\)
−0.999699 + 0.0245401i \(0.992188\pi\)
\(822\) −94.1059 64.6090i −0.114484 0.0785998i
\(823\) −1109.53 −1.34815 −0.674076 0.738662i \(-0.735458\pi\)
−0.674076 + 0.738662i \(0.735458\pi\)
\(824\) −248.305 + 1041.03i −0.301340 + 1.26339i
\(825\) 0 0
\(826\) −1389.97 954.292i −1.68277 1.15532i
\(827\) 750.168i 0.907096i 0.891232 + 0.453548i \(0.149842\pi\)
−0.891232 + 0.453548i \(0.850158\pi\)
\(828\) 53.9094 + 140.026i 0.0651079 + 0.169114i
\(829\) 182.949i 0.220687i −0.993894 0.110343i \(-0.964805\pi\)
0.993894 0.110343i \(-0.0351950\pi\)
\(830\) 0 0
\(831\) 46.6766i 0.0561692i
\(832\) −737.247 372.907i −0.886114 0.448206i
\(833\) 270.445i 0.324663i
\(834\) −164.417 + 239.481i −0.197143 + 0.287148i
\(835\) 0 0
\(836\) 282.005 + 732.491i 0.337326 + 0.876185i
\(837\) 169.371 0.202355
\(838\) 368.413 + 252.936i 0.439634 + 0.301833i
\(839\) 719.345i 0.857384i 0.903451 + 0.428692i \(0.141025\pi\)
−0.903451 + 0.428692i \(0.858975\pi\)
\(840\) 0 0
\(841\) 840.145 0.998983
\(842\) 852.954 1242.37i 1.01301 1.47549i
\(843\) 501.410i 0.594793i
\(844\) 434.964 + 1129.79i 0.515360 + 1.33862i
\(845\) 0 0
\(846\) 228.886 + 157.143i 0.270551 + 0.185748i
\(847\) −2958.77 −3.49323
\(848\) −198.812 + 179.722i −0.234449 + 0.211936i
\(849\) −5.21819 −0.00614628
\(850\) 0 0
\(851\) −39.4253 −0.0463282
\(852\) −167.800 435.850i −0.196948 0.511561i
\(853\) 593.155 0.695375 0.347688 0.937610i \(-0.386967\pi\)
0.347688 + 0.937610i \(0.386967\pi\)
\(854\) 501.326 730.204i 0.587033 0.855040i
\(855\) 0 0
\(856\) 429.578 + 102.462i 0.501844 + 0.119698i
\(857\) 180.069i 0.210116i −0.994466 0.105058i \(-0.966497\pi\)
0.994466 0.105058i \(-0.0335028\pi\)
\(858\) −489.508 + 712.990i −0.570522 + 0.830991i
\(859\) −509.587 −0.593232 −0.296616 0.954997i \(-0.595858\pi\)
−0.296616 + 0.954997i \(0.595858\pi\)
\(860\) 0 0
\(861\) 1396.10i 1.62149i
\(862\) 907.406 1321.68i 1.05267 1.53327i
\(863\) −1430.93 −1.65809 −0.829046 0.559181i \(-0.811116\pi\)
−0.829046 + 0.559181i \(0.811116\pi\)
\(864\) 22.1092 + 164.800i 0.0255894 + 0.190741i
\(865\) 0 0
\(866\) −820.766 + 1195.48i −0.947767 + 1.38046i
\(867\) 484.106i 0.558369i
\(868\) −1422.82 + 547.776i −1.63919 + 0.631079i
\(869\) 2561.22i 2.94732i
\(870\) 0 0
\(871\) 1564.91i 1.79668i
\(872\) 604.390 + 144.157i 0.693107 + 0.165318i
\(873\) 39.6565i 0.0454256i
\(874\) 209.178 + 143.612i 0.239334 + 0.164316i
\(875\) 0 0
\(876\) 36.7790 + 95.5313i 0.0419852 + 0.109054i
\(877\) −905.426 −1.03241 −0.516207 0.856464i \(-0.672656\pi\)
−0.516207 + 0.856464i \(0.672656\pi\)
\(878\) 623.802 908.595i 0.710480 1.03485i
\(879\) 164.883i 0.187580i
\(880\) 0 0
\(881\) 1479.51 1.67935 0.839677 0.543086i \(-0.182744\pi\)
0.839677 + 0.543086i \(0.182744\pi\)
\(882\) 433.988 + 297.957i 0.492050 + 0.337820i
\(883\) 360.404i 0.408158i −0.978954 0.204079i \(-0.934580\pi\)
0.978954 0.204079i \(-0.0654200\pi\)
\(884\) −148.539 + 57.1867i −0.168031 + 0.0646908i
\(885\) 0 0
\(886\) −41.6326 + 60.6397i −0.0469894 + 0.0684422i
\(887\) 1106.42 1.24738 0.623688 0.781674i \(-0.285634\pi\)
0.623688 + 0.781674i \(0.285634\pi\)
\(888\) −42.4981 10.1365i −0.0478582 0.0114150i
\(889\) 535.276 0.602110
\(890\) 0 0
\(891\) 174.058 0.195351
\(892\) 621.620 + 1614.62i 0.696884 + 1.81012i
\(893\) 469.494 0.525750
\(894\) −232.584 159.682i −0.260161 0.178615i
\(895\) 0 0
\(896\) −718.724 1312.91i −0.802147 1.46531i
\(897\) 279.578i 0.311681i
\(898\) 548.462 + 376.550i 0.610759 + 0.419321i
\(899\) −30.1486 −0.0335357
\(900\) 0 0
\(901\) 51.6315i 0.0573046i
\(902\) 2198.03 + 1509.07i 2.43684 + 1.67303i
\(903\) 1413.47 1.56530
\(904\) 706.520 + 168.517i 0.781549 + 0.186413i
\(905\) 0 0
\(906\) −241.951 166.113i −0.267054 0.183347i
\(907\) 1467.30i 1.61775i 0.587979 + 0.808876i \(0.299924\pi\)
−0.587979 + 0.808876i \(0.700076\pi\)
\(908\) 1341.31 516.396i 1.47721 0.568718i
\(909\) 446.208i 0.490878i
\(910\) 0 0
\(911\) 1188.75i 1.30488i 0.757840 + 0.652441i \(0.226255\pi\)
−0.757840 + 0.652441i \(0.773745\pi\)
\(912\) 188.557 + 208.586i 0.206751 + 0.228713i
\(913\) 645.396i 0.706896i
\(914\) −388.592 + 566.002i −0.425156 + 0.619258i
\(915\) 0 0
\(916\) −792.166 + 304.979i −0.864810 + 0.332947i
\(917\) −2178.25 −2.37541
\(918\) 26.4086 + 18.1310i 0.0287675 + 0.0197505i
\(919\) 917.844i 0.998743i 0.866388 + 0.499371i \(0.166436\pi\)
−0.866388 + 0.499371i \(0.833564\pi\)
\(920\) 0 0
\(921\) 289.856 0.314718
\(922\) −236.325 + 344.219i −0.256318 + 0.373339i
\(923\) 870.222i 0.942819i
\(924\) −1462.19 + 562.934i −1.58246 + 0.609236i
\(925\) 0 0
\(926\) 394.889 + 271.114i 0.426447 + 0.292780i
\(927\) 401.339 0.432944
\(928\) −3.93552 29.3350i −0.00424086 0.0316110i
\(929\) 326.140 0.351066 0.175533 0.984474i \(-0.443835\pi\)
0.175533 + 0.984474i \(0.443835\pi\)
\(930\) 0 0
\(931\) 890.203 0.956179
\(932\) −1032.73 + 397.596i −1.10808 + 0.426605i
\(933\) 518.710 0.555960
\(934\) −334.046 + 486.553i −0.357651 + 0.520935i
\(935\) 0 0
\(936\) −71.8814 + 301.368i −0.0767964 + 0.321974i
\(937\) 803.356i 0.857370i 0.903454 + 0.428685i \(0.141023\pi\)
−0.903454 + 0.428685i \(0.858977\pi\)
\(938\) 1604.64 2337.23i 1.71070 2.49172i
\(939\) 214.122 0.228032
\(940\) 0 0
\(941\) 617.150i 0.655845i 0.944705 + 0.327922i \(0.106348\pi\)
−0.944705 + 0.327922i \(0.893652\pi\)
\(942\) 329.092 479.338i 0.349355 0.508851i
\(943\) 861.892 0.913990
\(944\) 855.682 773.516i 0.906443 0.819403i
\(945\) 0 0
\(946\) −1527.85 + 2225.38i −1.61506 + 2.35241i
\(947\) 1372.28i 1.44908i −0.689231 0.724542i \(-0.742052\pi\)
0.689231 0.724542i \(-0.257948\pi\)
\(948\) −329.654 856.256i −0.347736 0.903224i
\(949\) 190.739i 0.200989i
\(950\) 0 0
\(951\) 235.471i 0.247603i
\(952\) −280.486 66.9008i −0.294628 0.0702739i
\(953\) 313.823i 0.329300i 0.986352 + 0.164650i \(0.0526495\pi\)
−0.986352 + 0.164650i \(0.947351\pi\)
\(954\) 82.8540 + 56.8840i 0.0868491 + 0.0596268i
\(955\) 0 0
\(956\) −104.188 + 40.1117i −0.108983 + 0.0419578i
\(957\) −30.9829 −0.0323750
\(958\) 603.766 879.412i 0.630236 0.917966i
\(959\) 385.327i 0.401801i
\(960\) 0 0
\(961\) −101.467 −0.105585
\(962\) −67.1127 46.0767i −0.0697638 0.0478967i
\(963\) 165.611i 0.171974i
\(964\) −165.875 430.851i −0.172070 0.446941i
\(965\) 0 0
\(966\) −286.677 + 417.558i −0.296767 + 0.432254i
\(967\) −191.090 −0.197611 −0.0988055 0.995107i \(-0.531502\pi\)
−0.0988055 + 0.995107i \(0.531502\pi\)
\(968\) 469.636 1968.98i 0.485161 2.03407i
\(969\) 54.1697 0.0559027
\(970\) 0 0
\(971\) 88.4914 0.0911343 0.0455671 0.998961i \(-0.485491\pi\)
0.0455671 + 0.998961i \(0.485491\pi\)
\(972\) 58.1903 22.4029i 0.0598665 0.0230483i
\(973\) −980.582 −1.00779
\(974\) 471.023 + 323.384i 0.483597 + 0.332016i
\(975\) 0 0
\(976\) 406.358 + 449.522i 0.416350 + 0.460576i
\(977\) 1367.80i 1.40000i −0.714142 0.700001i \(-0.753183\pi\)
0.714142 0.700001i \(-0.246817\pi\)
\(978\) 236.666 + 162.484i 0.241989 + 0.166139i
\(979\) 1167.36 1.19240
\(980\) 0 0
\(981\) 233.004i 0.237517i
\(982\) −310.378 213.092i −0.316067 0.216998i
\(983\) −266.437 −0.271045 −0.135522 0.990774i \(-0.543271\pi\)
−0.135522 + 0.990774i \(0.543271\pi\)
\(984\) 929.067 + 221.598i 0.944174 + 0.225202i
\(985\) 0 0
\(986\) −4.70081 3.22737i −0.00476756 0.00327320i
\(987\) 937.199i 0.949543i
\(988\) 188.237 + 488.935i 0.190524 + 0.494874i
\(989\) 872.617i 0.882322i
\(990\) 0 0
\(991\) 842.673i 0.850326i 0.905117 + 0.425163i \(0.139783\pi\)
−0.905117 + 0.425163i \(0.860217\pi\)
\(992\) −138.691 1033.79i −0.139810 1.04213i
\(993\) 71.3408i 0.0718437i
\(994\) 892.318 1299.70i 0.897705 1.30755i
\(995\) 0 0
\(996\) 83.0686 + 215.766i 0.0834022 + 0.216632i
\(997\) 1590.97 1.59576 0.797879 0.602817i \(-0.205955\pi\)
0.797879 + 0.602817i \(0.205955\pi\)
\(998\) 1031.39 + 708.105i 1.03345 + 0.709524i
\(999\) 16.3838i 0.0164002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.p.b.499.5 32
4.3 odd 2 2400.3.p.b.1999.10 32
5.2 odd 4 600.3.g.d.451.9 16
5.3 odd 4 120.3.g.a.91.8 yes 16
5.4 even 2 inner 600.3.p.b.499.28 32
8.3 odd 2 inner 600.3.p.b.499.27 32
8.5 even 2 2400.3.p.b.1999.22 32
15.8 even 4 360.3.g.c.91.9 16
20.3 even 4 480.3.g.a.271.1 16
20.7 even 4 2400.3.g.b.751.16 16
20.19 odd 2 2400.3.p.b.1999.21 32
40.3 even 4 120.3.g.a.91.7 16
40.13 odd 4 480.3.g.a.271.8 16
40.19 odd 2 inner 600.3.p.b.499.6 32
40.27 even 4 600.3.g.d.451.10 16
40.29 even 2 2400.3.p.b.1999.9 32
40.37 odd 4 2400.3.g.b.751.9 16
60.23 odd 4 1440.3.g.c.271.9 16
120.53 even 4 1440.3.g.c.271.8 16
120.83 odd 4 360.3.g.c.91.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.7 16 40.3 even 4
120.3.g.a.91.8 yes 16 5.3 odd 4
360.3.g.c.91.9 16 15.8 even 4
360.3.g.c.91.10 16 120.83 odd 4
480.3.g.a.271.1 16 20.3 even 4
480.3.g.a.271.8 16 40.13 odd 4
600.3.g.d.451.9 16 5.2 odd 4
600.3.g.d.451.10 16 40.27 even 4
600.3.p.b.499.5 32 1.1 even 1 trivial
600.3.p.b.499.6 32 40.19 odd 2 inner
600.3.p.b.499.27 32 8.3 odd 2 inner
600.3.p.b.499.28 32 5.4 even 2 inner
1440.3.g.c.271.8 16 120.53 even 4
1440.3.g.c.271.9 16 60.23 odd 4
2400.3.g.b.751.9 16 40.37 odd 4
2400.3.g.b.751.16 16 20.7 even 4
2400.3.p.b.1999.9 32 40.29 even 2
2400.3.p.b.1999.10 32 4.3 odd 2
2400.3.p.b.1999.21 32 20.19 odd 2
2400.3.p.b.1999.22 32 8.5 even 2