Properties

Label 360.3.g.c.91.10
Level $360$
Weight $3$
Character 360.91
Analytic conductor $9.809$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [360,3,Mod(91,360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("360.91"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 360.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.80928951697\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + x^{14} + 24 x^{13} - 44 x^{12} - 32 x^{11} + 180 x^{10} - 64 x^{9} - 352 x^{8} + \cdots + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 91.10
Root \(1.13200 + 1.64881i\) of defining polynomial
Character \(\chi\) \(=\) 360.91
Dual form 360.3.g.c.91.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13200 + 1.64881i) q^{2} +(-1.43715 + 3.73291i) q^{4} -2.23607i q^{5} -11.6935i q^{7} +(-7.78171 + 1.85607i) q^{8} +(3.68685 - 2.53123i) q^{10} -19.3398 q^{11} -12.9092i q^{13} +(19.2803 - 13.2370i) q^{14} +(-11.8692 - 10.7295i) q^{16} -3.08243 q^{17} -10.1462 q^{19} +(8.34704 + 3.21356i) q^{20} +(-21.8926 - 31.8876i) q^{22} -12.5038i q^{23} -5.00000 q^{25} +(21.2849 - 14.6133i) q^{26} +(43.6507 + 16.8053i) q^{28} +0.924932i q^{29} +32.5955i q^{31} +(4.25493 - 31.7159i) q^{32} +(-3.48931 - 5.08233i) q^{34} -26.1474 q^{35} +3.15307i q^{37} +(-11.4855 - 16.7292i) q^{38} +(4.15030 + 17.4004i) q^{40} +68.9305 q^{41} +69.7882 q^{43} +(27.7941 - 72.1936i) q^{44} +(20.6164 - 14.1543i) q^{46} -46.2730i q^{47} -87.7376 q^{49} +(-5.66000 - 8.24405i) q^{50} +(48.1890 + 18.5525i) q^{52} +16.7503i q^{53} +43.2451i q^{55} +(21.7039 + 90.9953i) q^{56} +(-1.52504 + 1.04702i) q^{58} -72.0926 q^{59} +37.8730i q^{61} +(-53.7438 + 36.8981i) q^{62} +(57.1100 - 28.8868i) q^{64} -28.8660 q^{65} -121.224 q^{67} +(4.42990 - 11.5064i) q^{68} +(-29.5989 - 43.1121i) q^{70} -67.4107i q^{71} -14.7754 q^{73} +(-5.19881 + 3.56928i) q^{74} +(14.5816 - 37.8748i) q^{76} +226.149i q^{77} -132.433i q^{79} +(-23.9919 + 26.5404i) q^{80} +(78.0294 + 113.653i) q^{82} +33.3714 q^{83} +6.89251i q^{85} +(79.0003 + 115.068i) q^{86} +(150.497 - 35.8960i) q^{88} +60.3607 q^{89} -150.954 q^{91} +(46.6755 + 17.9698i) q^{92} +(76.2953 - 52.3810i) q^{94} +22.6876i q^{95} -13.2188 q^{97} +(-99.3190 - 144.663i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{2} + 14 q^{4} - 20 q^{8} + 10 q^{10} - 64 q^{11} + 20 q^{14} - 14 q^{16} - 32 q^{19} + 40 q^{20} + 28 q^{22} - 80 q^{25} - 36 q^{26} - 28 q^{28} - 36 q^{32} - 72 q^{34} + 240 q^{38} + 10 q^{40}+ \cdots - 428 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13200 + 1.64881i 0.566000 + 0.824405i
\(3\) 0 0
\(4\) −1.43715 + 3.73291i −0.359287 + 0.933227i
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 11.6935i 1.67050i −0.549872 0.835249i \(-0.685324\pi\)
0.549872 0.835249i \(-0.314676\pi\)
\(8\) −7.78171 + 1.85607i −0.972714 + 0.232009i
\(9\) 0 0
\(10\) 3.68685 2.53123i 0.368685 0.253123i
\(11\) −19.3398 −1.75816 −0.879081 0.476673i \(-0.841843\pi\)
−0.879081 + 0.476673i \(0.841843\pi\)
\(12\) 0 0
\(13\) 12.9092i 0.993019i −0.868031 0.496510i \(-0.834615\pi\)
0.868031 0.496510i \(-0.165385\pi\)
\(14\) 19.2803 13.2370i 1.37717 0.945502i
\(15\) 0 0
\(16\) −11.8692 10.7295i −0.741826 0.670593i
\(17\) −3.08243 −0.181319 −0.0906596 0.995882i \(-0.528898\pi\)
−0.0906596 + 0.995882i \(0.528898\pi\)
\(18\) 0 0
\(19\) −10.1462 −0.534010 −0.267005 0.963695i \(-0.586034\pi\)
−0.267005 + 0.963695i \(0.586034\pi\)
\(20\) 8.34704 + 3.21356i 0.417352 + 0.160678i
\(21\) 0 0
\(22\) −21.8926 31.8876i −0.995120 1.44944i
\(23\) 12.5038i 0.543643i −0.962348 0.271821i \(-0.912374\pi\)
0.962348 0.271821i \(-0.0876260\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 21.2849 14.6133i 0.818650 0.562049i
\(27\) 0 0
\(28\) 43.6507 + 16.8053i 1.55895 + 0.600188i
\(29\) 0.924932i 0.0318942i 0.999873 + 0.0159471i \(0.00507633\pi\)
−0.999873 + 0.0159471i \(0.994924\pi\)
\(30\) 0 0
\(31\) 32.5955i 1.05147i 0.850649 + 0.525734i \(0.176209\pi\)
−0.850649 + 0.525734i \(0.823791\pi\)
\(32\) 4.25493 31.7159i 0.132966 0.991121i
\(33\) 0 0
\(34\) −3.48931 5.08233i −0.102627 0.149480i
\(35\) −26.1474 −0.747069
\(36\) 0 0
\(37\) 3.15307i 0.0852181i 0.999092 + 0.0426090i \(0.0135670\pi\)
−0.999092 + 0.0426090i \(0.986433\pi\)
\(38\) −11.4855 16.7292i −0.302250 0.440241i
\(39\) 0 0
\(40\) 4.15030 + 17.4004i 0.103758 + 0.435011i
\(41\) 68.9305 1.68123 0.840616 0.541631i \(-0.182193\pi\)
0.840616 + 0.541631i \(0.182193\pi\)
\(42\) 0 0
\(43\) 69.7882 1.62298 0.811491 0.584365i \(-0.198656\pi\)
0.811491 + 0.584365i \(0.198656\pi\)
\(44\) 27.7941 72.1936i 0.631685 1.64076i
\(45\) 0 0
\(46\) 20.6164 14.1543i 0.448182 0.307702i
\(47\) 46.2730i 0.984531i −0.870445 0.492265i \(-0.836169\pi\)
0.870445 0.492265i \(-0.163831\pi\)
\(48\) 0 0
\(49\) −87.7376 −1.79056
\(50\) −5.66000 8.24405i −0.113200 0.164881i
\(51\) 0 0
\(52\) 48.1890 + 18.5525i 0.926712 + 0.356779i
\(53\) 16.7503i 0.316043i 0.987436 + 0.158021i \(0.0505115\pi\)
−0.987436 + 0.158021i \(0.949488\pi\)
\(54\) 0 0
\(55\) 43.2451i 0.786274i
\(56\) 21.7039 + 90.9953i 0.387570 + 1.62492i
\(57\) 0 0
\(58\) −1.52504 + 1.04702i −0.0262937 + 0.0180521i
\(59\) −72.0926 −1.22191 −0.610954 0.791666i \(-0.709214\pi\)
−0.610954 + 0.791666i \(0.709214\pi\)
\(60\) 0 0
\(61\) 37.8730i 0.620869i 0.950595 + 0.310434i \(0.100474\pi\)
−0.950595 + 0.310434i \(0.899526\pi\)
\(62\) −53.7438 + 36.8981i −0.866835 + 0.595131i
\(63\) 0 0
\(64\) 57.1100 28.8868i 0.892344 0.451356i
\(65\) −28.8660 −0.444092
\(66\) 0 0
\(67\) −121.224 −1.80931 −0.904654 0.426148i \(-0.859870\pi\)
−0.904654 + 0.426148i \(0.859870\pi\)
\(68\) 4.42990 11.5064i 0.0651456 0.169212i
\(69\) 0 0
\(70\) −29.5989 43.1121i −0.422842 0.615888i
\(71\) 67.4107i 0.949447i −0.880135 0.474724i \(-0.842548\pi\)
0.880135 0.474724i \(-0.157452\pi\)
\(72\) 0 0
\(73\) −14.7754 −0.202402 −0.101201 0.994866i \(-0.532269\pi\)
−0.101201 + 0.994866i \(0.532269\pi\)
\(74\) −5.19881 + 3.56928i −0.0702542 + 0.0482335i
\(75\) 0 0
\(76\) 14.5816 37.8748i 0.191863 0.498353i
\(77\) 226.149i 2.93701i
\(78\) 0 0
\(79\) 132.433i 1.67637i −0.545390 0.838183i \(-0.683618\pi\)
0.545390 0.838183i \(-0.316382\pi\)
\(80\) −23.9919 + 26.5404i −0.299898 + 0.331755i
\(81\) 0 0
\(82\) 78.0294 + 113.653i 0.951578 + 1.38602i
\(83\) 33.3714 0.402065 0.201033 0.979585i \(-0.435570\pi\)
0.201033 + 0.979585i \(0.435570\pi\)
\(84\) 0 0
\(85\) 6.89251i 0.0810884i
\(86\) 79.0003 + 115.068i 0.918608 + 1.33799i
\(87\) 0 0
\(88\) 150.497 35.8960i 1.71019 0.407909i
\(89\) 60.3607 0.678210 0.339105 0.940749i \(-0.389876\pi\)
0.339105 + 0.940749i \(0.389876\pi\)
\(90\) 0 0
\(91\) −150.954 −1.65884
\(92\) 46.6755 + 17.9698i 0.507342 + 0.195324i
\(93\) 0 0
\(94\) 76.2953 52.3810i 0.811652 0.557245i
\(95\) 22.6876i 0.238817i
\(96\) 0 0
\(97\) −13.2188 −0.136277 −0.0681383 0.997676i \(-0.521706\pi\)
−0.0681383 + 0.997676i \(0.521706\pi\)
\(98\) −99.3190 144.663i −1.01346 1.47615i
\(99\) 0 0
\(100\) 7.18574 18.6645i 0.0718574 0.186645i
\(101\) 148.736i 1.47263i −0.676636 0.736317i \(-0.736563\pi\)
0.676636 0.736317i \(-0.263437\pi\)
\(102\) 0 0
\(103\) 133.780i 1.29883i 0.760434 + 0.649416i \(0.224986\pi\)
−0.760434 + 0.649416i \(0.775014\pi\)
\(104\) 23.9605 + 100.456i 0.230389 + 0.965923i
\(105\) 0 0
\(106\) −27.6180 + 18.9613i −0.260547 + 0.178880i
\(107\) −55.2036 −0.515921 −0.257961 0.966155i \(-0.583051\pi\)
−0.257961 + 0.966155i \(0.583051\pi\)
\(108\) 0 0
\(109\) 77.6680i 0.712550i 0.934381 + 0.356275i \(0.115953\pi\)
−0.934381 + 0.356275i \(0.884047\pi\)
\(110\) −71.3029 + 48.9534i −0.648208 + 0.445031i
\(111\) 0 0
\(112\) −125.465 + 138.792i −1.12022 + 1.23922i
\(113\) 90.7924 0.803472 0.401736 0.915755i \(-0.368407\pi\)
0.401736 + 0.915755i \(0.368407\pi\)
\(114\) 0 0
\(115\) −27.9593 −0.243124
\(116\) −3.45268 1.32926i −0.0297645 0.0114592i
\(117\) 0 0
\(118\) −81.6088 118.867i −0.691600 1.00735i
\(119\) 36.0443i 0.302893i
\(120\) 0 0
\(121\) 253.027 2.09113
\(122\) −62.4454 + 42.8723i −0.511847 + 0.351412i
\(123\) 0 0
\(124\) −121.676 46.8446i −0.981258 0.377779i
\(125\) 11.1803i 0.0894427i
\(126\) 0 0
\(127\) 45.7755i 0.360437i −0.983627 0.180219i \(-0.942319\pi\)
0.983627 0.180219i \(-0.0576805\pi\)
\(128\) 112.277 + 61.4636i 0.877167 + 0.480185i
\(129\) 0 0
\(130\) −32.6763 47.5945i −0.251356 0.366111i
\(131\) −186.279 −1.42197 −0.710987 0.703205i \(-0.751752\pi\)
−0.710987 + 0.703205i \(0.751752\pi\)
\(132\) 0 0
\(133\) 118.644i 0.892063i
\(134\) −137.225 199.875i −1.02407 1.49160i
\(135\) 0 0
\(136\) 23.9865 5.72120i 0.176372 0.0420677i
\(137\) −32.9523 −0.240528 −0.120264 0.992742i \(-0.538374\pi\)
−0.120264 + 0.992742i \(0.538374\pi\)
\(138\) 0 0
\(139\) −83.8571 −0.603289 −0.301644 0.953421i \(-0.597536\pi\)
−0.301644 + 0.953421i \(0.597536\pi\)
\(140\) 37.5777 97.6059i 0.268412 0.697185i
\(141\) 0 0
\(142\) 111.148 76.3090i 0.782729 0.537387i
\(143\) 249.662i 1.74589i
\(144\) 0 0
\(145\) 2.06821 0.0142635
\(146\) −16.7257 24.3618i −0.114560 0.166861i
\(147\) 0 0
\(148\) −11.7701 4.53143i −0.0795278 0.0306178i
\(149\) 81.4421i 0.546591i −0.961930 0.273296i \(-0.911886\pi\)
0.961930 0.273296i \(-0.0881137\pi\)
\(150\) 0 0
\(151\) 84.7219i 0.561072i −0.959843 0.280536i \(-0.909488\pi\)
0.959843 0.280536i \(-0.0905123\pi\)
\(152\) 78.9548 18.8321i 0.519439 0.123895i
\(153\) 0 0
\(154\) −372.877 + 256.001i −2.42128 + 1.66235i
\(155\) 72.8858 0.470231
\(156\) 0 0
\(157\) 167.846i 1.06908i −0.845143 0.534540i \(-0.820485\pi\)
0.845143 0.534540i \(-0.179515\pi\)
\(158\) 218.357 149.914i 1.38200 0.948823i
\(159\) 0 0
\(160\) −70.9188 9.51430i −0.443243 0.0594644i
\(161\) −146.213 −0.908154
\(162\) 0 0
\(163\) 82.8713 0.508413 0.254206 0.967150i \(-0.418186\pi\)
0.254206 + 0.967150i \(0.418186\pi\)
\(164\) −99.0634 + 257.311i −0.604045 + 1.56897i
\(165\) 0 0
\(166\) 37.7765 + 55.0231i 0.227569 + 0.331464i
\(167\) 37.2973i 0.223337i −0.993746 0.111669i \(-0.964380\pi\)
0.993746 0.111669i \(-0.0356195\pi\)
\(168\) 0 0
\(169\) 2.35134 0.0139132
\(170\) −11.3644 + 7.80233i −0.0668497 + 0.0458961i
\(171\) 0 0
\(172\) −100.296 + 260.513i −0.583116 + 1.51461i
\(173\) 211.828i 1.22444i 0.790689 + 0.612218i \(0.209723\pi\)
−0.790689 + 0.612218i \(0.790277\pi\)
\(174\) 0 0
\(175\) 58.4674i 0.334100i
\(176\) 229.548 + 207.506i 1.30425 + 1.17901i
\(177\) 0 0
\(178\) 68.3283 + 99.5233i 0.383867 + 0.559120i
\(179\) −86.4715 −0.483081 −0.241540 0.970391i \(-0.577653\pi\)
−0.241540 + 0.970391i \(0.577653\pi\)
\(180\) 0 0
\(181\) 79.4036i 0.438694i 0.975647 + 0.219347i \(0.0703926\pi\)
−0.975647 + 0.219347i \(0.929607\pi\)
\(182\) −170.880 248.895i −0.938902 1.36755i
\(183\) 0 0
\(184\) 23.2079 + 97.3008i 0.126130 + 0.528809i
\(185\) 7.05048 0.0381107
\(186\) 0 0
\(187\) 59.6134 0.318788
\(188\) 172.733 + 66.5011i 0.918791 + 0.353729i
\(189\) 0 0
\(190\) −37.4075 + 25.6824i −0.196882 + 0.135170i
\(191\) 290.341i 1.52011i −0.649858 0.760056i \(-0.725172\pi\)
0.649858 0.760056i \(-0.274828\pi\)
\(192\) 0 0
\(193\) 182.850 0.947408 0.473704 0.880684i \(-0.342917\pi\)
0.473704 + 0.880684i \(0.342917\pi\)
\(194\) −14.9637 21.7953i −0.0771326 0.112347i
\(195\) 0 0
\(196\) 126.092 327.516i 0.643326 1.67100i
\(197\) 98.1640i 0.498295i −0.968466 0.249147i \(-0.919850\pi\)
0.968466 0.249147i \(-0.0801503\pi\)
\(198\) 0 0
\(199\) 225.355i 1.13244i −0.824255 0.566218i \(-0.808406\pi\)
0.824255 0.566218i \(-0.191594\pi\)
\(200\) 38.9085 9.28036i 0.194543 0.0464018i
\(201\) 0 0
\(202\) 245.238 168.369i 1.21405 0.833512i
\(203\) 10.8157 0.0532792
\(204\) 0 0
\(205\) 154.133i 0.751870i
\(206\) −220.577 + 151.439i −1.07076 + 0.735139i
\(207\) 0 0
\(208\) −138.510 + 153.223i −0.665911 + 0.736647i
\(209\) 196.225 0.938877
\(210\) 0 0
\(211\) 302.658 1.43440 0.717199 0.696869i \(-0.245424\pi\)
0.717199 + 0.696869i \(0.245424\pi\)
\(212\) −62.5272 24.0726i −0.294940 0.113550i
\(213\) 0 0
\(214\) −62.4905 91.0202i −0.292012 0.425328i
\(215\) 156.051i 0.725820i
\(216\) 0 0
\(217\) 381.155 1.75647
\(218\) −128.060 + 87.9202i −0.587430 + 0.403304i
\(219\) 0 0
\(220\) −161.430 62.1496i −0.733772 0.282498i
\(221\) 39.7918i 0.180053i
\(222\) 0 0
\(223\) 432.537i 1.93963i −0.243842 0.969815i \(-0.578408\pi\)
0.243842 0.969815i \(-0.421592\pi\)
\(224\) −370.869 49.7549i −1.65566 0.222120i
\(225\) 0 0
\(226\) 102.777 + 149.699i 0.454766 + 0.662387i
\(227\) 359.320 1.58291 0.791453 0.611230i \(-0.209325\pi\)
0.791453 + 0.611230i \(0.209325\pi\)
\(228\) 0 0
\(229\) 212.212i 0.926688i 0.886179 + 0.463344i \(0.153351\pi\)
−0.886179 + 0.463344i \(0.846649\pi\)
\(230\) −31.6500 46.0996i −0.137609 0.200433i
\(231\) 0 0
\(232\) −1.71674 7.19755i −0.00739974 0.0310239i
\(233\) 276.656 1.18736 0.593682 0.804699i \(-0.297674\pi\)
0.593682 + 0.804699i \(0.297674\pi\)
\(234\) 0 0
\(235\) −103.469 −0.440296
\(236\) 103.608 269.115i 0.439016 1.14032i
\(237\) 0 0
\(238\) −59.4302 + 40.8022i −0.249707 + 0.171438i
\(239\) 27.9106i 0.116781i −0.998294 0.0583904i \(-0.981403\pi\)
0.998294 0.0583904i \(-0.0185968\pi\)
\(240\) 0 0
\(241\) −115.420 −0.478920 −0.239460 0.970906i \(-0.576970\pi\)
−0.239460 + 0.970906i \(0.576970\pi\)
\(242\) 286.427 + 417.194i 1.18358 + 1.72394i
\(243\) 0 0
\(244\) −141.376 54.4291i −0.579411 0.223070i
\(245\) 196.187i 0.800764i
\(246\) 0 0
\(247\) 130.980i 0.530282i
\(248\) −60.4996 253.649i −0.243950 1.02278i
\(249\) 0 0
\(250\) −18.4343 + 12.6562i −0.0737370 + 0.0506246i
\(251\) 26.6696 0.106253 0.0531267 0.998588i \(-0.483081\pi\)
0.0531267 + 0.998588i \(0.483081\pi\)
\(252\) 0 0
\(253\) 241.820i 0.955812i
\(254\) 75.4752 51.8179i 0.297146 0.204008i
\(255\) 0 0
\(256\) 25.7563 + 254.701i 0.100610 + 0.994926i
\(257\) −170.155 −0.662082 −0.331041 0.943616i \(-0.607400\pi\)
−0.331041 + 0.943616i \(0.607400\pi\)
\(258\) 0 0
\(259\) 36.8704 0.142357
\(260\) 41.4847 107.754i 0.159556 0.414438i
\(261\) 0 0
\(262\) −210.868 307.138i −0.804838 1.17228i
\(263\) 105.658i 0.401741i 0.979618 + 0.200870i \(0.0643770\pi\)
−0.979618 + 0.200870i \(0.935623\pi\)
\(264\) 0 0
\(265\) 37.4547 0.141339
\(266\) −195.622 + 134.306i −0.735421 + 0.504908i
\(267\) 0 0
\(268\) 174.216 452.517i 0.650061 1.68849i
\(269\) 206.889i 0.769103i −0.923104 0.384551i \(-0.874356\pi\)
0.923104 0.384551i \(-0.125644\pi\)
\(270\) 0 0
\(271\) 247.759i 0.914241i 0.889405 + 0.457120i \(0.151119\pi\)
−0.889405 + 0.457120i \(0.848881\pi\)
\(272\) 36.5860 + 33.0728i 0.134507 + 0.121591i
\(273\) 0 0
\(274\) −37.3020 54.3321i −0.136139 0.198292i
\(275\) 96.6989 0.351632
\(276\) 0 0
\(277\) 26.9487i 0.0972879i −0.998816 0.0486439i \(-0.984510\pi\)
0.998816 0.0486439i \(-0.0154900\pi\)
\(278\) −94.9264 138.264i −0.341462 0.497354i
\(279\) 0 0
\(280\) 203.472 48.5315i 0.726685 0.173327i
\(281\) 289.489 1.03021 0.515106 0.857127i \(-0.327753\pi\)
0.515106 + 0.857127i \(0.327753\pi\)
\(282\) 0 0
\(283\) 3.01272 0.0106457 0.00532283 0.999986i \(-0.498306\pi\)
0.00532283 + 0.999986i \(0.498306\pi\)
\(284\) 251.638 + 96.8792i 0.886050 + 0.341124i
\(285\) 0 0
\(286\) −411.645 + 282.618i −1.43932 + 0.988173i
\(287\) 806.038i 2.80849i
\(288\) 0 0
\(289\) −279.499 −0.967123
\(290\) 2.34122 + 3.41009i 0.00807316 + 0.0117589i
\(291\) 0 0
\(292\) 21.2344 55.1551i 0.0727205 0.188887i
\(293\) 95.1952i 0.324898i −0.986717 0.162449i \(-0.948061\pi\)
0.986717 0.162449i \(-0.0519393\pi\)
\(294\) 0 0
\(295\) 161.204i 0.546454i
\(296\) −5.85232 24.5363i −0.0197714 0.0828928i
\(297\) 0 0
\(298\) 134.282 92.1925i 0.450612 0.309371i
\(299\) −161.414 −0.539848
\(300\) 0 0
\(301\) 816.068i 2.71119i
\(302\) 139.690 95.9053i 0.462551 0.317567i
\(303\) 0 0
\(304\) 120.427 + 108.863i 0.396143 + 0.358104i
\(305\) 84.6866 0.277661
\(306\) 0 0
\(307\) 167.348 0.545108 0.272554 0.962140i \(-0.412132\pi\)
0.272554 + 0.962140i \(0.412132\pi\)
\(308\) −844.195 325.010i −2.74089 1.05523i
\(309\) 0 0
\(310\) 82.5067 + 120.175i 0.266151 + 0.387661i
\(311\) 299.478i 0.962951i 0.876460 + 0.481475i \(0.159899\pi\)
−0.876460 + 0.481475i \(0.840101\pi\)
\(312\) 0 0
\(313\) −123.623 −0.394963 −0.197481 0.980307i \(-0.563276\pi\)
−0.197481 + 0.980307i \(0.563276\pi\)
\(314\) 276.746 190.001i 0.881356 0.605100i
\(315\) 0 0
\(316\) 494.360 + 190.326i 1.56443 + 0.602296i
\(317\) 135.949i 0.428862i −0.976739 0.214431i \(-0.931210\pi\)
0.976739 0.214431i \(-0.0687896\pi\)
\(318\) 0 0
\(319\) 17.8880i 0.0560752i
\(320\) −64.5929 127.702i −0.201853 0.399068i
\(321\) 0 0
\(322\) −165.513 241.077i −0.514016 0.748687i
\(323\) 31.2749 0.0968263
\(324\) 0 0
\(325\) 64.5462i 0.198604i
\(326\) 93.8104 + 136.639i 0.287762 + 0.419138i
\(327\) 0 0
\(328\) −536.397 + 127.940i −1.63536 + 0.390061i
\(329\) −541.092 −1.64466
\(330\) 0 0
\(331\) −41.1886 −0.124437 −0.0622185 0.998063i \(-0.519818\pi\)
−0.0622185 + 0.998063i \(0.519818\pi\)
\(332\) −47.9597 + 124.572i −0.144457 + 0.375218i
\(333\) 0 0
\(334\) 61.4962 42.2206i 0.184120 0.126409i
\(335\) 271.064i 0.809147i
\(336\) 0 0
\(337\) −565.599 −1.67834 −0.839168 0.543873i \(-0.816957\pi\)
−0.839168 + 0.543873i \(0.816957\pi\)
\(338\) 2.66171 + 3.87690i 0.00787489 + 0.0114701i
\(339\) 0 0
\(340\) −25.7291 9.90556i −0.0756739 0.0291340i
\(341\) 630.390i 1.84865i
\(342\) 0 0
\(343\) 452.977i 1.32063i
\(344\) −543.072 + 129.532i −1.57870 + 0.376546i
\(345\) 0 0
\(346\) −349.263 + 239.789i −1.00943 + 0.693032i
\(347\) −134.668 −0.388092 −0.194046 0.980992i \(-0.562161\pi\)
−0.194046 + 0.980992i \(0.562161\pi\)
\(348\) 0 0
\(349\) 461.309i 1.32180i −0.750473 0.660901i \(-0.770174\pi\)
0.750473 0.660901i \(-0.229826\pi\)
\(350\) −96.4017 + 66.1852i −0.275433 + 0.189100i
\(351\) 0 0
\(352\) −82.2893 + 613.378i −0.233777 + 1.74255i
\(353\) 429.790 1.21754 0.608768 0.793349i \(-0.291664\pi\)
0.608768 + 0.793349i \(0.291664\pi\)
\(354\) 0 0
\(355\) −150.735 −0.424606
\(356\) −86.7473 + 225.321i −0.243672 + 0.632924i
\(357\) 0 0
\(358\) −97.8858 142.575i −0.273424 0.398254i
\(359\) 312.402i 0.870200i 0.900382 + 0.435100i \(0.143287\pi\)
−0.900382 + 0.435100i \(0.856713\pi\)
\(360\) 0 0
\(361\) −258.055 −0.714833
\(362\) −130.921 + 89.8849i −0.361661 + 0.248301i
\(363\) 0 0
\(364\) 216.943 563.498i 0.595998 1.54807i
\(365\) 33.0387i 0.0905170i
\(366\) 0 0
\(367\) 138.931i 0.378558i −0.981923 0.189279i \(-0.939385\pi\)
0.981923 0.189279i \(-0.0606151\pi\)
\(368\) −134.159 + 148.410i −0.364563 + 0.403288i
\(369\) 0 0
\(370\) 7.98114 + 11.6249i 0.0215707 + 0.0314186i
\(371\) 195.869 0.527949
\(372\) 0 0
\(373\) 422.559i 1.13287i 0.824108 + 0.566433i \(0.191677\pi\)
−0.824108 + 0.566433i \(0.808323\pi\)
\(374\) 67.4824 + 98.2912i 0.180434 + 0.262811i
\(375\) 0 0
\(376\) 85.8859 + 360.083i 0.228420 + 0.957667i
\(377\) 11.9402 0.0316715
\(378\) 0 0
\(379\) 419.245 1.10619 0.553094 0.833119i \(-0.313447\pi\)
0.553094 + 0.833119i \(0.313447\pi\)
\(380\) −84.6907 32.6054i −0.222870 0.0858037i
\(381\) 0 0
\(382\) 478.718 328.667i 1.25319 0.860384i
\(383\) 306.762i 0.800944i 0.916309 + 0.400472i \(0.131154\pi\)
−0.916309 + 0.400472i \(0.868846\pi\)
\(384\) 0 0
\(385\) 505.685 1.31347
\(386\) 206.986 + 301.485i 0.536234 + 0.781048i
\(387\) 0 0
\(388\) 18.9974 49.3447i 0.0489624 0.127177i
\(389\) 441.866i 1.13590i 0.823062 + 0.567951i \(0.192264\pi\)
−0.823062 + 0.567951i \(0.807736\pi\)
\(390\) 0 0
\(391\) 38.5420i 0.0985728i
\(392\) 682.748 162.847i 1.74170 0.415426i
\(393\) 0 0
\(394\) 161.854 111.122i 0.410797 0.282035i
\(395\) −296.129 −0.749693
\(396\) 0 0
\(397\) 160.391i 0.404007i 0.979385 + 0.202004i \(0.0647453\pi\)
−0.979385 + 0.202004i \(0.935255\pi\)
\(398\) 371.567 255.102i 0.933587 0.640960i
\(399\) 0 0
\(400\) 59.3460 + 53.6474i 0.148365 + 0.134119i
\(401\) −193.791 −0.483270 −0.241635 0.970367i \(-0.577684\pi\)
−0.241635 + 0.970367i \(0.577684\pi\)
\(402\) 0 0
\(403\) 420.783 1.04413
\(404\) 555.218 + 213.756i 1.37430 + 0.529099i
\(405\) 0 0
\(406\) 12.2434 + 17.8330i 0.0301560 + 0.0439236i
\(407\) 60.9797i 0.149827i
\(408\) 0 0
\(409\) −459.509 −1.12349 −0.561747 0.827309i \(-0.689870\pi\)
−0.561747 + 0.827309i \(0.689870\pi\)
\(410\) 254.137 174.479i 0.619845 0.425559i
\(411\) 0 0
\(412\) −499.387 192.261i −1.21210 0.466653i
\(413\) 843.013i 2.04119i
\(414\) 0 0
\(415\) 74.6207i 0.179809i
\(416\) −409.428 54.9279i −0.984202 0.132038i
\(417\) 0 0
\(418\) 222.127 + 323.538i 0.531405 + 0.774015i
\(419\) −223.442 −0.533274 −0.266637 0.963797i \(-0.585912\pi\)
−0.266637 + 0.963797i \(0.585912\pi\)
\(420\) 0 0
\(421\) 753.492i 1.78977i −0.446299 0.894884i \(-0.647258\pi\)
0.446299 0.894884i \(-0.352742\pi\)
\(422\) 342.609 + 499.025i 0.811870 + 1.18252i
\(423\) 0 0
\(424\) −31.0897 130.346i −0.0733247 0.307419i
\(425\) 15.4121 0.0362638
\(426\) 0 0
\(427\) 442.867 1.03716
\(428\) 79.3357 206.070i 0.185364 0.481472i
\(429\) 0 0
\(430\) 257.299 176.650i 0.598369 0.410814i
\(431\) 801.595i 1.85985i 0.367752 + 0.929924i \(0.380128\pi\)
−0.367752 + 0.929924i \(0.619872\pi\)
\(432\) 0 0
\(433\) 725.058 1.67450 0.837249 0.546822i \(-0.184162\pi\)
0.837249 + 0.546822i \(0.184162\pi\)
\(434\) 431.468 + 628.452i 0.994165 + 1.44805i
\(435\) 0 0
\(436\) −289.927 111.620i −0.664971 0.256010i
\(437\) 126.866i 0.290311i
\(438\) 0 0
\(439\) 551.061i 1.25526i 0.778510 + 0.627632i \(0.215976\pi\)
−0.778510 + 0.627632i \(0.784024\pi\)
\(440\) −80.2659 336.521i −0.182423 0.764819i
\(441\) 0 0
\(442\) −65.6091 + 45.0443i −0.148437 + 0.101910i
\(443\) −36.7779 −0.0830201 −0.0415100 0.999138i \(-0.513217\pi\)
−0.0415100 + 0.999138i \(0.513217\pi\)
\(444\) 0 0
\(445\) 134.971i 0.303305i
\(446\) 713.172 489.633i 1.59904 1.09783i
\(447\) 0 0
\(448\) −337.787 667.815i −0.753990 1.49066i
\(449\) −332.641 −0.740849 −0.370424 0.928863i \(-0.620788\pi\)
−0.370424 + 0.928863i \(0.620788\pi\)
\(450\) 0 0
\(451\) −1333.10 −2.95588
\(452\) −130.482 + 338.920i −0.288677 + 0.749822i
\(453\) 0 0
\(454\) 406.750 + 592.450i 0.895926 + 1.30496i
\(455\) 337.544i 0.741854i
\(456\) 0 0
\(457\) −343.279 −0.751158 −0.375579 0.926790i \(-0.622556\pi\)
−0.375579 + 0.926790i \(0.622556\pi\)
\(458\) −349.896 + 240.224i −0.763966 + 0.524506i
\(459\) 0 0
\(460\) 40.1817 104.370i 0.0873515 0.226890i
\(461\) 208.768i 0.452859i −0.974028 0.226429i \(-0.927295\pi\)
0.974028 0.226429i \(-0.0727053\pi\)
\(462\) 0 0
\(463\) 239.500i 0.517278i 0.965974 + 0.258639i \(0.0832740\pi\)
−0.965974 + 0.258639i \(0.916726\pi\)
\(464\) 9.92404 10.9782i 0.0213880 0.0236599i
\(465\) 0 0
\(466\) 313.175 + 456.153i 0.672049 + 0.978869i
\(467\) 295.094 0.631892 0.315946 0.948777i \(-0.397678\pi\)
0.315946 + 0.948777i \(0.397678\pi\)
\(468\) 0 0
\(469\) 1417.53i 3.02244i
\(470\) −117.128 170.601i −0.249207 0.362982i
\(471\) 0 0
\(472\) 561.003 133.809i 1.18857 0.283493i
\(473\) −1349.69 −2.85346
\(474\) 0 0
\(475\) 50.7310 0.106802
\(476\) −134.550 51.8010i −0.282668 0.108826i
\(477\) 0 0
\(478\) 46.0193 31.5948i 0.0962746 0.0660979i
\(479\) 533.361i 1.11349i −0.830684 0.556745i \(-0.812050\pi\)
0.830684 0.556745i \(-0.187950\pi\)
\(480\) 0 0
\(481\) 40.7037 0.0846232
\(482\) −130.655 190.305i −0.271069 0.394824i
\(483\) 0 0
\(484\) −363.637 + 944.527i −0.751317 + 1.95150i
\(485\) 29.5582i 0.0609448i
\(486\) 0 0
\(487\) 285.675i 0.586601i −0.956020 0.293301i \(-0.905246\pi\)
0.956020 0.293301i \(-0.0947537\pi\)
\(488\) −70.2950 294.717i −0.144047 0.603927i
\(489\) 0 0
\(490\) −323.475 + 222.084i −0.660154 + 0.453233i
\(491\) −188.244 −0.383388 −0.191694 0.981455i \(-0.561398\pi\)
−0.191694 + 0.981455i \(0.561398\pi\)
\(492\) 0 0
\(493\) 2.85103i 0.00578303i
\(494\) −215.961 + 148.269i −0.437167 + 0.300140i
\(495\) 0 0
\(496\) 349.733 386.883i 0.705107 0.780006i
\(497\) −788.266 −1.58605
\(498\) 0 0
\(499\) 625.534 1.25357 0.626787 0.779190i \(-0.284369\pi\)
0.626787 + 0.779190i \(0.284369\pi\)
\(500\) −41.7352 16.0678i −0.0834704 0.0321356i
\(501\) 0 0
\(502\) 30.1900 + 43.9731i 0.0601395 + 0.0875959i
\(503\) 232.863i 0.462949i 0.972841 + 0.231474i \(0.0743549\pi\)
−0.972841 + 0.231474i \(0.925645\pi\)
\(504\) 0 0
\(505\) −332.584 −0.658582
\(506\) −398.716 + 273.741i −0.787976 + 0.540990i
\(507\) 0 0
\(508\) 170.876 + 65.7862i 0.336370 + 0.129500i
\(509\) 615.343i 1.20893i −0.796633 0.604463i \(-0.793388\pi\)
0.796633 0.604463i \(-0.206612\pi\)
\(510\) 0 0
\(511\) 172.775i 0.338112i
\(512\) −390.797 + 330.789i −0.763276 + 0.646072i
\(513\) 0 0
\(514\) −192.616 280.553i −0.374739 0.545823i
\(515\) 299.140 0.580855
\(516\) 0 0
\(517\) 894.909i 1.73096i
\(518\) 41.7373 + 60.7922i 0.0805739 + 0.117359i
\(519\) 0 0
\(520\) 224.626 53.5773i 0.431974 0.103033i
\(521\) −132.731 −0.254761 −0.127381 0.991854i \(-0.540657\pi\)
−0.127381 + 0.991854i \(0.540657\pi\)
\(522\) 0 0
\(523\) −911.886 −1.74357 −0.871784 0.489890i \(-0.837037\pi\)
−0.871784 + 0.489890i \(0.837037\pi\)
\(524\) 267.710 695.361i 0.510897 1.32703i
\(525\) 0 0
\(526\) −174.210 + 119.605i −0.331197 + 0.227385i
\(527\) 100.473i 0.190651i
\(528\) 0 0
\(529\) 372.655 0.704453
\(530\) 42.3988 + 61.7558i 0.0799977 + 0.116520i
\(531\) 0 0
\(532\) −442.889 170.510i −0.832497 0.320507i
\(533\) 889.841i 1.66950i
\(534\) 0 0
\(535\) 123.439i 0.230727i
\(536\) 943.327 225.000i 1.75994 0.419775i
\(537\) 0 0
\(538\) 341.120 234.198i 0.634052 0.435313i
\(539\) 1696.83 3.14810
\(540\) 0 0
\(541\) 373.215i 0.689861i −0.938628 0.344931i \(-0.887902\pi\)
0.938628 0.344931i \(-0.112098\pi\)
\(542\) −408.508 + 280.464i −0.753705 + 0.517461i
\(543\) 0 0
\(544\) −13.1155 + 97.7618i −0.0241094 + 0.179709i
\(545\) 173.671 0.318662
\(546\) 0 0
\(547\) −175.297 −0.320469 −0.160235 0.987079i \(-0.551225\pi\)
−0.160235 + 0.987079i \(0.551225\pi\)
\(548\) 47.3573 123.008i 0.0864185 0.224467i
\(549\) 0 0
\(550\) 109.463 + 159.438i 0.199024 + 0.289887i
\(551\) 9.38454i 0.0170318i
\(552\) 0 0
\(553\) −1548.60 −2.80036
\(554\) 44.4334 30.5060i 0.0802046 0.0550650i
\(555\) 0 0
\(556\) 120.515 313.031i 0.216754 0.563005i
\(557\) 403.527i 0.724466i 0.932088 + 0.362233i \(0.117985\pi\)
−0.932088 + 0.362233i \(0.882015\pi\)
\(558\) 0 0
\(559\) 900.913i 1.61165i
\(560\) 310.349 + 280.548i 0.554195 + 0.500979i
\(561\) 0 0
\(562\) 327.702 + 477.313i 0.583100 + 0.849311i
\(563\) 236.345 0.419796 0.209898 0.977723i \(-0.432687\pi\)
0.209898 + 0.977723i \(0.432687\pi\)
\(564\) 0 0
\(565\) 203.018i 0.359324i
\(566\) 3.41041 + 4.96741i 0.00602545 + 0.00877634i
\(567\) 0 0
\(568\) 125.119 + 524.571i 0.220280 + 0.923540i
\(569\) 757.837 1.33187 0.665937 0.746008i \(-0.268032\pi\)
0.665937 + 0.746008i \(0.268032\pi\)
\(570\) 0 0
\(571\) 198.009 0.346775 0.173388 0.984854i \(-0.444529\pi\)
0.173388 + 0.984854i \(0.444529\pi\)
\(572\) −931.965 358.801i −1.62931 0.627275i
\(573\) 0 0
\(574\) 1329.00 912.436i 2.31534 1.58961i
\(575\) 62.5189i 0.108729i
\(576\) 0 0
\(577\) −479.109 −0.830346 −0.415173 0.909743i \(-0.636279\pi\)
−0.415173 + 0.909743i \(0.636279\pi\)
\(578\) −316.393 460.840i −0.547392 0.797301i
\(579\) 0 0
\(580\) −2.97232 + 7.72044i −0.00512470 + 0.0133111i
\(581\) 390.228i 0.671649i
\(582\) 0 0
\(583\) 323.947i 0.555654i
\(584\) 114.978 27.4241i 0.196879 0.0469591i
\(585\) 0 0
\(586\) 156.959 107.761i 0.267848 0.183893i
\(587\) 658.065 1.12106 0.560532 0.828133i \(-0.310597\pi\)
0.560532 + 0.828133i \(0.310597\pi\)
\(588\) 0 0
\(589\) 330.720i 0.561495i
\(590\) −265.795 + 182.483i −0.450499 + 0.309293i
\(591\) 0 0
\(592\) 33.8308 37.4244i 0.0571466 0.0632169i
\(593\) −202.971 −0.342279 −0.171139 0.985247i \(-0.554745\pi\)
−0.171139 + 0.985247i \(0.554745\pi\)
\(594\) 0 0
\(595\) 80.5975 0.135458
\(596\) 304.016 + 117.044i 0.510094 + 0.196383i
\(597\) 0 0
\(598\) −182.721 266.142i −0.305554 0.445053i
\(599\) 11.7767i 0.0196605i 0.999952 + 0.00983027i \(0.00312912\pi\)
−0.999952 + 0.00983027i \(0.996871\pi\)
\(600\) 0 0
\(601\) 206.863 0.344198 0.172099 0.985080i \(-0.444945\pi\)
0.172099 + 0.985080i \(0.444945\pi\)
\(602\) 1345.54 923.789i 2.23512 1.53453i
\(603\) 0 0
\(604\) 316.259 + 121.758i 0.523608 + 0.201586i
\(605\) 565.786i 0.935183i
\(606\) 0 0
\(607\) 885.649i 1.45906i −0.683950 0.729529i \(-0.739739\pi\)
0.683950 0.729529i \(-0.260261\pi\)
\(608\) −43.1713 + 321.795i −0.0710055 + 0.529269i
\(609\) 0 0
\(610\) 95.8653 + 139.632i 0.157156 + 0.228905i
\(611\) −597.349 −0.977658
\(612\) 0 0
\(613\) 979.091i 1.59721i −0.601855 0.798606i \(-0.705571\pi\)
0.601855 0.798606i \(-0.294429\pi\)
\(614\) 189.438 + 275.925i 0.308531 + 0.449390i
\(615\) 0 0
\(616\) −419.749 1759.83i −0.681411 2.85687i
\(617\) −1064.97 −1.72604 −0.863019 0.505171i \(-0.831429\pi\)
−0.863019 + 0.505171i \(0.831429\pi\)
\(618\) 0 0
\(619\) −658.875 −1.06442 −0.532209 0.846613i \(-0.678638\pi\)
−0.532209 + 0.846613i \(0.678638\pi\)
\(620\) −104.748 + 272.076i −0.168948 + 0.438832i
\(621\) 0 0
\(622\) −493.782 + 339.009i −0.793861 + 0.545030i
\(623\) 705.827i 1.13295i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) −139.942 203.831i −0.223549 0.325609i
\(627\) 0 0
\(628\) 626.553 + 241.219i 0.997695 + 0.384107i
\(629\) 9.71910i 0.0154517i
\(630\) 0 0
\(631\) 1074.30i 1.70253i 0.524736 + 0.851265i \(0.324164\pi\)
−0.524736 + 0.851265i \(0.675836\pi\)
\(632\) 245.805 + 1030.55i 0.388932 + 1.63062i
\(633\) 0 0
\(634\) 224.154 153.895i 0.353556 0.242736i
\(635\) −102.357 −0.161192
\(636\) 0 0
\(637\) 1132.63i 1.77806i
\(638\) 29.4939 20.2492i 0.0462286 0.0317386i
\(639\) 0 0
\(640\) 137.437 251.060i 0.214745 0.392281i
\(641\) −170.402 −0.265838 −0.132919 0.991127i \(-0.542435\pi\)
−0.132919 + 0.991127i \(0.542435\pi\)
\(642\) 0 0
\(643\) −387.322 −0.602367 −0.301183 0.953566i \(-0.597382\pi\)
−0.301183 + 0.953566i \(0.597382\pi\)
\(644\) 210.129 545.799i 0.326288 0.847514i
\(645\) 0 0
\(646\) 35.4032 + 51.5664i 0.0548037 + 0.0798241i
\(647\) 1098.39i 1.69766i 0.528665 + 0.848830i \(0.322693\pi\)
−0.528665 + 0.848830i \(0.677307\pi\)
\(648\) 0 0
\(649\) 1394.25 2.14831
\(650\) −106.424 + 73.0664i −0.163730 + 0.112410i
\(651\) 0 0
\(652\) −119.098 + 309.351i −0.182666 + 0.474465i
\(653\) 801.196i 1.22695i 0.789716 + 0.613473i \(0.210228\pi\)
−0.789716 + 0.613473i \(0.789772\pi\)
\(654\) 0 0
\(655\) 416.532i 0.635927i
\(656\) −818.151 739.589i −1.24718 1.12742i
\(657\) 0 0
\(658\) −612.517 892.158i −0.930876 1.35586i
\(659\) 204.225 0.309901 0.154950 0.987922i \(-0.450478\pi\)
0.154950 + 0.987922i \(0.450478\pi\)
\(660\) 0 0
\(661\) 283.821i 0.429382i −0.976682 0.214691i \(-0.931126\pi\)
0.976682 0.214691i \(-0.0688744\pi\)
\(662\) −46.6255 67.9122i −0.0704313 0.102586i
\(663\) 0 0
\(664\) −259.687 + 61.9397i −0.391094 + 0.0932827i
\(665\) 265.297 0.398943
\(666\) 0 0
\(667\) 11.5651 0.0173390
\(668\) 139.227 + 53.6018i 0.208424 + 0.0802422i
\(669\) 0 0
\(670\) −446.933 + 306.845i −0.667065 + 0.457977i
\(671\) 732.455i 1.09159i
\(672\) 0 0
\(673\) −371.454 −0.551937 −0.275969 0.961167i \(-0.588999\pi\)
−0.275969 + 0.961167i \(0.588999\pi\)
\(674\) −640.258 932.565i −0.949938 1.38363i
\(675\) 0 0
\(676\) −3.37922 + 8.77732i −0.00499884 + 0.0129842i
\(677\) 1084.06i 1.60127i −0.599150 0.800637i \(-0.704495\pi\)
0.599150 0.800637i \(-0.295505\pi\)
\(678\) 0 0
\(679\) 154.574i 0.227650i
\(680\) −12.7930 53.6355i −0.0188132 0.0788758i
\(681\) 0 0
\(682\) 1039.39 713.602i 1.52404 1.04634i
\(683\) 580.301 0.849636 0.424818 0.905279i \(-0.360338\pi\)
0.424818 + 0.905279i \(0.360338\pi\)
\(684\) 0 0
\(685\) 73.6836i 0.107567i
\(686\) −746.873 + 512.771i −1.08874 + 0.747479i
\(687\) 0 0
\(688\) −828.331 748.792i −1.20397 1.08836i
\(689\) 216.233 0.313837
\(690\) 0 0
\(691\) −438.911 −0.635183 −0.317592 0.948228i \(-0.602874\pi\)
−0.317592 + 0.948228i \(0.602874\pi\)
\(692\) −790.733 304.428i −1.14268 0.439924i
\(693\) 0 0
\(694\) −152.444 222.042i −0.219660 0.319945i
\(695\) 187.510i 0.269799i
\(696\) 0 0
\(697\) −212.473 −0.304840
\(698\) 760.611 522.202i 1.08970 0.748141i
\(699\) 0 0
\(700\) −218.254 84.0264i −0.311791 0.120038i
\(701\) 173.658i 0.247730i 0.992299 + 0.123865i \(0.0395289\pi\)
−0.992299 + 0.123865i \(0.960471\pi\)
\(702\) 0 0
\(703\) 31.9917i 0.0455073i
\(704\) −1104.49 + 558.665i −1.56888 + 0.793558i
\(705\) 0 0
\(706\) 486.523 + 708.642i 0.689125 + 1.00374i
\(707\) −1739.24 −2.46003
\(708\) 0 0
\(709\) 1231.35i 1.73674i −0.495913 0.868372i \(-0.665166\pi\)
0.495913 0.868372i \(-0.334834\pi\)
\(710\) −170.632 248.533i −0.240327 0.350047i
\(711\) 0 0
\(712\) −469.709 + 112.034i −0.659704 + 0.157351i
\(713\) 407.567 0.571623
\(714\) 0 0
\(715\) 558.261 0.780785
\(716\) 124.272 322.790i 0.173565 0.450824i
\(717\) 0 0
\(718\) −515.091 + 353.639i −0.717397 + 0.492533i
\(719\) 327.782i 0.455885i −0.973675 0.227943i \(-0.926800\pi\)
0.973675 0.227943i \(-0.0731999\pi\)
\(720\) 0 0
\(721\) 1564.35 2.16970
\(722\) −292.118 425.483i −0.404596 0.589312i
\(723\) 0 0
\(724\) −296.406 114.115i −0.409401 0.157617i
\(725\) 4.62466i 0.00637884i
\(726\) 0 0
\(727\) 217.872i 0.299686i 0.988710 + 0.149843i \(0.0478768\pi\)
−0.988710 + 0.149843i \(0.952123\pi\)
\(728\) 1174.68 280.182i 1.61357 0.384865i
\(729\) 0 0
\(730\) −54.4745 + 37.3998i −0.0746227 + 0.0512327i
\(731\) −215.117 −0.294278
\(732\) 0 0
\(733\) 154.099i 0.210231i −0.994460 0.105115i \(-0.966479\pi\)
0.994460 0.105115i \(-0.0335212\pi\)
\(734\) 229.071 157.270i 0.312085 0.214264i
\(735\) 0 0
\(736\) −396.568 53.2027i −0.538815 0.0722862i
\(737\) 2344.44 3.18106
\(738\) 0 0
\(739\) 497.686 0.673459 0.336729 0.941601i \(-0.390679\pi\)
0.336729 + 0.941601i \(0.390679\pi\)
\(740\) −10.1326 + 26.3188i −0.0136927 + 0.0355659i
\(741\) 0 0
\(742\) 221.724 + 322.951i 0.298819 + 0.435244i
\(743\) 657.468i 0.884883i 0.896797 + 0.442441i \(0.145888\pi\)
−0.896797 + 0.442441i \(0.854112\pi\)
\(744\) 0 0
\(745\) −182.110 −0.244443
\(746\) −696.720 + 478.337i −0.933940 + 0.641203i
\(747\) 0 0
\(748\) −85.6733 + 222.531i −0.114537 + 0.297502i
\(749\) 645.522i 0.861846i
\(750\) 0 0
\(751\) 379.552i 0.505396i −0.967545 0.252698i \(-0.918682\pi\)
0.967545 0.252698i \(-0.0813179\pi\)
\(752\) −496.485 + 549.223i −0.660219 + 0.730350i
\(753\) 0 0
\(754\) 13.5163 + 19.6871i 0.0179261 + 0.0261102i
\(755\) −189.444 −0.250919
\(756\) 0 0
\(757\) 195.966i 0.258872i −0.991588 0.129436i \(-0.958683\pi\)
0.991588 0.129436i \(-0.0413166\pi\)
\(758\) 474.586 + 691.255i 0.626103 + 0.911946i
\(759\) 0 0
\(760\) −42.1098 176.548i −0.0554076 0.232300i
\(761\) 963.030 1.26548 0.632740 0.774364i \(-0.281930\pi\)
0.632740 + 0.774364i \(0.281930\pi\)
\(762\) 0 0
\(763\) 908.209 1.19031
\(764\) 1083.82 + 417.264i 1.41861 + 0.546156i
\(765\) 0 0
\(766\) −505.792 + 347.254i −0.660302 + 0.453335i
\(767\) 930.661i 1.21338i
\(768\) 0 0
\(769\) 81.3670 0.105809 0.0529044 0.998600i \(-0.483152\pi\)
0.0529044 + 0.998600i \(0.483152\pi\)
\(770\) 572.436 + 833.779i 0.743424 + 1.08283i
\(771\) 0 0
\(772\) −262.782 + 682.562i −0.340392 + 0.884147i
\(773\) 781.463i 1.01095i −0.862842 0.505474i \(-0.831318\pi\)
0.862842 0.505474i \(-0.168682\pi\)
\(774\) 0 0
\(775\) 162.978i 0.210294i
\(776\) 102.865 24.5351i 0.132558 0.0316174i
\(777\) 0 0
\(778\) −728.553 + 500.193i −0.936443 + 0.642921i
\(779\) −699.383 −0.897795
\(780\) 0 0
\(781\) 1303.71i 1.66928i
\(782\) −63.5484 + 43.6296i −0.0812639 + 0.0557923i
\(783\) 0 0
\(784\) 1041.38 + 941.379i 1.32829 + 1.20074i
\(785\) −375.314 −0.478107
\(786\) 0 0
\(787\) 1030.41 1.30929 0.654644 0.755937i \(-0.272818\pi\)
0.654644 + 0.755937i \(0.272818\pi\)
\(788\) 366.437 + 141.076i 0.465022 + 0.179031i
\(789\) 0 0
\(790\) −335.218 488.260i −0.424327 0.618051i
\(791\) 1061.68i 1.34220i
\(792\) 0 0
\(793\) 488.912 0.616534
\(794\) −264.454 + 181.563i −0.333066 + 0.228668i
\(795\) 0 0
\(796\) 841.229 + 323.868i 1.05682 + 0.406870i
\(797\) 85.4710i 0.107241i −0.998561 0.0536205i \(-0.982924\pi\)
0.998561 0.0536205i \(-0.0170761\pi\)
\(798\) 0 0
\(799\) 142.633i 0.178514i
\(800\) −21.2746 + 158.579i −0.0265933 + 0.198224i
\(801\) 0 0
\(802\) −219.372 319.525i −0.273531 0.398410i
\(803\) 285.752 0.355856
\(804\) 0 0
\(805\) 326.942i 0.406139i
\(806\) 476.327 + 693.792i 0.590977 + 0.860784i
\(807\) 0 0
\(808\) 276.065 + 1157.42i 0.341664 + 1.43245i
\(809\) −749.874 −0.926915 −0.463458 0.886119i \(-0.653391\pi\)
−0.463458 + 0.886119i \(0.653391\pi\)
\(810\) 0 0
\(811\) −454.606 −0.560550 −0.280275 0.959920i \(-0.590426\pi\)
−0.280275 + 0.959920i \(0.590426\pi\)
\(812\) −15.5437 + 40.3739i −0.0191425 + 0.0497216i
\(813\) 0 0
\(814\) 100.544 69.0290i 0.123518 0.0848022i
\(815\) 185.306i 0.227369i
\(816\) 0 0
\(817\) −708.085 −0.866689
\(818\) −520.164 757.643i −0.635898 0.926214i
\(819\) 0 0
\(820\) 575.366 + 221.512i 0.701665 + 0.270137i
\(821\) 40.2949i 0.0490802i 0.999699 + 0.0245401i \(0.00781214\pi\)
−0.999699 + 0.0245401i \(0.992188\pi\)
\(822\) 0 0
\(823\) 1109.53i 1.34815i 0.738662 + 0.674076i \(0.235458\pi\)
−0.738662 + 0.674076i \(0.764542\pi\)
\(824\) −248.305 1041.03i −0.301340 1.26339i
\(825\) 0 0
\(826\) −1389.97 + 954.292i −1.68277 + 1.15532i
\(827\) −750.168 −0.907096 −0.453548 0.891232i \(-0.649842\pi\)
−0.453548 + 0.891232i \(0.649842\pi\)
\(828\) 0 0
\(829\) 182.949i 0.220687i −0.993894 0.110343i \(-0.964805\pi\)
0.993894 0.110343i \(-0.0351950\pi\)
\(830\) 123.035 84.4707i 0.148235 0.101772i
\(831\) 0 0
\(832\) −372.907 737.247i −0.448206 0.886114i
\(833\) 270.445 0.324663
\(834\) 0 0
\(835\) −83.3993 −0.0998794
\(836\) −282.005 + 732.491i −0.337326 + 0.876185i
\(837\) 0 0
\(838\) −252.936 368.413i −0.301833 0.439634i
\(839\) 719.345i 0.857384i −0.903451 0.428692i \(-0.858975\pi\)
0.903451 0.428692i \(-0.141025\pi\)
\(840\) 0 0
\(841\) 840.145 0.998983
\(842\) 1242.37 852.954i 1.47549 1.01301i
\(843\) 0 0
\(844\) −434.964 + 1129.79i −0.515360 + 1.33862i
\(845\) 5.25774i 0.00622218i
\(846\) 0 0
\(847\) 2958.77i 3.49323i
\(848\) 179.722 198.812i 0.211936 0.234449i
\(849\) 0 0
\(850\) 17.4465 + 25.4117i 0.0205253 + 0.0298961i
\(851\) 39.4253 0.0463282
\(852\) 0 0
\(853\) 593.155i 0.695375i −0.937610 0.347688i \(-0.886967\pi\)
0.937610 0.347688i \(-0.113033\pi\)
\(854\) 501.326 + 730.204i 0.587033 + 0.855040i
\(855\) 0 0
\(856\) 429.578 102.462i 0.501844 0.119698i
\(857\) 180.069 0.210116 0.105058 0.994466i \(-0.466497\pi\)
0.105058 + 0.994466i \(0.466497\pi\)
\(858\) 0 0
\(859\) 509.587 0.593232 0.296616 0.954997i \(-0.404142\pi\)
0.296616 + 0.954997i \(0.404142\pi\)
\(860\) 582.525 + 224.269i 0.677355 + 0.260778i
\(861\) 0 0
\(862\) −1321.68 + 907.406i −1.53327 + 1.05267i
\(863\) 1430.93i 1.65809i −0.559181 0.829046i \(-0.688884\pi\)
0.559181 0.829046i \(-0.311116\pi\)
\(864\) 0 0
\(865\) 473.661 0.547585
\(866\) 820.766 + 1195.48i 0.947767 + 1.38046i
\(867\) 0 0
\(868\) −547.776 + 1422.82i −0.631079 + 1.63919i
\(869\) 2561.22i 2.94732i
\(870\) 0 0
\(871\) 1564.91i 1.79668i
\(872\) −144.157 604.390i −0.165318 0.693107i
\(873\) 0 0
\(874\) −209.178 + 143.612i −0.239334 + 0.164316i
\(875\) 130.737 0.149414
\(876\) 0 0
\(877\) 905.426i 1.03241i −0.856464 0.516207i \(-0.827344\pi\)
0.856464 0.516207i \(-0.172656\pi\)
\(878\) −908.595 + 623.802i −1.03485 + 0.710480i
\(879\) 0 0
\(880\) 463.997 513.285i 0.527270 0.583278i
\(881\) −1479.51 −1.67935 −0.839677 0.543086i \(-0.817256\pi\)
−0.839677 + 0.543086i \(0.817256\pi\)
\(882\) 0 0
\(883\) 360.404 0.408158 0.204079 0.978954i \(-0.434580\pi\)
0.204079 + 0.978954i \(0.434580\pi\)
\(884\) −148.539 57.1867i −0.168031 0.0646908i
\(885\) 0 0
\(886\) −41.6326 60.6397i −0.0469894 0.0684422i
\(887\) 1106.42i 1.24738i −0.781674 0.623688i \(-0.785634\pi\)
0.781674 0.623688i \(-0.214366\pi\)
\(888\) 0 0
\(889\) −535.276 −0.602110
\(890\) 222.541 152.787i 0.250046 0.171671i
\(891\) 0 0
\(892\) 1614.62 + 621.620i 1.81012 + 0.696884i
\(893\) 469.494i 0.525750i
\(894\) 0 0
\(895\) 193.356i 0.216040i
\(896\) 718.724 1312.91i 0.802147 1.46531i
\(897\) 0 0
\(898\) −376.550 548.462i −0.419321 0.610759i
\(899\) −30.1486 −0.0335357
\(900\) 0 0
\(901\) 51.6315i 0.0573046i
\(902\) −1509.07 2198.03i −1.67303 2.43684i
\(903\) 0 0
\(904\) −706.520 + 168.517i −0.781549 + 0.186413i
\(905\) 177.552 0.196190
\(906\) 0 0
\(907\) 1467.30 1.61775 0.808876 0.587979i \(-0.200076\pi\)
0.808876 + 0.587979i \(0.200076\pi\)
\(908\) −516.396 + 1341.31i −0.568718 + 1.47721i
\(909\) 0 0
\(910\) −556.545 + 382.100i −0.611588 + 0.419890i
\(911\) 1188.75i 1.30488i 0.757840 + 0.652441i \(0.226255\pi\)
−0.757840 + 0.652441i \(0.773745\pi\)
\(912\) 0 0
\(913\) −645.396 −0.706896
\(914\) −388.592 566.002i −0.425156 0.619258i
\(915\) 0 0
\(916\) −792.166 304.979i −0.864810 0.332947i
\(917\) 2178.25i 2.37541i
\(918\) 0 0
\(919\) 917.844i 0.998743i 0.866388 + 0.499371i \(0.166436\pi\)
−0.866388 + 0.499371i \(0.833564\pi\)
\(920\) 217.571 51.8945i 0.236490 0.0564070i
\(921\) 0 0
\(922\) 344.219 236.325i 0.373339 0.256318i
\(923\) −870.222 −0.942819
\(924\) 0 0
\(925\) 15.7653i 0.0170436i
\(926\) −394.889 + 271.114i −0.426447 + 0.292780i
\(927\) 0 0
\(928\) 29.3350 + 3.93552i 0.0316110 + 0.00424086i
\(929\) 326.140 0.351066 0.175533 0.984474i \(-0.443835\pi\)
0.175533 + 0.984474i \(0.443835\pi\)
\(930\) 0 0
\(931\) 890.203 0.956179
\(932\) −397.596 + 1032.73i −0.426605 + 1.10808i
\(933\) 0 0
\(934\) 334.046 + 486.553i 0.357651 + 0.520935i
\(935\) 133.300i 0.142566i
\(936\) 0 0
\(937\) 803.356 0.857370 0.428685 0.903454i \(-0.358977\pi\)
0.428685 + 0.903454i \(0.358977\pi\)
\(938\) −2337.23 + 1604.64i −2.49172 + 1.71070i
\(939\) 0 0
\(940\) 148.701 386.242i 0.158193 0.410896i
\(941\) 617.150i 0.655845i 0.944705 + 0.327922i \(0.106348\pi\)
−0.944705 + 0.327922i \(0.893652\pi\)
\(942\) 0 0
\(943\) 861.892i 0.913990i
\(944\) 855.682 + 773.516i 0.906443 + 0.819403i
\(945\) 0 0
\(946\) −1527.85 2225.38i −1.61506 2.35241i
\(947\) 1372.28 1.44908 0.724542 0.689231i \(-0.242052\pi\)
0.724542 + 0.689231i \(0.242052\pi\)
\(948\) 0 0
\(949\) 190.739i 0.200989i
\(950\) 57.4275 + 83.6458i 0.0604500 + 0.0880482i
\(951\) 0 0
\(952\) −66.9008 280.486i −0.0702739 0.294628i
\(953\) 313.823 0.329300 0.164650 0.986352i \(-0.447351\pi\)
0.164650 + 0.986352i \(0.447351\pi\)
\(954\) 0 0
\(955\) −649.223 −0.679815
\(956\) 104.188 + 40.1117i 0.108983 + 0.0419578i
\(957\) 0 0
\(958\) 879.412 603.766i 0.917966 0.630236i
\(959\) 385.327i 0.401801i
\(960\) 0 0
\(961\) −101.467 −0.105585
\(962\) 46.0767 + 67.1127i 0.0478967 + 0.0697638i
\(963\) 0 0
\(964\) 165.875 430.851i 0.172070 0.446941i
\(965\) 408.865i 0.423694i
\(966\) 0 0
\(967\) 191.090i 0.197611i −0.995107 0.0988055i \(-0.968498\pi\)
0.995107 0.0988055i \(-0.0315022\pi\)
\(968\) −1968.98 + 469.636i −2.03407 + 0.485161i
\(969\) 0 0
\(970\) −48.7359 + 33.4599i −0.0502432 + 0.0344948i
\(971\) −88.4914 −0.0911343 −0.0455671 0.998961i \(-0.514509\pi\)
−0.0455671 + 0.998961i \(0.514509\pi\)
\(972\) 0 0
\(973\) 980.582i 1.00779i
\(974\) 471.023 323.384i 0.483597 0.332016i
\(975\) 0 0
\(976\) 406.358 449.522i 0.416350 0.460576i
\(977\) 1367.80 1.40000 0.700001 0.714142i \(-0.253183\pi\)
0.700001 + 0.714142i \(0.253183\pi\)
\(978\) 0 0
\(979\) −1167.36 −1.19240
\(980\) −732.349 281.950i −0.747295 0.287704i
\(981\) 0 0
\(982\) −213.092 310.378i −0.216998 0.316067i
\(983\) 266.437i 0.271045i −0.990774 0.135522i \(-0.956729\pi\)
0.990774 0.135522i \(-0.0432713\pi\)
\(984\) 0 0
\(985\) −219.501 −0.222844
\(986\) 4.70081 3.22737i 0.00476756 0.00327320i
\(987\) 0 0
\(988\) −488.935 188.237i −0.494874 0.190524i
\(989\) 872.617i 0.882322i
\(990\) 0 0
\(991\) 842.673i 0.850326i −0.905117 0.425163i \(-0.860217\pi\)
0.905117 0.425163i \(-0.139783\pi\)
\(992\) 1033.79 + 138.691i 1.04213 + 0.139810i
\(993\) 0 0
\(994\) −892.318 1299.70i −0.897705 1.30755i
\(995\) −503.909 −0.506441
\(996\) 0 0
\(997\) 1590.97i 1.59576i 0.602817 + 0.797879i \(0.294045\pi\)
−0.602817 + 0.797879i \(0.705955\pi\)
\(998\) 708.105 + 1031.39i 0.709524 + 1.03345i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.3.g.c.91.10 16
3.2 odd 2 120.3.g.a.91.7 16
4.3 odd 2 1440.3.g.c.271.8 16
8.3 odd 2 inner 360.3.g.c.91.9 16
8.5 even 2 1440.3.g.c.271.9 16
12.11 even 2 480.3.g.a.271.8 16
15.2 even 4 600.3.p.b.499.27 32
15.8 even 4 600.3.p.b.499.6 32
15.14 odd 2 600.3.g.d.451.10 16
24.5 odd 2 480.3.g.a.271.1 16
24.11 even 2 120.3.g.a.91.8 yes 16
60.23 odd 4 2400.3.p.b.1999.9 32
60.47 odd 4 2400.3.p.b.1999.22 32
60.59 even 2 2400.3.g.b.751.9 16
120.29 odd 2 2400.3.g.b.751.16 16
120.53 even 4 2400.3.p.b.1999.21 32
120.59 even 2 600.3.g.d.451.9 16
120.77 even 4 2400.3.p.b.1999.10 32
120.83 odd 4 600.3.p.b.499.28 32
120.107 odd 4 600.3.p.b.499.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.7 16 3.2 odd 2
120.3.g.a.91.8 yes 16 24.11 even 2
360.3.g.c.91.9 16 8.3 odd 2 inner
360.3.g.c.91.10 16 1.1 even 1 trivial
480.3.g.a.271.1 16 24.5 odd 2
480.3.g.a.271.8 16 12.11 even 2
600.3.g.d.451.9 16 120.59 even 2
600.3.g.d.451.10 16 15.14 odd 2
600.3.p.b.499.5 32 120.107 odd 4
600.3.p.b.499.6 32 15.8 even 4
600.3.p.b.499.27 32 15.2 even 4
600.3.p.b.499.28 32 120.83 odd 4
1440.3.g.c.271.8 16 4.3 odd 2
1440.3.g.c.271.9 16 8.5 even 2
2400.3.g.b.751.9 16 60.59 even 2
2400.3.g.b.751.16 16 120.29 odd 2
2400.3.p.b.1999.9 32 60.23 odd 4
2400.3.p.b.1999.10 32 120.77 even 4
2400.3.p.b.1999.21 32 120.53 even 4
2400.3.p.b.1999.22 32 60.47 odd 4