Properties

Label 480.3.g.a.271.8
Level $480$
Weight $3$
Character 480.271
Analytic conductor $13.079$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [480,3,Mod(271,480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("480.271"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(480, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 480.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0790526893\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + x^{14} + 24 x^{13} - 44 x^{12} - 32 x^{11} + 180 x^{10} - 64 x^{9} - 352 x^{8} + \cdots + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{32} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 271.8
Root \(1.13200 - 1.64881i\) of defining polynomial
Character \(\chi\) \(=\) 480.271
Dual form 480.3.g.a.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{3} +2.23607i q^{5} +11.6935i q^{7} +3.00000 q^{9} -19.3398 q^{11} -12.9092i q^{13} -3.87298i q^{15} +3.08243 q^{17} +10.1462 q^{19} -20.2537i q^{21} -12.5038i q^{23} -5.00000 q^{25} -5.19615 q^{27} -0.924932i q^{29} -32.5955i q^{31} +33.4975 q^{33} -26.1474 q^{35} +3.15307i q^{37} +22.3595i q^{39} -68.9305 q^{41} -69.7882 q^{43} +6.70820i q^{45} -46.2730i q^{47} -87.7376 q^{49} -5.33892 q^{51} -16.7503i q^{53} -43.2451i q^{55} -17.5737 q^{57} -72.0926 q^{59} +37.8730i q^{61} +35.0805i q^{63} +28.8660 q^{65} +121.224 q^{67} +21.6572i q^{69} -67.4107i q^{71} -14.7754 q^{73} +8.66025 q^{75} -226.149i q^{77} +132.433i q^{79} +9.00000 q^{81} +33.3714 q^{83} +6.89251i q^{85} +1.60203i q^{87} -60.3607 q^{89} +150.954 q^{91} +56.4571i q^{93} +22.6876i q^{95} -13.2188 q^{97} -58.0193 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 48 q^{9} - 64 q^{11} + 32 q^{19} - 80 q^{25} + 192 q^{43} - 80 q^{49} - 96 q^{51} + 96 q^{57} - 128 q^{59} + 64 q^{67} - 160 q^{73} + 144 q^{81} + 192 q^{91} - 224 q^{97} - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/480\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(421\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 −0.577350
\(4\) 0 0
\(5\) 2.23607i 0.447214i
\(6\) 0 0
\(7\) 11.6935i 1.67050i 0.549872 + 0.835249i \(0.314676\pi\)
−0.549872 + 0.835249i \(0.685324\pi\)
\(8\) 0 0
\(9\) 3.00000 0.333333
\(10\) 0 0
\(11\) −19.3398 −1.75816 −0.879081 0.476673i \(-0.841843\pi\)
−0.879081 + 0.476673i \(0.841843\pi\)
\(12\) 0 0
\(13\) − 12.9092i − 0.993019i −0.868031 0.496510i \(-0.834615\pi\)
0.868031 0.496510i \(-0.165385\pi\)
\(14\) 0 0
\(15\) − 3.87298i − 0.258199i
\(16\) 0 0
\(17\) 3.08243 0.181319 0.0906596 0.995882i \(-0.471102\pi\)
0.0906596 + 0.995882i \(0.471102\pi\)
\(18\) 0 0
\(19\) 10.1462 0.534010 0.267005 0.963695i \(-0.413966\pi\)
0.267005 + 0.963695i \(0.413966\pi\)
\(20\) 0 0
\(21\) − 20.2537i − 0.964462i
\(22\) 0 0
\(23\) − 12.5038i − 0.543643i −0.962348 0.271821i \(-0.912374\pi\)
0.962348 0.271821i \(-0.0876260\pi\)
\(24\) 0 0
\(25\) −5.00000 −0.200000
\(26\) 0 0
\(27\) −5.19615 −0.192450
\(28\) 0 0
\(29\) − 0.924932i − 0.0318942i −0.999873 0.0159471i \(-0.994924\pi\)
0.999873 0.0159471i \(-0.00507633\pi\)
\(30\) 0 0
\(31\) − 32.5955i − 1.05147i −0.850649 0.525734i \(-0.823791\pi\)
0.850649 0.525734i \(-0.176209\pi\)
\(32\) 0 0
\(33\) 33.4975 1.01508
\(34\) 0 0
\(35\) −26.1474 −0.747069
\(36\) 0 0
\(37\) 3.15307i 0.0852181i 0.999092 + 0.0426090i \(0.0135670\pi\)
−0.999092 + 0.0426090i \(0.986433\pi\)
\(38\) 0 0
\(39\) 22.3595i 0.573320i
\(40\) 0 0
\(41\) −68.9305 −1.68123 −0.840616 0.541631i \(-0.817807\pi\)
−0.840616 + 0.541631i \(0.817807\pi\)
\(42\) 0 0
\(43\) −69.7882 −1.62298 −0.811491 0.584365i \(-0.801344\pi\)
−0.811491 + 0.584365i \(0.801344\pi\)
\(44\) 0 0
\(45\) 6.70820i 0.149071i
\(46\) 0 0
\(47\) − 46.2730i − 0.984531i −0.870445 0.492265i \(-0.836169\pi\)
0.870445 0.492265i \(-0.163831\pi\)
\(48\) 0 0
\(49\) −87.7376 −1.79056
\(50\) 0 0
\(51\) −5.33892 −0.104685
\(52\) 0 0
\(53\) − 16.7503i − 0.316043i −0.987436 0.158021i \(-0.949488\pi\)
0.987436 0.158021i \(-0.0505115\pi\)
\(54\) 0 0
\(55\) − 43.2451i − 0.786274i
\(56\) 0 0
\(57\) −17.5737 −0.308311
\(58\) 0 0
\(59\) −72.0926 −1.22191 −0.610954 0.791666i \(-0.709214\pi\)
−0.610954 + 0.791666i \(0.709214\pi\)
\(60\) 0 0
\(61\) 37.8730i 0.620869i 0.950595 + 0.310434i \(0.100474\pi\)
−0.950595 + 0.310434i \(0.899526\pi\)
\(62\) 0 0
\(63\) 35.0805i 0.556833i
\(64\) 0 0
\(65\) 28.8660 0.444092
\(66\) 0 0
\(67\) 121.224 1.80931 0.904654 0.426148i \(-0.140130\pi\)
0.904654 + 0.426148i \(0.140130\pi\)
\(68\) 0 0
\(69\) 21.6572i 0.313872i
\(70\) 0 0
\(71\) − 67.4107i − 0.949447i −0.880135 0.474724i \(-0.842548\pi\)
0.880135 0.474724i \(-0.157452\pi\)
\(72\) 0 0
\(73\) −14.7754 −0.202402 −0.101201 0.994866i \(-0.532269\pi\)
−0.101201 + 0.994866i \(0.532269\pi\)
\(74\) 0 0
\(75\) 8.66025 0.115470
\(76\) 0 0
\(77\) − 226.149i − 2.93701i
\(78\) 0 0
\(79\) 132.433i 1.67637i 0.545390 + 0.838183i \(0.316382\pi\)
−0.545390 + 0.838183i \(0.683618\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 33.3714 0.402065 0.201033 0.979585i \(-0.435570\pi\)
0.201033 + 0.979585i \(0.435570\pi\)
\(84\) 0 0
\(85\) 6.89251i 0.0810884i
\(86\) 0 0
\(87\) 1.60203i 0.0184141i
\(88\) 0 0
\(89\) −60.3607 −0.678210 −0.339105 0.940749i \(-0.610124\pi\)
−0.339105 + 0.940749i \(0.610124\pi\)
\(90\) 0 0
\(91\) 150.954 1.65884
\(92\) 0 0
\(93\) 56.4571i 0.607065i
\(94\) 0 0
\(95\) 22.6876i 0.238817i
\(96\) 0 0
\(97\) −13.2188 −0.136277 −0.0681383 0.997676i \(-0.521706\pi\)
−0.0681383 + 0.997676i \(0.521706\pi\)
\(98\) 0 0
\(99\) −58.0193 −0.586054
\(100\) 0 0
\(101\) 148.736i 1.47263i 0.676636 + 0.736317i \(0.263437\pi\)
−0.676636 + 0.736317i \(0.736563\pi\)
\(102\) 0 0
\(103\) − 133.780i − 1.29883i −0.760434 0.649416i \(-0.775014\pi\)
0.760434 0.649416i \(-0.224986\pi\)
\(104\) 0 0
\(105\) 45.2887 0.431321
\(106\) 0 0
\(107\) −55.2036 −0.515921 −0.257961 0.966155i \(-0.583051\pi\)
−0.257961 + 0.966155i \(0.583051\pi\)
\(108\) 0 0
\(109\) 77.6680i 0.712550i 0.934381 + 0.356275i \(0.115953\pi\)
−0.934381 + 0.356275i \(0.884047\pi\)
\(110\) 0 0
\(111\) − 5.46128i − 0.0492007i
\(112\) 0 0
\(113\) −90.7924 −0.803472 −0.401736 0.915755i \(-0.631593\pi\)
−0.401736 + 0.915755i \(0.631593\pi\)
\(114\) 0 0
\(115\) 27.9593 0.243124
\(116\) 0 0
\(117\) − 38.7277i − 0.331006i
\(118\) 0 0
\(119\) 36.0443i 0.302893i
\(120\) 0 0
\(121\) 253.027 2.09113
\(122\) 0 0
\(123\) 119.391 0.970660
\(124\) 0 0
\(125\) − 11.1803i − 0.0894427i
\(126\) 0 0
\(127\) 45.7755i 0.360437i 0.983627 + 0.180219i \(0.0576805\pi\)
−0.983627 + 0.180219i \(0.942319\pi\)
\(128\) 0 0
\(129\) 120.877 0.937029
\(130\) 0 0
\(131\) −186.279 −1.42197 −0.710987 0.703205i \(-0.751752\pi\)
−0.710987 + 0.703205i \(0.751752\pi\)
\(132\) 0 0
\(133\) 118.644i 0.892063i
\(134\) 0 0
\(135\) − 11.6190i − 0.0860663i
\(136\) 0 0
\(137\) 32.9523 0.240528 0.120264 0.992742i \(-0.461626\pi\)
0.120264 + 0.992742i \(0.461626\pi\)
\(138\) 0 0
\(139\) 83.8571 0.603289 0.301644 0.953421i \(-0.402464\pi\)
0.301644 + 0.953421i \(0.402464\pi\)
\(140\) 0 0
\(141\) 80.1471i 0.568419i
\(142\) 0 0
\(143\) 249.662i 1.74589i
\(144\) 0 0
\(145\) 2.06821 0.0142635
\(146\) 0 0
\(147\) 151.966 1.03378
\(148\) 0 0
\(149\) 81.4421i 0.546591i 0.961930 + 0.273296i \(0.0881137\pi\)
−0.961930 + 0.273296i \(0.911886\pi\)
\(150\) 0 0
\(151\) 84.7219i 0.561072i 0.959843 + 0.280536i \(0.0905123\pi\)
−0.959843 + 0.280536i \(0.909488\pi\)
\(152\) 0 0
\(153\) 9.24728 0.0604397
\(154\) 0 0
\(155\) 72.8858 0.470231
\(156\) 0 0
\(157\) − 167.846i − 1.06908i −0.845143 0.534540i \(-0.820485\pi\)
0.845143 0.534540i \(-0.179515\pi\)
\(158\) 0 0
\(159\) 29.0123i 0.182467i
\(160\) 0 0
\(161\) 146.213 0.908154
\(162\) 0 0
\(163\) −82.8713 −0.508413 −0.254206 0.967150i \(-0.581814\pi\)
−0.254206 + 0.967150i \(0.581814\pi\)
\(164\) 0 0
\(165\) 74.9026i 0.453955i
\(166\) 0 0
\(167\) − 37.2973i − 0.223337i −0.993746 0.111669i \(-0.964380\pi\)
0.993746 0.111669i \(-0.0356195\pi\)
\(168\) 0 0
\(169\) 2.35134 0.0139132
\(170\) 0 0
\(171\) 30.4386 0.178003
\(172\) 0 0
\(173\) − 211.828i − 1.22444i −0.790689 0.612218i \(-0.790277\pi\)
0.790689 0.612218i \(-0.209723\pi\)
\(174\) 0 0
\(175\) − 58.4674i − 0.334100i
\(176\) 0 0
\(177\) 124.868 0.705469
\(178\) 0 0
\(179\) −86.4715 −0.483081 −0.241540 0.970391i \(-0.577653\pi\)
−0.241540 + 0.970391i \(0.577653\pi\)
\(180\) 0 0
\(181\) 79.4036i 0.438694i 0.975647 + 0.219347i \(0.0703926\pi\)
−0.975647 + 0.219347i \(0.929607\pi\)
\(182\) 0 0
\(183\) − 65.5979i − 0.358459i
\(184\) 0 0
\(185\) −7.05048 −0.0381107
\(186\) 0 0
\(187\) −59.6134 −0.318788
\(188\) 0 0
\(189\) − 60.7611i − 0.321487i
\(190\) 0 0
\(191\) − 290.341i − 1.52011i −0.649858 0.760056i \(-0.725172\pi\)
0.649858 0.760056i \(-0.274828\pi\)
\(192\) 0 0
\(193\) 182.850 0.947408 0.473704 0.880684i \(-0.342917\pi\)
0.473704 + 0.880684i \(0.342917\pi\)
\(194\) 0 0
\(195\) −49.9973 −0.256396
\(196\) 0 0
\(197\) 98.1640i 0.498295i 0.968466 + 0.249147i \(0.0801503\pi\)
−0.968466 + 0.249147i \(0.919850\pi\)
\(198\) 0 0
\(199\) 225.355i 1.13244i 0.824255 + 0.566218i \(0.191594\pi\)
−0.824255 + 0.566218i \(0.808406\pi\)
\(200\) 0 0
\(201\) −209.965 −1.04460
\(202\) 0 0
\(203\) 10.8157 0.0532792
\(204\) 0 0
\(205\) − 154.133i − 0.751870i
\(206\) 0 0
\(207\) − 37.5113i − 0.181214i
\(208\) 0 0
\(209\) −196.225 −0.938877
\(210\) 0 0
\(211\) −302.658 −1.43440 −0.717199 0.696869i \(-0.754576\pi\)
−0.717199 + 0.696869i \(0.754576\pi\)
\(212\) 0 0
\(213\) 116.759i 0.548164i
\(214\) 0 0
\(215\) − 156.051i − 0.725820i
\(216\) 0 0
\(217\) 381.155 1.75647
\(218\) 0 0
\(219\) 25.5917 0.116857
\(220\) 0 0
\(221\) − 39.7918i − 0.180053i
\(222\) 0 0
\(223\) 432.537i 1.93963i 0.243842 + 0.969815i \(0.421592\pi\)
−0.243842 + 0.969815i \(0.578408\pi\)
\(224\) 0 0
\(225\) −15.0000 −0.0666667
\(226\) 0 0
\(227\) 359.320 1.58291 0.791453 0.611230i \(-0.209325\pi\)
0.791453 + 0.611230i \(0.209325\pi\)
\(228\) 0 0
\(229\) 212.212i 0.926688i 0.886179 + 0.463344i \(0.153351\pi\)
−0.886179 + 0.463344i \(0.846649\pi\)
\(230\) 0 0
\(231\) 391.702i 1.69568i
\(232\) 0 0
\(233\) −276.656 −1.18736 −0.593682 0.804699i \(-0.702326\pi\)
−0.593682 + 0.804699i \(0.702326\pi\)
\(234\) 0 0
\(235\) 103.469 0.440296
\(236\) 0 0
\(237\) − 229.380i − 0.967850i
\(238\) 0 0
\(239\) − 27.9106i − 0.116781i −0.998294 0.0583904i \(-0.981403\pi\)
0.998294 0.0583904i \(-0.0185968\pi\)
\(240\) 0 0
\(241\) −115.420 −0.478920 −0.239460 0.970906i \(-0.576970\pi\)
−0.239460 + 0.970906i \(0.576970\pi\)
\(242\) 0 0
\(243\) −15.5885 −0.0641500
\(244\) 0 0
\(245\) − 196.187i − 0.800764i
\(246\) 0 0
\(247\) − 130.980i − 0.530282i
\(248\) 0 0
\(249\) −57.8010 −0.232132
\(250\) 0 0
\(251\) 26.6696 0.106253 0.0531267 0.998588i \(-0.483081\pi\)
0.0531267 + 0.998588i \(0.483081\pi\)
\(252\) 0 0
\(253\) 241.820i 0.955812i
\(254\) 0 0
\(255\) − 11.9382i − 0.0468164i
\(256\) 0 0
\(257\) 170.155 0.662082 0.331041 0.943616i \(-0.392600\pi\)
0.331041 + 0.943616i \(0.392600\pi\)
\(258\) 0 0
\(259\) −36.8704 −0.142357
\(260\) 0 0
\(261\) − 2.77479i − 0.0106314i
\(262\) 0 0
\(263\) 105.658i 0.401741i 0.979618 + 0.200870i \(0.0643770\pi\)
−0.979618 + 0.200870i \(0.935623\pi\)
\(264\) 0 0
\(265\) 37.4547 0.141339
\(266\) 0 0
\(267\) 104.548 0.391565
\(268\) 0 0
\(269\) 206.889i 0.769103i 0.923104 + 0.384551i \(0.125644\pi\)
−0.923104 + 0.384551i \(0.874356\pi\)
\(270\) 0 0
\(271\) − 247.759i − 0.914241i −0.889405 0.457120i \(-0.848881\pi\)
0.889405 0.457120i \(-0.151119\pi\)
\(272\) 0 0
\(273\) −261.460 −0.957729
\(274\) 0 0
\(275\) 96.6989 0.351632
\(276\) 0 0
\(277\) − 26.9487i − 0.0972879i −0.998816 0.0486439i \(-0.984510\pi\)
0.998816 0.0486439i \(-0.0154900\pi\)
\(278\) 0 0
\(279\) − 97.7865i − 0.350489i
\(280\) 0 0
\(281\) −289.489 −1.03021 −0.515106 0.857127i \(-0.672247\pi\)
−0.515106 + 0.857127i \(0.672247\pi\)
\(282\) 0 0
\(283\) −3.01272 −0.0106457 −0.00532283 0.999986i \(-0.501694\pi\)
−0.00532283 + 0.999986i \(0.501694\pi\)
\(284\) 0 0
\(285\) − 39.2961i − 0.137881i
\(286\) 0 0
\(287\) − 806.038i − 2.80849i
\(288\) 0 0
\(289\) −279.499 −0.967123
\(290\) 0 0
\(291\) 22.8957 0.0786794
\(292\) 0 0
\(293\) 95.1952i 0.324898i 0.986717 + 0.162449i \(0.0519393\pi\)
−0.986717 + 0.162449i \(0.948061\pi\)
\(294\) 0 0
\(295\) − 161.204i − 0.546454i
\(296\) 0 0
\(297\) 100.492 0.338358
\(298\) 0 0
\(299\) −161.414 −0.539848
\(300\) 0 0
\(301\) − 816.068i − 2.71119i
\(302\) 0 0
\(303\) − 257.618i − 0.850226i
\(304\) 0 0
\(305\) −84.6866 −0.277661
\(306\) 0 0
\(307\) −167.348 −0.545108 −0.272554 0.962140i \(-0.587868\pi\)
−0.272554 + 0.962140i \(0.587868\pi\)
\(308\) 0 0
\(309\) 231.713i 0.749881i
\(310\) 0 0
\(311\) 299.478i 0.962951i 0.876460 + 0.481475i \(0.159899\pi\)
−0.876460 + 0.481475i \(0.840101\pi\)
\(312\) 0 0
\(313\) −123.623 −0.394963 −0.197481 0.980307i \(-0.563276\pi\)
−0.197481 + 0.980307i \(0.563276\pi\)
\(314\) 0 0
\(315\) −78.4423 −0.249023
\(316\) 0 0
\(317\) 135.949i 0.428862i 0.976739 + 0.214431i \(0.0687896\pi\)
−0.976739 + 0.214431i \(0.931210\pi\)
\(318\) 0 0
\(319\) 17.8880i 0.0560752i
\(320\) 0 0
\(321\) 95.6154 0.297867
\(322\) 0 0
\(323\) 31.2749 0.0968263
\(324\) 0 0
\(325\) 64.5462i 0.198604i
\(326\) 0 0
\(327\) − 134.525i − 0.411391i
\(328\) 0 0
\(329\) 541.092 1.64466
\(330\) 0 0
\(331\) 41.1886 0.124437 0.0622185 0.998063i \(-0.480182\pi\)
0.0622185 + 0.998063i \(0.480182\pi\)
\(332\) 0 0
\(333\) 9.45921i 0.0284060i
\(334\) 0 0
\(335\) 271.064i 0.809147i
\(336\) 0 0
\(337\) −565.599 −1.67834 −0.839168 0.543873i \(-0.816957\pi\)
−0.839168 + 0.543873i \(0.816957\pi\)
\(338\) 0 0
\(339\) 157.257 0.463885
\(340\) 0 0
\(341\) 630.390i 1.84865i
\(342\) 0 0
\(343\) − 452.977i − 1.32063i
\(344\) 0 0
\(345\) −48.4269 −0.140368
\(346\) 0 0
\(347\) −134.668 −0.388092 −0.194046 0.980992i \(-0.562161\pi\)
−0.194046 + 0.980992i \(0.562161\pi\)
\(348\) 0 0
\(349\) − 461.309i − 1.32180i −0.750473 0.660901i \(-0.770174\pi\)
0.750473 0.660901i \(-0.229826\pi\)
\(350\) 0 0
\(351\) 67.0784i 0.191107i
\(352\) 0 0
\(353\) −429.790 −1.21754 −0.608768 0.793349i \(-0.708336\pi\)
−0.608768 + 0.793349i \(0.708336\pi\)
\(354\) 0 0
\(355\) 150.735 0.424606
\(356\) 0 0
\(357\) − 62.4305i − 0.174875i
\(358\) 0 0
\(359\) 312.402i 0.870200i 0.900382 + 0.435100i \(0.143287\pi\)
−0.900382 + 0.435100i \(0.856713\pi\)
\(360\) 0 0
\(361\) −258.055 −0.714833
\(362\) 0 0
\(363\) −438.256 −1.20732
\(364\) 0 0
\(365\) − 33.0387i − 0.0905170i
\(366\) 0 0
\(367\) 138.931i 0.378558i 0.981923 + 0.189279i \(0.0606151\pi\)
−0.981923 + 0.189279i \(0.939385\pi\)
\(368\) 0 0
\(369\) −206.792 −0.560411
\(370\) 0 0
\(371\) 195.869 0.527949
\(372\) 0 0
\(373\) 422.559i 1.13287i 0.824108 + 0.566433i \(0.191677\pi\)
−0.824108 + 0.566433i \(0.808323\pi\)
\(374\) 0 0
\(375\) 19.3649i 0.0516398i
\(376\) 0 0
\(377\) −11.9402 −0.0316715
\(378\) 0 0
\(379\) −419.245 −1.10619 −0.553094 0.833119i \(-0.686553\pi\)
−0.553094 + 0.833119i \(0.686553\pi\)
\(380\) 0 0
\(381\) − 79.2856i − 0.208099i
\(382\) 0 0
\(383\) 306.762i 0.800944i 0.916309 + 0.400472i \(0.131154\pi\)
−0.916309 + 0.400472i \(0.868846\pi\)
\(384\) 0 0
\(385\) 505.685 1.31347
\(386\) 0 0
\(387\) −209.365 −0.540994
\(388\) 0 0
\(389\) − 441.866i − 1.13590i −0.823062 0.567951i \(-0.807736\pi\)
0.823062 0.567951i \(-0.192264\pi\)
\(390\) 0 0
\(391\) − 38.5420i − 0.0985728i
\(392\) 0 0
\(393\) 322.644 0.820978
\(394\) 0 0
\(395\) −296.129 −0.749693
\(396\) 0 0
\(397\) 160.391i 0.404007i 0.979385 + 0.202004i \(0.0647453\pi\)
−0.979385 + 0.202004i \(0.935255\pi\)
\(398\) 0 0
\(399\) − 205.498i − 0.515033i
\(400\) 0 0
\(401\) 193.791 0.483270 0.241635 0.970367i \(-0.422316\pi\)
0.241635 + 0.970367i \(0.422316\pi\)
\(402\) 0 0
\(403\) −420.783 −1.04413
\(404\) 0 0
\(405\) 20.1246i 0.0496904i
\(406\) 0 0
\(407\) − 60.9797i − 0.149827i
\(408\) 0 0
\(409\) −459.509 −1.12349 −0.561747 0.827309i \(-0.689870\pi\)
−0.561747 + 0.827309i \(0.689870\pi\)
\(410\) 0 0
\(411\) −57.0751 −0.138869
\(412\) 0 0
\(413\) − 843.013i − 2.04119i
\(414\) 0 0
\(415\) 74.6207i 0.179809i
\(416\) 0 0
\(417\) −145.245 −0.348309
\(418\) 0 0
\(419\) −223.442 −0.533274 −0.266637 0.963797i \(-0.585912\pi\)
−0.266637 + 0.963797i \(0.585912\pi\)
\(420\) 0 0
\(421\) − 753.492i − 1.78977i −0.446299 0.894884i \(-0.647258\pi\)
0.446299 0.894884i \(-0.352742\pi\)
\(422\) 0 0
\(423\) − 138.819i − 0.328177i
\(424\) 0 0
\(425\) −15.4121 −0.0362638
\(426\) 0 0
\(427\) −442.867 −1.03716
\(428\) 0 0
\(429\) − 432.427i − 1.00799i
\(430\) 0 0
\(431\) 801.595i 1.85985i 0.367752 + 0.929924i \(0.380128\pi\)
−0.367752 + 0.929924i \(0.619872\pi\)
\(432\) 0 0
\(433\) 725.058 1.67450 0.837249 0.546822i \(-0.184162\pi\)
0.837249 + 0.546822i \(0.184162\pi\)
\(434\) 0 0
\(435\) −3.58224 −0.00823505
\(436\) 0 0
\(437\) − 126.866i − 0.290311i
\(438\) 0 0
\(439\) − 551.061i − 1.25526i −0.778510 0.627632i \(-0.784024\pi\)
0.778510 0.627632i \(-0.215976\pi\)
\(440\) 0 0
\(441\) −263.213 −0.596854
\(442\) 0 0
\(443\) −36.7779 −0.0830201 −0.0415100 0.999138i \(-0.513217\pi\)
−0.0415100 + 0.999138i \(0.513217\pi\)
\(444\) 0 0
\(445\) − 134.971i − 0.303305i
\(446\) 0 0
\(447\) − 141.062i − 0.315574i
\(448\) 0 0
\(449\) 332.641 0.740849 0.370424 0.928863i \(-0.379212\pi\)
0.370424 + 0.928863i \(0.379212\pi\)
\(450\) 0 0
\(451\) 1333.10 2.95588
\(452\) 0 0
\(453\) − 146.743i − 0.323935i
\(454\) 0 0
\(455\) 337.544i 0.741854i
\(456\) 0 0
\(457\) −343.279 −0.751158 −0.375579 0.926790i \(-0.622556\pi\)
−0.375579 + 0.926790i \(0.622556\pi\)
\(458\) 0 0
\(459\) −16.0168 −0.0348949
\(460\) 0 0
\(461\) 208.768i 0.452859i 0.974028 + 0.226429i \(0.0727053\pi\)
−0.974028 + 0.226429i \(0.927295\pi\)
\(462\) 0 0
\(463\) − 239.500i − 0.517278i −0.965974 0.258639i \(-0.916726\pi\)
0.965974 0.258639i \(-0.0832740\pi\)
\(464\) 0 0
\(465\) −126.242 −0.271488
\(466\) 0 0
\(467\) 295.094 0.631892 0.315946 0.948777i \(-0.397678\pi\)
0.315946 + 0.948777i \(0.397678\pi\)
\(468\) 0 0
\(469\) 1417.53i 3.02244i
\(470\) 0 0
\(471\) 290.717i 0.617234i
\(472\) 0 0
\(473\) 1349.69 2.85346
\(474\) 0 0
\(475\) −50.7310 −0.106802
\(476\) 0 0
\(477\) − 50.2508i − 0.105348i
\(478\) 0 0
\(479\) − 533.361i − 1.11349i −0.830684 0.556745i \(-0.812050\pi\)
0.830684 0.556745i \(-0.187950\pi\)
\(480\) 0 0
\(481\) 40.7037 0.0846232
\(482\) 0 0
\(483\) −253.248 −0.524323
\(484\) 0 0
\(485\) − 29.5582i − 0.0609448i
\(486\) 0 0
\(487\) 285.675i 0.586601i 0.956020 + 0.293301i \(0.0947537\pi\)
−0.956020 + 0.293301i \(0.905246\pi\)
\(488\) 0 0
\(489\) 143.537 0.293532
\(490\) 0 0
\(491\) −188.244 −0.383388 −0.191694 0.981455i \(-0.561398\pi\)
−0.191694 + 0.981455i \(0.561398\pi\)
\(492\) 0 0
\(493\) − 2.85103i − 0.00578303i
\(494\) 0 0
\(495\) − 129.735i − 0.262091i
\(496\) 0 0
\(497\) 788.266 1.58605
\(498\) 0 0
\(499\) −625.534 −1.25357 −0.626787 0.779190i \(-0.715631\pi\)
−0.626787 + 0.779190i \(0.715631\pi\)
\(500\) 0 0
\(501\) 64.6008i 0.128944i
\(502\) 0 0
\(503\) 232.863i 0.462949i 0.972841 + 0.231474i \(0.0743549\pi\)
−0.972841 + 0.231474i \(0.925645\pi\)
\(504\) 0 0
\(505\) −332.584 −0.658582
\(506\) 0 0
\(507\) −4.07263 −0.00803280
\(508\) 0 0
\(509\) 615.343i 1.20893i 0.796633 + 0.604463i \(0.206612\pi\)
−0.796633 + 0.604463i \(0.793388\pi\)
\(510\) 0 0
\(511\) − 172.775i − 0.338112i
\(512\) 0 0
\(513\) −52.7212 −0.102770
\(514\) 0 0
\(515\) 299.140 0.580855
\(516\) 0 0
\(517\) 894.909i 1.73096i
\(518\) 0 0
\(519\) 366.896i 0.706929i
\(520\) 0 0
\(521\) 132.731 0.254761 0.127381 0.991854i \(-0.459343\pi\)
0.127381 + 0.991854i \(0.459343\pi\)
\(522\) 0 0
\(523\) 911.886 1.74357 0.871784 0.489890i \(-0.162963\pi\)
0.871784 + 0.489890i \(0.162963\pi\)
\(524\) 0 0
\(525\) 101.269i 0.192892i
\(526\) 0 0
\(527\) − 100.473i − 0.190651i
\(528\) 0 0
\(529\) 372.655 0.704453
\(530\) 0 0
\(531\) −216.278 −0.407303
\(532\) 0 0
\(533\) 889.841i 1.66950i
\(534\) 0 0
\(535\) − 123.439i − 0.230727i
\(536\) 0 0
\(537\) 149.773 0.278907
\(538\) 0 0
\(539\) 1696.83 3.14810
\(540\) 0 0
\(541\) − 373.215i − 0.689861i −0.938628 0.344931i \(-0.887902\pi\)
0.938628 0.344931i \(-0.112098\pi\)
\(542\) 0 0
\(543\) − 137.531i − 0.253280i
\(544\) 0 0
\(545\) −173.671 −0.318662
\(546\) 0 0
\(547\) 175.297 0.320469 0.160235 0.987079i \(-0.448775\pi\)
0.160235 + 0.987079i \(0.448775\pi\)
\(548\) 0 0
\(549\) 113.619i 0.206956i
\(550\) 0 0
\(551\) − 9.38454i − 0.0170318i
\(552\) 0 0
\(553\) −1548.60 −2.80036
\(554\) 0 0
\(555\) 12.2118 0.0220032
\(556\) 0 0
\(557\) − 403.527i − 0.724466i −0.932088 0.362233i \(-0.882015\pi\)
0.932088 0.362233i \(-0.117985\pi\)
\(558\) 0 0
\(559\) 900.913i 1.61165i
\(560\) 0 0
\(561\) 103.253 0.184053
\(562\) 0 0
\(563\) 236.345 0.419796 0.209898 0.977723i \(-0.432687\pi\)
0.209898 + 0.977723i \(0.432687\pi\)
\(564\) 0 0
\(565\) − 203.018i − 0.359324i
\(566\) 0 0
\(567\) 105.241i 0.185611i
\(568\) 0 0
\(569\) −757.837 −1.33187 −0.665937 0.746008i \(-0.731968\pi\)
−0.665937 + 0.746008i \(0.731968\pi\)
\(570\) 0 0
\(571\) −198.009 −0.346775 −0.173388 0.984854i \(-0.555471\pi\)
−0.173388 + 0.984854i \(0.555471\pi\)
\(572\) 0 0
\(573\) 502.886i 0.877637i
\(574\) 0 0
\(575\) 62.5189i 0.108729i
\(576\) 0 0
\(577\) −479.109 −0.830346 −0.415173 0.909743i \(-0.636279\pi\)
−0.415173 + 0.909743i \(0.636279\pi\)
\(578\) 0 0
\(579\) −316.705 −0.546986
\(580\) 0 0
\(581\) 390.228i 0.671649i
\(582\) 0 0
\(583\) 323.947i 0.555654i
\(584\) 0 0
\(585\) 86.5979 0.148031
\(586\) 0 0
\(587\) 658.065 1.12106 0.560532 0.828133i \(-0.310597\pi\)
0.560532 + 0.828133i \(0.310597\pi\)
\(588\) 0 0
\(589\) − 330.720i − 0.561495i
\(590\) 0 0
\(591\) − 170.025i − 0.287691i
\(592\) 0 0
\(593\) 202.971 0.342279 0.171139 0.985247i \(-0.445255\pi\)
0.171139 + 0.985247i \(0.445255\pi\)
\(594\) 0 0
\(595\) −80.5975 −0.135458
\(596\) 0 0
\(597\) − 390.326i − 0.653813i
\(598\) 0 0
\(599\) 11.7767i 0.0196605i 0.999952 + 0.00983027i \(0.00312912\pi\)
−0.999952 + 0.00983027i \(0.996871\pi\)
\(600\) 0 0
\(601\) 206.863 0.344198 0.172099 0.985080i \(-0.444945\pi\)
0.172099 + 0.985080i \(0.444945\pi\)
\(602\) 0 0
\(603\) 363.671 0.603102
\(604\) 0 0
\(605\) 565.786i 0.935183i
\(606\) 0 0
\(607\) 885.649i 1.45906i 0.683950 + 0.729529i \(0.260261\pi\)
−0.683950 + 0.729529i \(0.739739\pi\)
\(608\) 0 0
\(609\) −18.7333 −0.0307607
\(610\) 0 0
\(611\) −597.349 −0.977658
\(612\) 0 0
\(613\) − 979.091i − 1.59721i −0.601855 0.798606i \(-0.705571\pi\)
0.601855 0.798606i \(-0.294429\pi\)
\(614\) 0 0
\(615\) 266.967i 0.434092i
\(616\) 0 0
\(617\) 1064.97 1.72604 0.863019 0.505171i \(-0.168571\pi\)
0.863019 + 0.505171i \(0.168571\pi\)
\(618\) 0 0
\(619\) 658.875 1.06442 0.532209 0.846613i \(-0.321362\pi\)
0.532209 + 0.846613i \(0.321362\pi\)
\(620\) 0 0
\(621\) 64.9716i 0.104624i
\(622\) 0 0
\(623\) − 705.827i − 1.13295i
\(624\) 0 0
\(625\) 25.0000 0.0400000
\(626\) 0 0
\(627\) 339.872 0.542061
\(628\) 0 0
\(629\) 9.71910i 0.0154517i
\(630\) 0 0
\(631\) − 1074.30i − 1.70253i −0.524736 0.851265i \(-0.675836\pi\)
0.524736 0.851265i \(-0.324164\pi\)
\(632\) 0 0
\(633\) 524.219 0.828150
\(634\) 0 0
\(635\) −102.357 −0.161192
\(636\) 0 0
\(637\) 1132.63i 1.77806i
\(638\) 0 0
\(639\) − 202.232i − 0.316482i
\(640\) 0 0
\(641\) 170.402 0.265838 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(642\) 0 0
\(643\) 387.322 0.602367 0.301183 0.953566i \(-0.402618\pi\)
0.301183 + 0.953566i \(0.402618\pi\)
\(644\) 0 0
\(645\) 270.289i 0.419052i
\(646\) 0 0
\(647\) 1098.39i 1.69766i 0.528665 + 0.848830i \(0.322693\pi\)
−0.528665 + 0.848830i \(0.677307\pi\)
\(648\) 0 0
\(649\) 1394.25 2.14831
\(650\) 0 0
\(651\) −660.180 −1.01410
\(652\) 0 0
\(653\) − 801.196i − 1.22695i −0.789716 0.613473i \(-0.789772\pi\)
0.789716 0.613473i \(-0.210228\pi\)
\(654\) 0 0
\(655\) − 416.532i − 0.635927i
\(656\) 0 0
\(657\) −44.3261 −0.0674674
\(658\) 0 0
\(659\) 204.225 0.309901 0.154950 0.987922i \(-0.450478\pi\)
0.154950 + 0.987922i \(0.450478\pi\)
\(660\) 0 0
\(661\) − 283.821i − 0.429382i −0.976682 0.214691i \(-0.931126\pi\)
0.976682 0.214691i \(-0.0688744\pi\)
\(662\) 0 0
\(663\) 68.9214i 0.103954i
\(664\) 0 0
\(665\) −265.297 −0.398943
\(666\) 0 0
\(667\) −11.5651 −0.0173390
\(668\) 0 0
\(669\) − 749.177i − 1.11985i
\(670\) 0 0
\(671\) − 732.455i − 1.09159i
\(672\) 0 0
\(673\) −371.454 −0.551937 −0.275969 0.961167i \(-0.588999\pi\)
−0.275969 + 0.961167i \(0.588999\pi\)
\(674\) 0 0
\(675\) 25.9808 0.0384900
\(676\) 0 0
\(677\) 1084.06i 1.60127i 0.599150 + 0.800637i \(0.295505\pi\)
−0.599150 + 0.800637i \(0.704495\pi\)
\(678\) 0 0
\(679\) − 154.574i − 0.227650i
\(680\) 0 0
\(681\) −622.360 −0.913891
\(682\) 0 0
\(683\) 580.301 0.849636 0.424818 0.905279i \(-0.360338\pi\)
0.424818 + 0.905279i \(0.360338\pi\)
\(684\) 0 0
\(685\) 73.6836i 0.107567i
\(686\) 0 0
\(687\) − 367.561i − 0.535023i
\(688\) 0 0
\(689\) −216.233 −0.313837
\(690\) 0 0
\(691\) 438.911 0.635183 0.317592 0.948228i \(-0.397126\pi\)
0.317592 + 0.948228i \(0.397126\pi\)
\(692\) 0 0
\(693\) − 678.448i − 0.979002i
\(694\) 0 0
\(695\) 187.510i 0.269799i
\(696\) 0 0
\(697\) −212.473 −0.304840
\(698\) 0 0
\(699\) 479.182 0.685525
\(700\) 0 0
\(701\) − 173.658i − 0.247730i −0.992299 0.123865i \(-0.960471\pi\)
0.992299 0.123865i \(-0.0395289\pi\)
\(702\) 0 0
\(703\) 31.9917i 0.0455073i
\(704\) 0 0
\(705\) −179.214 −0.254205
\(706\) 0 0
\(707\) −1739.24 −2.46003
\(708\) 0 0
\(709\) − 1231.35i − 1.73674i −0.495913 0.868372i \(-0.665166\pi\)
0.495913 0.868372i \(-0.334834\pi\)
\(710\) 0 0
\(711\) 397.299i 0.558788i
\(712\) 0 0
\(713\) −407.567 −0.571623
\(714\) 0 0
\(715\) −558.261 −0.780785
\(716\) 0 0
\(717\) 48.3426i 0.0674234i
\(718\) 0 0
\(719\) − 327.782i − 0.455885i −0.973675 0.227943i \(-0.926800\pi\)
0.973675 0.227943i \(-0.0731999\pi\)
\(720\) 0 0
\(721\) 1564.35 2.16970
\(722\) 0 0
\(723\) 199.913 0.276505
\(724\) 0 0
\(725\) 4.62466i 0.00637884i
\(726\) 0 0
\(727\) − 217.872i − 0.299686i −0.988710 0.149843i \(-0.952123\pi\)
0.988710 0.149843i \(-0.0478768\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) 0 0
\(731\) −215.117 −0.294278
\(732\) 0 0
\(733\) − 154.099i − 0.210231i −0.994460 0.105115i \(-0.966479\pi\)
0.994460 0.105115i \(-0.0335212\pi\)
\(734\) 0 0
\(735\) 339.806i 0.462321i
\(736\) 0 0
\(737\) −2344.44 −3.18106
\(738\) 0 0
\(739\) −497.686 −0.673459 −0.336729 0.941601i \(-0.609321\pi\)
−0.336729 + 0.941601i \(0.609321\pi\)
\(740\) 0 0
\(741\) 226.864i 0.306159i
\(742\) 0 0
\(743\) 657.468i 0.884883i 0.896797 + 0.442441i \(0.145888\pi\)
−0.896797 + 0.442441i \(0.854112\pi\)
\(744\) 0 0
\(745\) −182.110 −0.244443
\(746\) 0 0
\(747\) 100.114 0.134022
\(748\) 0 0
\(749\) − 645.522i − 0.861846i
\(750\) 0 0
\(751\) 379.552i 0.505396i 0.967545 + 0.252698i \(0.0813179\pi\)
−0.967545 + 0.252698i \(0.918682\pi\)
\(752\) 0 0
\(753\) −46.1931 −0.0613455
\(754\) 0 0
\(755\) −189.444 −0.250919
\(756\) 0 0
\(757\) − 195.966i − 0.258872i −0.991588 0.129436i \(-0.958683\pi\)
0.991588 0.129436i \(-0.0413166\pi\)
\(758\) 0 0
\(759\) − 418.845i − 0.551838i
\(760\) 0 0
\(761\) −963.030 −1.26548 −0.632740 0.774364i \(-0.718070\pi\)
−0.632740 + 0.774364i \(0.718070\pi\)
\(762\) 0 0
\(763\) −908.209 −1.19031
\(764\) 0 0
\(765\) 20.6775i 0.0270295i
\(766\) 0 0
\(767\) 930.661i 1.21338i
\(768\) 0 0
\(769\) 81.3670 0.105809 0.0529044 0.998600i \(-0.483152\pi\)
0.0529044 + 0.998600i \(0.483152\pi\)
\(770\) 0 0
\(771\) −294.717 −0.382253
\(772\) 0 0
\(773\) 781.463i 1.01095i 0.862842 + 0.505474i \(0.168682\pi\)
−0.862842 + 0.505474i \(0.831318\pi\)
\(774\) 0 0
\(775\) 162.978i 0.210294i
\(776\) 0 0
\(777\) 63.8613 0.0821896
\(778\) 0 0
\(779\) −699.383 −0.897795
\(780\) 0 0
\(781\) 1303.71i 1.66928i
\(782\) 0 0
\(783\) 4.80609i 0.00613804i
\(784\) 0 0
\(785\) 375.314 0.478107
\(786\) 0 0
\(787\) −1030.41 −1.30929 −0.654644 0.755937i \(-0.727182\pi\)
−0.654644 + 0.755937i \(0.727182\pi\)
\(788\) 0 0
\(789\) − 183.005i − 0.231945i
\(790\) 0 0
\(791\) − 1061.68i − 1.34220i
\(792\) 0 0
\(793\) 488.912 0.616534
\(794\) 0 0
\(795\) −64.8735 −0.0816019
\(796\) 0 0
\(797\) 85.4710i 0.107241i 0.998561 + 0.0536205i \(0.0170761\pi\)
−0.998561 + 0.0536205i \(0.982924\pi\)
\(798\) 0 0
\(799\) − 142.633i − 0.178514i
\(800\) 0 0
\(801\) −181.082 −0.226070
\(802\) 0 0
\(803\) 285.752 0.355856
\(804\) 0 0
\(805\) 326.942i 0.406139i
\(806\) 0 0
\(807\) − 358.342i − 0.444042i
\(808\) 0 0
\(809\) 749.874 0.926915 0.463458 0.886119i \(-0.346609\pi\)
0.463458 + 0.886119i \(0.346609\pi\)
\(810\) 0 0
\(811\) 454.606 0.560550 0.280275 0.959920i \(-0.409574\pi\)
0.280275 + 0.959920i \(0.409574\pi\)
\(812\) 0 0
\(813\) 429.132i 0.527837i
\(814\) 0 0
\(815\) − 185.306i − 0.227369i
\(816\) 0 0
\(817\) −708.085 −0.866689
\(818\) 0 0
\(819\) 452.862 0.552945
\(820\) 0 0
\(821\) − 40.2949i − 0.0490802i −0.999699 0.0245401i \(-0.992188\pi\)
0.999699 0.0245401i \(-0.00781214\pi\)
\(822\) 0 0
\(823\) − 1109.53i − 1.34815i −0.738662 0.674076i \(-0.764542\pi\)
0.738662 0.674076i \(-0.235458\pi\)
\(824\) 0 0
\(825\) −167.487 −0.203015
\(826\) 0 0
\(827\) −750.168 −0.907096 −0.453548 0.891232i \(-0.649842\pi\)
−0.453548 + 0.891232i \(0.649842\pi\)
\(828\) 0 0
\(829\) − 182.949i − 0.220687i −0.993894 0.110343i \(-0.964805\pi\)
0.993894 0.110343i \(-0.0351950\pi\)
\(830\) 0 0
\(831\) 46.6766i 0.0561692i
\(832\) 0 0
\(833\) −270.445 −0.324663
\(834\) 0 0
\(835\) 83.3993 0.0998794
\(836\) 0 0
\(837\) 169.371i 0.202355i
\(838\) 0 0
\(839\) − 719.345i − 0.857384i −0.903451 0.428692i \(-0.858975\pi\)
0.903451 0.428692i \(-0.141025\pi\)
\(840\) 0 0
\(841\) 840.145 0.998983
\(842\) 0 0
\(843\) 501.410 0.594793
\(844\) 0 0
\(845\) 5.25774i 0.00622218i
\(846\) 0 0
\(847\) 2958.77i 3.49323i
\(848\) 0 0
\(849\) 5.21819 0.00614628
\(850\) 0 0
\(851\) 39.4253 0.0463282
\(852\) 0 0
\(853\) − 593.155i − 0.695375i −0.937610 0.347688i \(-0.886967\pi\)
0.937610 0.347688i \(-0.113033\pi\)
\(854\) 0 0
\(855\) 68.0628i 0.0796056i
\(856\) 0 0
\(857\) −180.069 −0.210116 −0.105058 0.994466i \(-0.533503\pi\)
−0.105058 + 0.994466i \(0.533503\pi\)
\(858\) 0 0
\(859\) −509.587 −0.593232 −0.296616 0.954997i \(-0.595858\pi\)
−0.296616 + 0.954997i \(0.595858\pi\)
\(860\) 0 0
\(861\) 1396.10i 1.62149i
\(862\) 0 0
\(863\) − 1430.93i − 1.65809i −0.559181 0.829046i \(-0.688884\pi\)
0.559181 0.829046i \(-0.311116\pi\)
\(864\) 0 0
\(865\) 473.661 0.547585
\(866\) 0 0
\(867\) 484.106 0.558369
\(868\) 0 0
\(869\) − 2561.22i − 2.94732i
\(870\) 0 0
\(871\) − 1564.91i − 1.79668i
\(872\) 0 0
\(873\) −39.6565 −0.0454256
\(874\) 0 0
\(875\) 130.737 0.149414
\(876\) 0 0
\(877\) − 905.426i − 1.03241i −0.856464 0.516207i \(-0.827344\pi\)
0.856464 0.516207i \(-0.172656\pi\)
\(878\) 0 0
\(879\) − 164.883i − 0.187580i
\(880\) 0 0
\(881\) 1479.51 1.67935 0.839677 0.543086i \(-0.182744\pi\)
0.839677 + 0.543086i \(0.182744\pi\)
\(882\) 0 0
\(883\) −360.404 −0.408158 −0.204079 0.978954i \(-0.565420\pi\)
−0.204079 + 0.978954i \(0.565420\pi\)
\(884\) 0 0
\(885\) 279.213i 0.315495i
\(886\) 0 0
\(887\) − 1106.42i − 1.24738i −0.781674 0.623688i \(-0.785634\pi\)
0.781674 0.623688i \(-0.214366\pi\)
\(888\) 0 0
\(889\) −535.276 −0.602110
\(890\) 0 0
\(891\) −174.058 −0.195351
\(892\) 0 0
\(893\) − 469.494i − 0.525750i
\(894\) 0 0
\(895\) − 193.356i − 0.216040i
\(896\) 0 0
\(897\) 279.578 0.311681
\(898\) 0 0
\(899\) −30.1486 −0.0335357
\(900\) 0 0
\(901\) − 51.6315i − 0.0573046i
\(902\) 0 0
\(903\) 1413.47i 1.56530i
\(904\) 0 0
\(905\) −177.552 −0.196190
\(906\) 0 0
\(907\) −1467.30 −1.61775 −0.808876 0.587979i \(-0.799924\pi\)
−0.808876 + 0.587979i \(0.799924\pi\)
\(908\) 0 0
\(909\) 446.208i 0.490878i
\(910\) 0 0
\(911\) 1188.75i 1.30488i 0.757840 + 0.652441i \(0.226255\pi\)
−0.757840 + 0.652441i \(0.773745\pi\)
\(912\) 0 0
\(913\) −645.396 −0.706896
\(914\) 0 0
\(915\) 146.681 0.160308
\(916\) 0 0
\(917\) − 2178.25i − 2.37541i
\(918\) 0 0
\(919\) − 917.844i − 0.998743i −0.866388 0.499371i \(-0.833564\pi\)
0.866388 0.499371i \(-0.166436\pi\)
\(920\) 0 0
\(921\) 289.856 0.314718
\(922\) 0 0
\(923\) −870.222 −0.942819
\(924\) 0 0
\(925\) − 15.7653i − 0.0170436i
\(926\) 0 0
\(927\) − 401.339i − 0.432944i
\(928\) 0 0
\(929\) −326.140 −0.351066 −0.175533 0.984474i \(-0.556165\pi\)
−0.175533 + 0.984474i \(0.556165\pi\)
\(930\) 0 0
\(931\) −890.203 −0.956179
\(932\) 0 0
\(933\) − 518.710i − 0.555960i
\(934\) 0 0
\(935\) − 133.300i − 0.142566i
\(936\) 0 0
\(937\) 803.356 0.857370 0.428685 0.903454i \(-0.358977\pi\)
0.428685 + 0.903454i \(0.358977\pi\)
\(938\) 0 0
\(939\) 214.122 0.228032
\(940\) 0 0
\(941\) − 617.150i − 0.655845i −0.944705 0.327922i \(-0.893652\pi\)
0.944705 0.327922i \(-0.106348\pi\)
\(942\) 0 0
\(943\) 861.892i 0.913990i
\(944\) 0 0
\(945\) 135.866 0.143774
\(946\) 0 0
\(947\) 1372.28 1.44908 0.724542 0.689231i \(-0.242052\pi\)
0.724542 + 0.689231i \(0.242052\pi\)
\(948\) 0 0
\(949\) 190.739i 0.200989i
\(950\) 0 0
\(951\) − 235.471i − 0.247603i
\(952\) 0 0
\(953\) −313.823 −0.329300 −0.164650 0.986352i \(-0.552649\pi\)
−0.164650 + 0.986352i \(0.552649\pi\)
\(954\) 0 0
\(955\) 649.223 0.679815
\(956\) 0 0
\(957\) − 30.9829i − 0.0323750i
\(958\) 0 0
\(959\) 385.327i 0.401801i
\(960\) 0 0
\(961\) −101.467 −0.105585
\(962\) 0 0
\(963\) −165.611 −0.171974
\(964\) 0 0
\(965\) 408.865i 0.423694i
\(966\) 0 0
\(967\) 191.090i 0.197611i 0.995107 + 0.0988055i \(0.0315022\pi\)
−0.995107 + 0.0988055i \(0.968498\pi\)
\(968\) 0 0
\(969\) −54.1697 −0.0559027
\(970\) 0 0
\(971\) −88.4914 −0.0911343 −0.0455671 0.998961i \(-0.514509\pi\)
−0.0455671 + 0.998961i \(0.514509\pi\)
\(972\) 0 0
\(973\) 980.582i 1.00779i
\(974\) 0 0
\(975\) − 111.797i − 0.114664i
\(976\) 0 0
\(977\) −1367.80 −1.40000 −0.700001 0.714142i \(-0.746817\pi\)
−0.700001 + 0.714142i \(0.746817\pi\)
\(978\) 0 0
\(979\) 1167.36 1.19240
\(980\) 0 0
\(981\) 233.004i 0.237517i
\(982\) 0 0
\(983\) − 266.437i − 0.271045i −0.990774 0.135522i \(-0.956729\pi\)
0.990774 0.135522i \(-0.0432713\pi\)
\(984\) 0 0
\(985\) −219.501 −0.222844
\(986\) 0 0
\(987\) −937.199 −0.949543
\(988\) 0 0
\(989\) 872.617i 0.882322i
\(990\) 0 0
\(991\) 842.673i 0.850326i 0.905117 + 0.425163i \(0.139783\pi\)
−0.905117 + 0.425163i \(0.860217\pi\)
\(992\) 0 0
\(993\) −71.3408 −0.0718437
\(994\) 0 0
\(995\) −503.909 −0.506441
\(996\) 0 0
\(997\) 1590.97i 1.59576i 0.602817 + 0.797879i \(0.294045\pi\)
−0.602817 + 0.797879i \(0.705955\pi\)
\(998\) 0 0
\(999\) − 16.3838i − 0.0164002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.3.g.a.271.8 16
3.2 odd 2 1440.3.g.c.271.8 16
4.3 odd 2 120.3.g.a.91.7 16
5.2 odd 4 2400.3.p.b.1999.22 32
5.3 odd 4 2400.3.p.b.1999.9 32
5.4 even 2 2400.3.g.b.751.9 16
8.3 odd 2 inner 480.3.g.a.271.1 16
8.5 even 2 120.3.g.a.91.8 yes 16
12.11 even 2 360.3.g.c.91.10 16
20.3 even 4 600.3.p.b.499.6 32
20.7 even 4 600.3.p.b.499.27 32
20.19 odd 2 600.3.g.d.451.10 16
24.5 odd 2 360.3.g.c.91.9 16
24.11 even 2 1440.3.g.c.271.9 16
40.3 even 4 2400.3.p.b.1999.21 32
40.13 odd 4 600.3.p.b.499.28 32
40.19 odd 2 2400.3.g.b.751.16 16
40.27 even 4 2400.3.p.b.1999.10 32
40.29 even 2 600.3.g.d.451.9 16
40.37 odd 4 600.3.p.b.499.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.7 16 4.3 odd 2
120.3.g.a.91.8 yes 16 8.5 even 2
360.3.g.c.91.9 16 24.5 odd 2
360.3.g.c.91.10 16 12.11 even 2
480.3.g.a.271.1 16 8.3 odd 2 inner
480.3.g.a.271.8 16 1.1 even 1 trivial
600.3.g.d.451.9 16 40.29 even 2
600.3.g.d.451.10 16 20.19 odd 2
600.3.p.b.499.5 32 40.37 odd 4
600.3.p.b.499.6 32 20.3 even 4
600.3.p.b.499.27 32 20.7 even 4
600.3.p.b.499.28 32 40.13 odd 4
1440.3.g.c.271.8 16 3.2 odd 2
1440.3.g.c.271.9 16 24.11 even 2
2400.3.g.b.751.9 16 5.4 even 2
2400.3.g.b.751.16 16 40.19 odd 2
2400.3.p.b.1999.9 32 5.3 odd 4
2400.3.p.b.1999.10 32 40.27 even 4
2400.3.p.b.1999.21 32 40.3 even 4
2400.3.p.b.1999.22 32 5.2 odd 4