Properties

Label 600.3.p.b.499.28
Level $600$
Weight $3$
Character 600.499
Analytic conductor $16.349$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,3,Mod(499,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.499"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.p (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,-28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 499.28
Character \(\chi\) \(=\) 600.499
Dual form 600.3.p.b.499.27

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64881 + 1.13200i) q^{2} +1.73205i q^{3} +(1.43715 + 3.73291i) q^{4} +(-1.96068 + 2.85582i) q^{6} +11.6935 q^{7} +(-1.85607 + 7.78171i) q^{8} -3.00000 q^{9} +19.3398 q^{11} +(-6.46559 + 2.48921i) q^{12} -12.9092 q^{13} +(19.2803 + 13.2370i) q^{14} +(-11.8692 + 10.7295i) q^{16} -3.08243i q^{17} +(-4.94643 - 3.39600i) q^{18} +10.1462 q^{19} +20.2537i q^{21} +(31.8876 + 21.8926i) q^{22} +12.5038 q^{23} +(-13.4783 - 3.21481i) q^{24} +(-21.2849 - 14.6133i) q^{26} -5.19615i q^{27} +(16.8053 + 43.6507i) q^{28} -0.924932i q^{29} -32.5955i q^{31} +(-31.7159 + 4.25493i) q^{32} +33.4975i q^{33} +(3.48931 - 5.08233i) q^{34} +(-4.31144 - 11.1987i) q^{36} -3.15307 q^{37} +(16.7292 + 11.4855i) q^{38} -22.3595i q^{39} -68.9305 q^{41} +(-22.9272 + 33.3945i) q^{42} +69.7882i q^{43} +(27.7941 + 72.1936i) q^{44} +(20.6164 + 14.1543i) q^{46} -46.2730 q^{47} +(-18.5840 - 20.5581i) q^{48} +87.7376 q^{49} +5.33892 q^{51} +(-18.5525 - 48.1890i) q^{52} -16.7503 q^{53} +(5.88205 - 8.56747i) q^{54} +(-21.7039 + 90.9953i) q^{56} +17.5737i q^{57} +(1.04702 - 1.52504i) q^{58} -72.0926 q^{59} -37.8730i q^{61} +(36.8981 - 53.7438i) q^{62} -35.0805 q^{63} +(-57.1100 - 28.8868i) q^{64} +(-37.9192 + 55.2310i) q^{66} +121.224i q^{67} +(11.5064 - 4.42990i) q^{68} +21.6572i q^{69} -67.4107i q^{71} +(5.56821 - 23.3451i) q^{72} -14.7754i q^{73} +(-5.19881 - 3.56928i) q^{74} +(14.5816 + 37.8748i) q^{76} +226.149 q^{77} +(25.3109 - 36.8665i) q^{78} -132.433i q^{79} +9.00000 q^{81} +(-113.653 - 78.0294i) q^{82} -33.3714i q^{83} +(-75.6052 + 29.1076i) q^{84} +(-79.0003 + 115.068i) q^{86} +1.60203 q^{87} +(-35.8960 + 150.497i) q^{88} +60.3607 q^{89} -150.954 q^{91} +(17.9698 + 46.6755i) q^{92} +56.4571 q^{93} +(-76.2953 - 52.3810i) q^{94} +(-7.36975 - 54.9335i) q^{96} +13.2188i q^{97} +(144.663 + 99.3190i) q^{98} -58.0193 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 28 q^{4} + 12 q^{6} - 96 q^{9} + 128 q^{11} + 40 q^{14} - 28 q^{16} + 64 q^{19} + 108 q^{24} + 72 q^{26} + 144 q^{34} + 84 q^{36} + 200 q^{44} + 424 q^{46} + 160 q^{49} + 192 q^{51} - 36 q^{54} - 232 q^{56}+ \cdots - 384 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.64881 + 1.13200i 0.824405 + 0.566000i
\(3\) 1.73205i 0.577350i
\(4\) 1.43715 + 3.73291i 0.359287 + 0.933227i
\(5\) 0 0
\(6\) −1.96068 + 2.85582i −0.326780 + 0.475970i
\(7\) 11.6935 1.67050 0.835249 0.549872i \(-0.185324\pi\)
0.835249 + 0.549872i \(0.185324\pi\)
\(8\) −1.85607 + 7.78171i −0.232009 + 0.972714i
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 19.3398 1.75816 0.879081 0.476673i \(-0.158157\pi\)
0.879081 + 0.476673i \(0.158157\pi\)
\(12\) −6.46559 + 2.48921i −0.538799 + 0.207434i
\(13\) −12.9092 −0.993019 −0.496510 0.868031i \(-0.665385\pi\)
−0.496510 + 0.868031i \(0.665385\pi\)
\(14\) 19.2803 + 13.2370i 1.37717 + 0.945502i
\(15\) 0 0
\(16\) −11.8692 + 10.7295i −0.741826 + 0.670593i
\(17\) 3.08243i 0.181319i −0.995882 0.0906596i \(-0.971102\pi\)
0.995882 0.0906596i \(-0.0288975\pi\)
\(18\) −4.94643 3.39600i −0.274802 0.188667i
\(19\) 10.1462 0.534010 0.267005 0.963695i \(-0.413966\pi\)
0.267005 + 0.963695i \(0.413966\pi\)
\(20\) 0 0
\(21\) 20.2537i 0.964462i
\(22\) 31.8876 + 21.8926i 1.44944 + 0.995120i
\(23\) 12.5038 0.543643 0.271821 0.962348i \(-0.412374\pi\)
0.271821 + 0.962348i \(0.412374\pi\)
\(24\) −13.4783 3.21481i −0.561596 0.133950i
\(25\) 0 0
\(26\) −21.2849 14.6133i −0.818650 0.562049i
\(27\) 5.19615i 0.192450i
\(28\) 16.8053 + 43.6507i 0.600188 + 1.55895i
\(29\) 0.924932i 0.0318942i −0.999873 0.0159471i \(-0.994924\pi\)
0.999873 0.0159471i \(-0.00507633\pi\)
\(30\) 0 0
\(31\) 32.5955i 1.05147i −0.850649 0.525734i \(-0.823791\pi\)
0.850649 0.525734i \(-0.176209\pi\)
\(32\) −31.7159 + 4.25493i −0.991121 + 0.132966i
\(33\) 33.4975i 1.01508i
\(34\) 3.48931 5.08233i 0.102627 0.149480i
\(35\) 0 0
\(36\) −4.31144 11.1987i −0.119762 0.311076i
\(37\) −3.15307 −0.0852181 −0.0426090 0.999092i \(-0.513567\pi\)
−0.0426090 + 0.999092i \(0.513567\pi\)
\(38\) 16.7292 + 11.4855i 0.440241 + 0.302250i
\(39\) 22.3595i 0.573320i
\(40\) 0 0
\(41\) −68.9305 −1.68123 −0.840616 0.541631i \(-0.817807\pi\)
−0.840616 + 0.541631i \(0.817807\pi\)
\(42\) −22.9272 + 33.3945i −0.545886 + 0.795108i
\(43\) 69.7882i 1.62298i 0.584365 + 0.811491i \(0.301344\pi\)
−0.584365 + 0.811491i \(0.698656\pi\)
\(44\) 27.7941 + 72.1936i 0.631685 + 1.64076i
\(45\) 0 0
\(46\) 20.6164 + 14.1543i 0.448182 + 0.307702i
\(47\) −46.2730 −0.984531 −0.492265 0.870445i \(-0.663831\pi\)
−0.492265 + 0.870445i \(0.663831\pi\)
\(48\) −18.5840 20.5581i −0.387167 0.428293i
\(49\) 87.7376 1.79056
\(50\) 0 0
\(51\) 5.33892 0.104685
\(52\) −18.5525 48.1890i −0.356779 0.926712i
\(53\) −16.7503 −0.316043 −0.158021 0.987436i \(-0.550512\pi\)
−0.158021 + 0.987436i \(0.550512\pi\)
\(54\) 5.88205 8.56747i 0.108927 0.158657i
\(55\) 0 0
\(56\) −21.7039 + 90.9953i −0.387570 + 1.62492i
\(57\) 17.5737i 0.308311i
\(58\) 1.04702 1.52504i 0.0180521 0.0262937i
\(59\) −72.0926 −1.22191 −0.610954 0.791666i \(-0.709214\pi\)
−0.610954 + 0.791666i \(0.709214\pi\)
\(60\) 0 0
\(61\) 37.8730i 0.620869i −0.950595 0.310434i \(-0.899526\pi\)
0.950595 0.310434i \(-0.100474\pi\)
\(62\) 36.8981 53.7438i 0.595131 0.866835i
\(63\) −35.0805 −0.556833
\(64\) −57.1100 28.8868i −0.892344 0.451356i
\(65\) 0 0
\(66\) −37.9192 + 55.2310i −0.574533 + 0.836833i
\(67\) 121.224i 1.80931i 0.426148 + 0.904654i \(0.359870\pi\)
−0.426148 + 0.904654i \(0.640130\pi\)
\(68\) 11.5064 4.42990i 0.169212 0.0651456i
\(69\) 21.6572i 0.313872i
\(70\) 0 0
\(71\) 67.4107i 0.949447i −0.880135 0.474724i \(-0.842548\pi\)
0.880135 0.474724i \(-0.157452\pi\)
\(72\) 5.56821 23.3451i 0.0773363 0.324238i
\(73\) 14.7754i 0.202402i −0.994866 0.101201i \(-0.967731\pi\)
0.994866 0.101201i \(-0.0322685\pi\)
\(74\) −5.19881 3.56928i −0.0702542 0.0482335i
\(75\) 0 0
\(76\) 14.5816 + 37.8748i 0.191863 + 0.498353i
\(77\) 226.149 2.93701
\(78\) 25.3109 36.8665i 0.324499 0.472648i
\(79\) 132.433i 1.67637i −0.545390 0.838183i \(-0.683618\pi\)
0.545390 0.838183i \(-0.316382\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) −113.653 78.0294i −1.38602 0.951578i
\(83\) 33.3714i 0.402065i −0.979585 0.201033i \(-0.935570\pi\)
0.979585 0.201033i \(-0.0644297\pi\)
\(84\) −75.6052 + 29.1076i −0.900062 + 0.346519i
\(85\) 0 0
\(86\) −79.0003 + 115.068i −0.918608 + 1.33799i
\(87\) 1.60203 0.0184141
\(88\) −35.8960 + 150.497i −0.407909 + 1.71019i
\(89\) 60.3607 0.678210 0.339105 0.940749i \(-0.389876\pi\)
0.339105 + 0.940749i \(0.389876\pi\)
\(90\) 0 0
\(91\) −150.954 −1.65884
\(92\) 17.9698 + 46.6755i 0.195324 + 0.507342i
\(93\) 56.4571 0.607065
\(94\) −76.2953 52.3810i −0.811652 0.557245i
\(95\) 0 0
\(96\) −7.36975 54.9335i −0.0767682 0.572224i
\(97\) 13.2188i 0.136277i 0.997676 + 0.0681383i \(0.0217059\pi\)
−0.997676 + 0.0681383i \(0.978294\pi\)
\(98\) 144.663 + 99.3190i 1.47615 + 1.01346i
\(99\) −58.0193 −0.586054
\(100\) 0 0
\(101\) 148.736i 1.47263i −0.676636 0.736317i \(-0.736563\pi\)
0.676636 0.736317i \(-0.263437\pi\)
\(102\) 8.80286 + 6.04366i 0.0863025 + 0.0592516i
\(103\) 133.780 1.29883 0.649416 0.760434i \(-0.275014\pi\)
0.649416 + 0.760434i \(0.275014\pi\)
\(104\) 23.9605 100.456i 0.230389 0.965923i
\(105\) 0 0
\(106\) −27.6180 18.9613i −0.260547 0.178880i
\(107\) 55.2036i 0.515921i −0.966155 0.257961i \(-0.916949\pi\)
0.966155 0.257961i \(-0.0830505\pi\)
\(108\) 19.3968 7.46764i 0.179600 0.0691448i
\(109\) 77.6680i 0.712550i 0.934381 + 0.356275i \(0.115953\pi\)
−0.934381 + 0.356275i \(0.884047\pi\)
\(110\) 0 0
\(111\) 5.46128i 0.0492007i
\(112\) −138.792 + 125.465i −1.23922 + 1.12022i
\(113\) 90.7924i 0.803472i −0.915755 0.401736i \(-0.868407\pi\)
0.915755 0.401736i \(-0.131593\pi\)
\(114\) −19.8935 + 28.9757i −0.174504 + 0.254173i
\(115\) 0 0
\(116\) 3.45268 1.32926i 0.0297645 0.0114592i
\(117\) 38.7277 0.331006
\(118\) −118.867 81.6088i −1.00735 0.691600i
\(119\) 36.0443i 0.302893i
\(120\) 0 0
\(121\) 253.027 2.09113
\(122\) 42.8723 62.4454i 0.351412 0.511847i
\(123\) 119.391i 0.970660i
\(124\) 121.676 46.8446i 0.981258 0.377779i
\(125\) 0 0
\(126\) −57.8410 39.7111i −0.459056 0.315167i
\(127\) 45.7755 0.360437 0.180219 0.983627i \(-0.442319\pi\)
0.180219 + 0.983627i \(0.442319\pi\)
\(128\) −61.4636 112.277i −0.480185 0.877167i
\(129\) −120.877 −0.937029
\(130\) 0 0
\(131\) 186.279 1.42197 0.710987 0.703205i \(-0.248248\pi\)
0.710987 + 0.703205i \(0.248248\pi\)
\(132\) −125.043 + 48.1408i −0.947296 + 0.364703i
\(133\) 118.644 0.892063
\(134\) −137.225 + 199.875i −1.02407 + 1.49160i
\(135\) 0 0
\(136\) 23.9865 + 5.72120i 0.176372 + 0.0420677i
\(137\) 32.9523i 0.240528i −0.992742 0.120264i \(-0.961626\pi\)
0.992742 0.120264i \(-0.0383741\pi\)
\(138\) −24.5160 + 35.7086i −0.177652 + 0.258758i
\(139\) 83.8571 0.603289 0.301644 0.953421i \(-0.402464\pi\)
0.301644 + 0.953421i \(0.402464\pi\)
\(140\) 0 0
\(141\) 80.1471i 0.568419i
\(142\) 76.3090 111.148i 0.537387 0.782729i
\(143\) −249.662 −1.74589
\(144\) 35.6076 32.1885i 0.247275 0.223531i
\(145\) 0 0
\(146\) 16.7257 24.3618i 0.114560 0.166861i
\(147\) 151.966i 1.03378i
\(148\) −4.53143 11.7701i −0.0306178 0.0795278i
\(149\) 81.4421i 0.546591i 0.961930 + 0.273296i \(0.0881137\pi\)
−0.961930 + 0.273296i \(0.911886\pi\)
\(150\) 0 0
\(151\) 84.7219i 0.561072i 0.959843 + 0.280536i \(0.0905123\pi\)
−0.959843 + 0.280536i \(0.909488\pi\)
\(152\) −18.8321 + 78.9548i −0.123895 + 0.519439i
\(153\) 9.24728i 0.0604397i
\(154\) 372.877 + 256.001i 2.42128 + 1.66235i
\(155\) 0 0
\(156\) 83.4659 32.1339i 0.535038 0.205986i
\(157\) 167.846 1.06908 0.534540 0.845143i \(-0.320485\pi\)
0.534540 + 0.845143i \(0.320485\pi\)
\(158\) 149.914 218.357i 0.948823 1.38200i
\(159\) 29.0123i 0.182467i
\(160\) 0 0
\(161\) 146.213 0.908154
\(162\) 14.8393 + 10.1880i 0.0916006 + 0.0628889i
\(163\) 82.8713i 0.508413i 0.967150 + 0.254206i \(0.0818142\pi\)
−0.967150 + 0.254206i \(0.918186\pi\)
\(164\) −99.0634 257.311i −0.604045 1.56897i
\(165\) 0 0
\(166\) 37.7765 55.0231i 0.227569 0.331464i
\(167\) −37.2973 −0.223337 −0.111669 0.993746i \(-0.535620\pi\)
−0.111669 + 0.993746i \(0.535620\pi\)
\(168\) −157.608 37.5923i −0.938146 0.223764i
\(169\) −2.35134 −0.0139132
\(170\) 0 0
\(171\) −30.4386 −0.178003
\(172\) −260.513 + 100.296i −1.51461 + 0.583116i
\(173\) −211.828 −1.22444 −0.612218 0.790689i \(-0.709723\pi\)
−0.612218 + 0.790689i \(0.709723\pi\)
\(174\) 2.64144 + 1.81350i 0.0151807 + 0.0104224i
\(175\) 0 0
\(176\) −229.548 + 207.506i −1.30425 + 1.17901i
\(177\) 124.868i 0.705469i
\(178\) 99.5233 + 68.3283i 0.559120 + 0.383867i
\(179\) −86.4715 −0.483081 −0.241540 0.970391i \(-0.577653\pi\)
−0.241540 + 0.970391i \(0.577653\pi\)
\(180\) 0 0
\(181\) 79.4036i 0.438694i −0.975647 0.219347i \(-0.929607\pi\)
0.975647 0.219347i \(-0.0703926\pi\)
\(182\) −248.895 170.880i −1.36755 0.938902i
\(183\) 65.5979 0.358459
\(184\) −23.2079 + 97.3008i −0.126130 + 0.528809i
\(185\) 0 0
\(186\) 93.0870 + 63.9094i 0.500468 + 0.343599i
\(187\) 59.6134i 0.318788i
\(188\) −66.5011 172.733i −0.353729 0.918791i
\(189\) 60.7611i 0.321487i
\(190\) 0 0
\(191\) 290.341i 1.52011i −0.649858 0.760056i \(-0.725172\pi\)
0.649858 0.760056i \(-0.274828\pi\)
\(192\) 50.0334 98.9174i 0.260591 0.515195i
\(193\) 182.850i 0.947408i 0.880684 + 0.473704i \(0.157083\pi\)
−0.880684 + 0.473704i \(0.842917\pi\)
\(194\) −14.9637 + 21.7953i −0.0771326 + 0.112347i
\(195\) 0 0
\(196\) 126.092 + 327.516i 0.643326 + 1.67100i
\(197\) −98.1640 −0.498295 −0.249147 0.968466i \(-0.580150\pi\)
−0.249147 + 0.968466i \(0.580150\pi\)
\(198\) −95.6629 65.6779i −0.483146 0.331707i
\(199\) 225.355i 1.13244i −0.824255 0.566218i \(-0.808406\pi\)
0.824255 0.566218i \(-0.191594\pi\)
\(200\) 0 0
\(201\) −209.965 −1.04460
\(202\) 168.369 245.238i 0.833512 1.21405i
\(203\) 10.8157i 0.0532792i
\(204\) 7.67282 + 19.9297i 0.0376118 + 0.0976946i
\(205\) 0 0
\(206\) 220.577 + 151.439i 1.07076 + 0.735139i
\(207\) −37.5113 −0.181214
\(208\) 153.223 138.510i 0.736647 0.665911i
\(209\) 196.225 0.938877
\(210\) 0 0
\(211\) 302.658 1.43440 0.717199 0.696869i \(-0.245424\pi\)
0.717199 + 0.696869i \(0.245424\pi\)
\(212\) −24.0726 62.5272i −0.113550 0.294940i
\(213\) 116.759 0.548164
\(214\) 62.4905 91.0202i 0.292012 0.425328i
\(215\) 0 0
\(216\) 40.4349 + 9.64443i 0.187199 + 0.0446501i
\(217\) 381.155i 1.75647i
\(218\) −87.9202 + 128.060i −0.403304 + 0.587430i
\(219\) 25.5917 0.116857
\(220\) 0 0
\(221\) 39.7918i 0.180053i
\(222\) 6.18217 9.00460i 0.0278476 0.0405613i
\(223\) −432.537 −1.93963 −0.969815 0.243842i \(-0.921592\pi\)
−0.969815 + 0.243842i \(0.921592\pi\)
\(224\) −370.869 + 49.7549i −1.65566 + 0.222120i
\(225\) 0 0
\(226\) 102.777 149.699i 0.454766 0.662387i
\(227\) 359.320i 1.58291i 0.611230 + 0.791453i \(0.290675\pi\)
−0.611230 + 0.791453i \(0.709325\pi\)
\(228\) −65.6011 + 25.2561i −0.287724 + 0.110772i
\(229\) 212.212i 0.926688i 0.886179 + 0.463344i \(0.153351\pi\)
−0.886179 + 0.463344i \(0.846649\pi\)
\(230\) 0 0
\(231\) 391.702i 1.69568i
\(232\) 7.19755 + 1.71674i 0.0310239 + 0.00739974i
\(233\) 276.656i 1.18736i −0.804699 0.593682i \(-0.797674\pi\)
0.804699 0.593682i \(-0.202326\pi\)
\(234\) 63.8547 + 43.8398i 0.272883 + 0.187350i
\(235\) 0 0
\(236\) −103.608 269.115i −0.439016 1.14032i
\(237\) 229.380 0.967850
\(238\) 40.8022 59.4302i 0.171438 0.249707i
\(239\) 27.9106i 0.116781i 0.998294 + 0.0583904i \(0.0185968\pi\)
−0.998294 + 0.0583904i \(0.981403\pi\)
\(240\) 0 0
\(241\) −115.420 −0.478920 −0.239460 0.970906i \(-0.576970\pi\)
−0.239460 + 0.970906i \(0.576970\pi\)
\(242\) 417.194 + 286.427i 1.72394 + 1.18358i
\(243\) 15.5885i 0.0641500i
\(244\) 141.376 54.4291i 0.579411 0.223070i
\(245\) 0 0
\(246\) 135.151 196.853i 0.549394 0.800217i
\(247\) −130.980 −0.530282
\(248\) 253.649 + 60.4996i 1.02278 + 0.243950i
\(249\) 57.8010 0.232132
\(250\) 0 0
\(251\) −26.6696 −0.106253 −0.0531267 0.998588i \(-0.516919\pi\)
−0.0531267 + 0.998588i \(0.516919\pi\)
\(252\) −50.4158 130.952i −0.200063 0.519651i
\(253\) 241.820 0.955812
\(254\) 75.4752 + 51.8179i 0.297146 + 0.204008i
\(255\) 0 0
\(256\) 25.7563 254.701i 0.100610 0.994926i
\(257\) 170.155i 0.662082i −0.943616 0.331041i \(-0.892600\pi\)
0.943616 0.331041i \(-0.107400\pi\)
\(258\) −199.303 136.833i −0.772491 0.530359i
\(259\) −36.8704 −0.142357
\(260\) 0 0
\(261\) 2.77479i 0.0106314i
\(262\) 307.138 + 210.868i 1.17228 + 0.804838i
\(263\) −105.658 −0.401741 −0.200870 0.979618i \(-0.564377\pi\)
−0.200870 + 0.979618i \(0.564377\pi\)
\(264\) −260.668 62.1737i −0.987378 0.235506i
\(265\) 0 0
\(266\) 195.622 + 134.306i 0.735421 + 0.504908i
\(267\) 104.548i 0.391565i
\(268\) −452.517 + 174.216i −1.68849 + 0.650061i
\(269\) 206.889i 0.769103i 0.923104 + 0.384551i \(0.125644\pi\)
−0.923104 + 0.384551i \(0.874356\pi\)
\(270\) 0 0
\(271\) 247.759i 0.914241i −0.889405 0.457120i \(-0.848881\pi\)
0.889405 0.457120i \(-0.151119\pi\)
\(272\) 33.0728 + 36.5860i 0.121591 + 0.134507i
\(273\) 261.460i 0.957729i
\(274\) 37.3020 54.3321i 0.136139 0.198292i
\(275\) 0 0
\(276\) −80.8443 + 31.1246i −0.292914 + 0.112770i
\(277\) 26.9487 0.0972879 0.0486439 0.998816i \(-0.484510\pi\)
0.0486439 + 0.998816i \(0.484510\pi\)
\(278\) 138.264 + 94.9264i 0.497354 + 0.341462i
\(279\) 97.7865i 0.350489i
\(280\) 0 0
\(281\) −289.489 −1.03021 −0.515106 0.857127i \(-0.672247\pi\)
−0.515106 + 0.857127i \(0.672247\pi\)
\(282\) 90.7266 132.147i 0.321725 0.468608i
\(283\) 3.01272i 0.0106457i 0.999986 + 0.00532283i \(0.00169432\pi\)
−0.999986 + 0.00532283i \(0.998306\pi\)
\(284\) 251.638 96.8792i 0.886050 0.341124i
\(285\) 0 0
\(286\) −411.645 282.618i −1.43932 0.988173i
\(287\) −806.038 −2.80849
\(288\) 95.1476 12.7648i 0.330374 0.0443221i
\(289\) 279.499 0.967123
\(290\) 0 0
\(291\) −22.8957 −0.0786794
\(292\) 55.1551 21.2344i 0.188887 0.0727205i
\(293\) 95.1952 0.324898 0.162449 0.986717i \(-0.448061\pi\)
0.162449 + 0.986717i \(0.448061\pi\)
\(294\) −172.026 + 250.563i −0.585121 + 0.852255i
\(295\) 0 0
\(296\) 5.85232 24.5363i 0.0197714 0.0828928i
\(297\) 100.492i 0.338358i
\(298\) −92.1925 + 134.282i −0.309371 + 0.450612i
\(299\) −161.414 −0.539848
\(300\) 0 0
\(301\) 816.068i 2.71119i
\(302\) −95.9053 + 139.690i −0.317567 + 0.462551i
\(303\) 257.618 0.850226
\(304\) −120.427 + 108.863i −0.396143 + 0.358104i
\(305\) 0 0
\(306\) −10.4679 + 15.2470i −0.0342089 + 0.0498268i
\(307\) 167.348i 0.545108i −0.962140 0.272554i \(-0.912132\pi\)
0.962140 0.272554i \(-0.0878684\pi\)
\(308\) 325.010 + 844.195i 1.05523 + 2.74089i
\(309\) 231.713i 0.749881i
\(310\) 0 0
\(311\) 299.478i 0.962951i 0.876460 + 0.481475i \(0.159899\pi\)
−0.876460 + 0.481475i \(0.840101\pi\)
\(312\) 173.995 + 41.5008i 0.557676 + 0.133015i
\(313\) 123.623i 0.394963i −0.980307 0.197481i \(-0.936724\pi\)
0.980307 0.197481i \(-0.0632762\pi\)
\(314\) 276.746 + 190.001i 0.881356 + 0.605100i
\(315\) 0 0
\(316\) 494.360 190.326i 1.56443 0.602296i
\(317\) −135.949 −0.428862 −0.214431 0.976739i \(-0.568790\pi\)
−0.214431 + 0.976739i \(0.568790\pi\)
\(318\) 32.8420 47.8358i 0.103277 0.150427i
\(319\) 17.8880i 0.0560752i
\(320\) 0 0
\(321\) 95.6154 0.297867
\(322\) 241.077 + 165.513i 0.748687 + 0.514016i
\(323\) 31.2749i 0.0968263i
\(324\) 12.9343 + 33.5962i 0.0399208 + 0.103692i
\(325\) 0 0
\(326\) −93.8104 + 136.639i −0.287762 + 0.419138i
\(327\) −134.525 −0.411391
\(328\) 127.940 536.397i 0.390061 1.63536i
\(329\) −541.092 −1.64466
\(330\) 0 0
\(331\) −41.1886 −0.124437 −0.0622185 0.998063i \(-0.519818\pi\)
−0.0622185 + 0.998063i \(0.519818\pi\)
\(332\) 124.572 47.9597i 0.375218 0.144457i
\(333\) 9.45921 0.0284060
\(334\) −61.4962 42.2206i −0.184120 0.126409i
\(335\) 0 0
\(336\) −217.312 240.396i −0.646762 0.715463i
\(337\) 565.599i 1.67834i 0.543873 + 0.839168i \(0.316957\pi\)
−0.543873 + 0.839168i \(0.683043\pi\)
\(338\) −3.87690 2.66171i −0.0114701 0.00787489i
\(339\) 157.257 0.463885
\(340\) 0 0
\(341\) 630.390i 1.84865i
\(342\) −50.1875 34.4565i −0.146747 0.100750i
\(343\) 452.977 1.32063
\(344\) −543.072 129.532i −1.57870 0.376546i
\(345\) 0 0
\(346\) −349.263 239.789i −1.00943 0.693032i
\(347\) 134.668i 0.388092i −0.980992 0.194046i \(-0.937839\pi\)
0.980992 0.194046i \(-0.0621612\pi\)
\(348\) 2.30235 + 5.98023i 0.00661596 + 0.0171846i
\(349\) 461.309i 1.32180i −0.750473 0.660901i \(-0.770174\pi\)
0.750473 0.660901i \(-0.229826\pi\)
\(350\) 0 0
\(351\) 67.0784i 0.191107i
\(352\) −613.378 + 82.2893i −1.74255 + 0.233777i
\(353\) 429.790i 1.21754i −0.793349 0.608768i \(-0.791664\pi\)
0.793349 0.608768i \(-0.208336\pi\)
\(354\) 141.351 205.884i 0.399296 0.581592i
\(355\) 0 0
\(356\) 86.7473 + 225.321i 0.243672 + 0.632924i
\(357\) 62.4305 0.174875
\(358\) −142.575 97.8858i −0.398254 0.273424i
\(359\) 312.402i 0.870200i −0.900382 0.435100i \(-0.856713\pi\)
0.900382 0.435100i \(-0.143287\pi\)
\(360\) 0 0
\(361\) −258.055 −0.714833
\(362\) 89.8849 130.921i 0.248301 0.361661i
\(363\) 438.256i 1.20732i
\(364\) −216.943 563.498i −0.595998 1.54807i
\(365\) 0 0
\(366\) 108.159 + 74.2569i 0.295515 + 0.202888i
\(367\) 138.931 0.378558 0.189279 0.981923i \(-0.439385\pi\)
0.189279 + 0.981923i \(0.439385\pi\)
\(368\) −148.410 + 134.159i −0.403288 + 0.364563i
\(369\) 206.792 0.560411
\(370\) 0 0
\(371\) −195.869 −0.527949
\(372\) 81.1372 + 210.749i 0.218111 + 0.566530i
\(373\) 422.559 1.13287 0.566433 0.824108i \(-0.308323\pi\)
0.566433 + 0.824108i \(0.308323\pi\)
\(374\) 67.4824 98.2912i 0.180434 0.262811i
\(375\) 0 0
\(376\) 85.8859 360.083i 0.228420 0.957667i
\(377\) 11.9402i 0.0316715i
\(378\) 68.7816 100.184i 0.181962 0.265036i
\(379\) −419.245 −1.10619 −0.553094 0.833119i \(-0.686553\pi\)
−0.553094 + 0.833119i \(0.686553\pi\)
\(380\) 0 0
\(381\) 79.2856i 0.208099i
\(382\) 328.667 478.718i 0.860384 1.25319i
\(383\) −306.762 −0.800944 −0.400472 0.916309i \(-0.631154\pi\)
−0.400472 + 0.916309i \(0.631154\pi\)
\(384\) 194.470 106.458i 0.506433 0.277235i
\(385\) 0 0
\(386\) −206.986 + 301.485i −0.536234 + 0.781048i
\(387\) 209.365i 0.540994i
\(388\) −49.3447 + 18.9974i −0.127177 + 0.0489624i
\(389\) 441.866i 1.13590i −0.823062 0.567951i \(-0.807736\pi\)
0.823062 0.567951i \(-0.192264\pi\)
\(390\) 0 0
\(391\) 38.5420i 0.0985728i
\(392\) −162.847 + 682.748i −0.415426 + 1.74170i
\(393\) 322.644i 0.820978i
\(394\) −161.854 111.122i −0.410797 0.282035i
\(395\) 0 0
\(396\) −83.3824 216.581i −0.210562 0.546921i
\(397\) −160.391 −0.404007 −0.202004 0.979385i \(-0.564745\pi\)
−0.202004 + 0.979385i \(0.564745\pi\)
\(398\) 255.102 371.567i 0.640960 0.933587i
\(399\) 205.498i 0.515033i
\(400\) 0 0
\(401\) 193.791 0.483270 0.241635 0.970367i \(-0.422316\pi\)
0.241635 + 0.970367i \(0.422316\pi\)
\(402\) −346.193 237.681i −0.861177 0.591246i
\(403\) 420.783i 1.04413i
\(404\) 555.218 213.756i 1.37430 0.529099i
\(405\) 0 0
\(406\) 12.2434 17.8330i 0.0301560 0.0439236i
\(407\) −60.9797 −0.149827
\(408\) −9.90941 + 41.5459i −0.0242878 + 0.101828i
\(409\) 459.509 1.12349 0.561747 0.827309i \(-0.310130\pi\)
0.561747 + 0.827309i \(0.310130\pi\)
\(410\) 0 0
\(411\) 57.0751 0.138869
\(412\) 192.261 + 499.387i 0.466653 + 1.21210i
\(413\) −843.013 −2.04119
\(414\) −61.8491 42.4629i −0.149394 0.102567i
\(415\) 0 0
\(416\) 409.428 54.9279i 0.984202 0.132038i
\(417\) 145.245i 0.348309i
\(418\) 323.538 + 222.127i 0.774015 + 0.531405i
\(419\) −223.442 −0.533274 −0.266637 0.963797i \(-0.585912\pi\)
−0.266637 + 0.963797i \(0.585912\pi\)
\(420\) 0 0
\(421\) 753.492i 1.78977i 0.446299 + 0.894884i \(0.352742\pi\)
−0.446299 + 0.894884i \(0.647258\pi\)
\(422\) 499.025 + 342.609i 1.18252 + 0.811870i
\(423\) 138.819 0.328177
\(424\) 31.0897 130.346i 0.0733247 0.307419i
\(425\) 0 0
\(426\) 192.513 + 132.171i 0.451909 + 0.310261i
\(427\) 442.867i 1.03716i
\(428\) 206.070 79.3357i 0.481472 0.185364i
\(429\) 432.427i 1.00799i
\(430\) 0 0
\(431\) 801.595i 1.85985i 0.367752 + 0.929924i \(0.380128\pi\)
−0.367752 + 0.929924i \(0.619872\pi\)
\(432\) 55.7520 + 61.6742i 0.129056 + 0.142764i
\(433\) 725.058i 1.67450i 0.546822 + 0.837249i \(0.315838\pi\)
−0.546822 + 0.837249i \(0.684162\pi\)
\(434\) 431.468 628.452i 0.994165 1.44805i
\(435\) 0 0
\(436\) −289.927 + 111.620i −0.664971 + 0.256010i
\(437\) 126.866 0.290311
\(438\) 42.1958 + 28.9698i 0.0963374 + 0.0661411i
\(439\) 551.061i 1.25526i 0.778510 + 0.627632i \(0.215976\pi\)
−0.778510 + 0.627632i \(0.784024\pi\)
\(440\) 0 0
\(441\) −263.213 −0.596854
\(442\) −45.0443 + 65.6091i −0.101910 + 0.148437i
\(443\) 36.7779i 0.0830201i 0.999138 + 0.0415100i \(0.0132169\pi\)
−0.999138 + 0.0415100i \(0.986783\pi\)
\(444\) 20.3864 7.84866i 0.0459154 0.0176772i
\(445\) 0 0
\(446\) −713.172 489.633i −1.59904 1.09783i
\(447\) −141.062 −0.315574
\(448\) −667.815 337.787i −1.49066 0.753990i
\(449\) −332.641 −0.740849 −0.370424 0.928863i \(-0.620788\pi\)
−0.370424 + 0.928863i \(0.620788\pi\)
\(450\) 0 0
\(451\) −1333.10 −2.95588
\(452\) 338.920 130.482i 0.749822 0.288677i
\(453\) −146.743 −0.323935
\(454\) −406.750 + 592.450i −0.895926 + 1.30496i
\(455\) 0 0
\(456\) −136.754 32.6181i −0.299898 0.0715309i
\(457\) 343.279i 0.751158i 0.926790 + 0.375579i \(0.122556\pi\)
−0.926790 + 0.375579i \(0.877444\pi\)
\(458\) −240.224 + 349.896i −0.524506 + 0.763966i
\(459\) −16.0168 −0.0348949
\(460\) 0 0
\(461\) 208.768i 0.452859i −0.974028 0.226429i \(-0.927295\pi\)
0.974028 0.226429i \(-0.0727053\pi\)
\(462\) −443.407 + 645.843i −0.959756 + 1.39793i
\(463\) 239.500 0.517278 0.258639 0.965974i \(-0.416726\pi\)
0.258639 + 0.965974i \(0.416726\pi\)
\(464\) 9.92404 + 10.9782i 0.0213880 + 0.0236599i
\(465\) 0 0
\(466\) 313.175 456.153i 0.672049 0.978869i
\(467\) 295.094i 0.631892i 0.948777 + 0.315946i \(0.102322\pi\)
−0.948777 + 0.315946i \(0.897678\pi\)
\(468\) 55.6575 + 144.567i 0.118926 + 0.308904i
\(469\) 1417.53i 3.02244i
\(470\) 0 0
\(471\) 290.717i 0.617234i
\(472\) 133.809 561.003i 0.283493 1.18857i
\(473\) 1349.69i 2.85346i
\(474\) 378.205 + 259.659i 0.797900 + 0.547803i
\(475\) 0 0
\(476\) 134.550 51.8010i 0.282668 0.108826i
\(477\) 50.2508 0.105348
\(478\) −31.5948 + 46.0193i −0.0660979 + 0.0962746i
\(479\) 533.361i 1.11349i 0.830684 + 0.556745i \(0.187950\pi\)
−0.830684 + 0.556745i \(0.812050\pi\)
\(480\) 0 0
\(481\) 40.7037 0.0846232
\(482\) −190.305 130.655i −0.394824 0.271069i
\(483\) 253.248i 0.524323i
\(484\) 363.637 + 944.527i 0.751317 + 1.95150i
\(485\) 0 0
\(486\) −17.6461 + 25.7024i −0.0363089 + 0.0528856i
\(487\) 285.675 0.586601 0.293301 0.956020i \(-0.405246\pi\)
0.293301 + 0.956020i \(0.405246\pi\)
\(488\) 294.717 + 70.2950i 0.603927 + 0.144047i
\(489\) −143.537 −0.293532
\(490\) 0 0
\(491\) 188.244 0.383388 0.191694 0.981455i \(-0.438602\pi\)
0.191694 + 0.981455i \(0.438602\pi\)
\(492\) 445.676 171.583i 0.905846 0.348746i
\(493\) −2.85103 −0.00578303
\(494\) −215.961 148.269i −0.437167 0.300140i
\(495\) 0 0
\(496\) 349.733 + 386.883i 0.705107 + 0.780006i
\(497\) 788.266i 1.58605i
\(498\) 95.3028 + 65.4307i 0.191371 + 0.131387i
\(499\) −625.534 −1.25357 −0.626787 0.779190i \(-0.715631\pi\)
−0.626787 + 0.779190i \(0.715631\pi\)
\(500\) 0 0
\(501\) 64.6008i 0.128944i
\(502\) −43.9731 30.1900i −0.0875959 0.0601395i
\(503\) −232.863 −0.462949 −0.231474 0.972841i \(-0.574355\pi\)
−0.231474 + 0.972841i \(0.574355\pi\)
\(504\) 65.1118 272.986i 0.129190 0.541639i
\(505\) 0 0
\(506\) 398.716 + 273.741i 0.787976 + 0.540990i
\(507\) 4.07263i 0.00803280i
\(508\) 65.7862 + 170.876i 0.129500 + 0.336370i
\(509\) 615.343i 1.20893i 0.796633 + 0.604463i \(0.206612\pi\)
−0.796633 + 0.604463i \(0.793388\pi\)
\(510\) 0 0
\(511\) 172.775i 0.338112i
\(512\) 330.789 390.797i 0.646072 0.763276i
\(513\) 52.7212i 0.102770i
\(514\) 192.616 280.553i 0.374739 0.545823i
\(515\) 0 0
\(516\) −173.718 451.222i −0.336662 0.874461i
\(517\) −894.909 −1.73096
\(518\) −60.7922 41.7373i −0.117359 0.0805739i
\(519\) 366.896i 0.706929i
\(520\) 0 0
\(521\) 132.731 0.254761 0.127381 0.991854i \(-0.459343\pi\)
0.127381 + 0.991854i \(0.459343\pi\)
\(522\) −3.14107 + 4.57511i −0.00601738 + 0.00876458i
\(523\) 911.886i 1.74357i −0.489890 0.871784i \(-0.662963\pi\)
0.489890 0.871784i \(-0.337037\pi\)
\(524\) 267.710 + 695.361i 0.510897 + 1.32703i
\(525\) 0 0
\(526\) −174.210 119.605i −0.331197 0.227385i
\(527\) −100.473 −0.190651
\(528\) −359.411 397.589i −0.680702 0.753009i
\(529\) −372.655 −0.704453
\(530\) 0 0
\(531\) 216.278 0.407303
\(532\) 170.510 + 442.889i 0.320507 + 0.832497i
\(533\) 889.841 1.66950
\(534\) −118.348 + 172.379i −0.221626 + 0.322808i
\(535\) 0 0
\(536\) −943.327 225.000i −1.75994 0.419775i
\(537\) 149.773i 0.278907i
\(538\) −234.198 + 341.120i −0.435313 + 0.634052i
\(539\) 1696.83 3.14810
\(540\) 0 0
\(541\) 373.215i 0.689861i 0.938628 + 0.344931i \(0.112098\pi\)
−0.938628 + 0.344931i \(0.887902\pi\)
\(542\) 280.464 408.508i 0.517461 0.753705i
\(543\) 137.531 0.253280
\(544\) 13.1155 + 97.7618i 0.0241094 + 0.179709i
\(545\) 0 0
\(546\) 295.973 431.098i 0.542075 0.789557i
\(547\) 175.297i 0.320469i 0.987079 + 0.160235i \(0.0512251\pi\)
−0.987079 + 0.160235i \(0.948775\pi\)
\(548\) 123.008 47.3573i 0.224467 0.0864185i
\(549\) 113.619i 0.206956i
\(550\) 0 0
\(551\) 9.38454i 0.0170318i
\(552\) −168.530 40.1973i −0.305308 0.0728212i
\(553\) 1548.60i 2.80036i
\(554\) 44.4334 + 30.5060i 0.0802046 + 0.0550650i
\(555\) 0 0
\(556\) 120.515 + 313.031i 0.216754 + 0.563005i
\(557\) 403.527 0.724466 0.362233 0.932088i \(-0.382015\pi\)
0.362233 + 0.932088i \(0.382015\pi\)
\(558\) −110.694 + 161.231i −0.198377 + 0.288945i
\(559\) 900.913i 1.61165i
\(560\) 0 0
\(561\) 103.253 0.184053
\(562\) −477.313 327.702i −0.849311 0.583100i
\(563\) 236.345i 0.419796i −0.977723 0.209898i \(-0.932687\pi\)
0.977723 0.209898i \(-0.0673132\pi\)
\(564\) 299.182 115.183i 0.530464 0.204226i
\(565\) 0 0
\(566\) −3.41041 + 4.96741i −0.00602545 + 0.00877634i
\(567\) 105.241 0.185611
\(568\) 524.571 + 125.119i 0.923540 + 0.220280i
\(569\) 757.837 1.33187 0.665937 0.746008i \(-0.268032\pi\)
0.665937 + 0.746008i \(0.268032\pi\)
\(570\) 0 0
\(571\) 198.009 0.346775 0.173388 0.984854i \(-0.444529\pi\)
0.173388 + 0.984854i \(0.444529\pi\)
\(572\) −358.801 931.965i −0.627275 1.62931i
\(573\) 502.886 0.877637
\(574\) −1329.00 912.436i −2.31534 1.58961i
\(575\) 0 0
\(576\) 171.330 + 86.6604i 0.297448 + 0.150452i
\(577\) 479.109i 0.830346i 0.909743 + 0.415173i \(0.136279\pi\)
−0.909743 + 0.415173i \(0.863721\pi\)
\(578\) 460.840 + 316.393i 0.797301 + 0.547392i
\(579\) −316.705 −0.546986
\(580\) 0 0
\(581\) 390.228i 0.671649i
\(582\) −37.7506 25.9179i −0.0648637 0.0445326i
\(583\) −323.947 −0.555654
\(584\) 114.978 + 27.4241i 0.196879 + 0.0469591i
\(585\) 0 0
\(586\) 156.959 + 107.761i 0.267848 + 0.183893i
\(587\) 658.065i 1.12106i 0.828133 + 0.560532i \(0.189403\pi\)
−0.828133 + 0.560532i \(0.810597\pi\)
\(588\) −567.275 + 218.398i −0.964753 + 0.371424i
\(589\) 330.720i 0.561495i
\(590\) 0 0
\(591\) 170.025i 0.287691i
\(592\) 37.4244 33.8308i 0.0632169 0.0571466i
\(593\) 202.971i 0.342279i 0.985247 + 0.171139i \(0.0547448\pi\)
−0.985247 + 0.171139i \(0.945255\pi\)
\(594\) 113.758 165.693i 0.191511 0.278944i
\(595\) 0 0
\(596\) −304.016 + 117.044i −0.510094 + 0.196383i
\(597\) 390.326 0.653813
\(598\) −266.142 182.721i −0.445053 0.305554i
\(599\) 11.7767i 0.0196605i −0.999952 0.00983027i \(-0.996871\pi\)
0.999952 0.00983027i \(-0.00312912\pi\)
\(600\) 0 0
\(601\) 206.863 0.344198 0.172099 0.985080i \(-0.444945\pi\)
0.172099 + 0.985080i \(0.444945\pi\)
\(602\) −923.789 + 1345.54i −1.53453 + 2.23512i
\(603\) 363.671i 0.603102i
\(604\) −316.259 + 121.758i −0.523608 + 0.201586i
\(605\) 0 0
\(606\) 424.764 + 291.624i 0.700931 + 0.481228i
\(607\) 885.649 1.45906 0.729529 0.683950i \(-0.239739\pi\)
0.729529 + 0.683950i \(0.239739\pi\)
\(608\) −321.795 + 43.1713i −0.529269 + 0.0710055i
\(609\) 18.7333 0.0307607
\(610\) 0 0
\(611\) 597.349 0.977658
\(612\) −34.5192 + 13.2897i −0.0564040 + 0.0217152i
\(613\) −979.091 −1.59721 −0.798606 0.601855i \(-0.794429\pi\)
−0.798606 + 0.601855i \(0.794429\pi\)
\(614\) 189.438 275.925i 0.308531 0.449390i
\(615\) 0 0
\(616\) −419.749 + 1759.83i −0.681411 + 2.85687i
\(617\) 1064.97i 1.72604i −0.505171 0.863019i \(-0.668571\pi\)
0.505171 0.863019i \(-0.331429\pi\)
\(618\) −262.299 + 382.051i −0.424433 + 0.618205i
\(619\) 658.875 1.06442 0.532209 0.846613i \(-0.321362\pi\)
0.532209 + 0.846613i \(0.321362\pi\)
\(620\) 0 0
\(621\) 64.9716i 0.104624i
\(622\) −339.009 + 493.782i −0.545030 + 0.793861i
\(623\) 705.827 1.13295
\(624\) 239.906 + 265.389i 0.384464 + 0.425303i
\(625\) 0 0
\(626\) 139.942 203.831i 0.223549 0.325609i
\(627\) 339.872i 0.542061i
\(628\) 241.219 + 626.553i 0.384107 + 0.997695i
\(629\) 9.71910i 0.0154517i
\(630\) 0 0
\(631\) 1074.30i 1.70253i −0.524736 0.851265i \(-0.675836\pi\)
0.524736 0.851265i \(-0.324164\pi\)
\(632\) 1030.55 + 245.805i 1.63062 + 0.388932i
\(633\) 524.219i 0.828150i
\(634\) −224.154 153.895i −0.353556 0.242736i
\(635\) 0 0
\(636\) 108.300 41.6950i 0.170284 0.0655582i
\(637\) −1132.63 −1.77806
\(638\) 20.2492 29.4939i 0.0317386 0.0462286i
\(639\) 202.232i 0.316482i
\(640\) 0 0
\(641\) 170.402 0.265838 0.132919 0.991127i \(-0.457565\pi\)
0.132919 + 0.991127i \(0.457565\pi\)
\(642\) 157.652 + 108.237i 0.245563 + 0.168593i
\(643\) 387.322i 0.602367i −0.953566 0.301183i \(-0.902618\pi\)
0.953566 0.301183i \(-0.0973816\pi\)
\(644\) 210.129 + 545.799i 0.326288 + 0.847514i
\(645\) 0 0
\(646\) 35.4032 51.5664i 0.0548037 0.0798241i
\(647\) 1098.39 1.69766 0.848830 0.528665i \(-0.177307\pi\)
0.848830 + 0.528665i \(0.177307\pi\)
\(648\) −16.7046 + 70.0354i −0.0257788 + 0.108079i
\(649\) −1394.25 −2.14831
\(650\) 0 0
\(651\) 660.180 1.01410
\(652\) −309.351 + 119.098i −0.474465 + 0.182666i
\(653\) −801.196 −1.22695 −0.613473 0.789716i \(-0.710228\pi\)
−0.613473 + 0.789716i \(0.710228\pi\)
\(654\) −221.806 152.282i −0.339153 0.232848i
\(655\) 0 0
\(656\) 818.151 739.589i 1.24718 1.12742i
\(657\) 44.3261i 0.0674674i
\(658\) −892.158 612.517i −1.35586 0.930876i
\(659\) 204.225 0.309901 0.154950 0.987922i \(-0.450478\pi\)
0.154950 + 0.987922i \(0.450478\pi\)
\(660\) 0 0
\(661\) 283.821i 0.429382i 0.976682 + 0.214691i \(0.0688744\pi\)
−0.976682 + 0.214691i \(0.931126\pi\)
\(662\) −67.9122 46.6255i −0.102586 0.0704313i
\(663\) −68.9214 −0.103954
\(664\) 259.687 + 61.9397i 0.391094 + 0.0932827i
\(665\) 0 0
\(666\) 15.5964 + 10.7078i 0.0234181 + 0.0160778i
\(667\) 11.5651i 0.0173390i
\(668\) −53.6018 139.227i −0.0802422 0.208424i
\(669\) 749.177i 1.11985i
\(670\) 0 0
\(671\) 732.455i 1.09159i
\(672\) −86.1780 642.364i −0.128241 0.955898i
\(673\) 371.454i 0.551937i −0.961167 0.275969i \(-0.911001\pi\)
0.961167 0.275969i \(-0.0889986\pi\)
\(674\) −640.258 + 932.565i −0.949938 + 1.38363i
\(675\) 0 0
\(676\) −3.37922 8.77732i −0.00499884 0.0129842i
\(677\) −1084.06 −1.60127 −0.800637 0.599150i \(-0.795505\pi\)
−0.800637 + 0.599150i \(0.795505\pi\)
\(678\) 259.287 + 178.015i 0.382429 + 0.262559i
\(679\) 154.574i 0.227650i
\(680\) 0 0
\(681\) −622.360 −0.913891
\(682\) 713.602 1039.39i 1.04634 1.52404i
\(683\) 580.301i 0.849636i −0.905279 0.424818i \(-0.860338\pi\)
0.905279 0.424818i \(-0.139662\pi\)
\(684\) −43.7448 113.624i −0.0639543 0.166118i
\(685\) 0 0
\(686\) 746.873 + 512.771i 1.08874 + 0.747479i
\(687\) −367.561 −0.535023
\(688\) −748.792 828.331i −1.08836 1.20397i
\(689\) 216.233 0.313837
\(690\) 0 0
\(691\) −438.911 −0.635183 −0.317592 0.948228i \(-0.602874\pi\)
−0.317592 + 0.948228i \(0.602874\pi\)
\(692\) −304.428 790.733i −0.439924 1.14268i
\(693\) −678.448 −0.979002
\(694\) 152.444 222.042i 0.219660 0.319945i
\(695\) 0 0
\(696\) −2.97348 + 12.4665i −0.00427224 + 0.0179117i
\(697\) 212.473i 0.304840i
\(698\) 522.202 760.611i 0.748141 1.08970i
\(699\) 479.182 0.685525
\(700\) 0 0
\(701\) 173.658i 0.247730i 0.992299 + 0.123865i \(0.0395289\pi\)
−0.992299 + 0.123865i \(0.960471\pi\)
\(702\) −75.9328 + 110.600i −0.108166 + 0.157549i
\(703\) −31.9917 −0.0455073
\(704\) −1104.49 558.665i −1.56888 0.793558i
\(705\) 0 0
\(706\) 486.523 708.642i 0.689125 1.00374i
\(707\) 1739.24i 2.46003i
\(708\) 466.121 179.454i 0.658363 0.253466i
\(709\) 1231.35i 1.73674i −0.495913 0.868372i \(-0.665166\pi\)
0.495913 0.868372i \(-0.334834\pi\)
\(710\) 0 0
\(711\) 397.299i 0.558788i
\(712\) −112.034 + 469.709i −0.157351 + 0.659704i
\(713\) 407.567i 0.571623i
\(714\) 102.936 + 70.6714i 0.144168 + 0.0989796i
\(715\) 0 0
\(716\) −124.272 322.790i −0.173565 0.450824i
\(717\) −48.3426 −0.0674234
\(718\) 353.639 515.091i 0.492533 0.717397i
\(719\) 327.782i 0.455885i 0.973675 + 0.227943i \(0.0731999\pi\)
−0.973675 + 0.227943i \(0.926800\pi\)
\(720\) 0 0
\(721\) 1564.35 2.16970
\(722\) −425.483 292.118i −0.589312 0.404596i
\(723\) 199.913i 0.276505i
\(724\) 296.406 114.115i 0.409401 0.157617i
\(725\) 0 0
\(726\) −496.106 + 722.600i −0.683341 + 0.995317i
\(727\) −217.872 −0.299686 −0.149843 0.988710i \(-0.547877\pi\)
−0.149843 + 0.988710i \(0.547877\pi\)
\(728\) 280.182 1174.68i 0.384865 1.61357i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 215.117 0.294278
\(732\) 94.2740 + 244.871i 0.128790 + 0.334523i
\(733\) −154.099 −0.210231 −0.105115 0.994460i \(-0.533521\pi\)
−0.105115 + 0.994460i \(0.533521\pi\)
\(734\) 229.071 + 157.270i 0.312085 + 0.214264i
\(735\) 0 0
\(736\) −396.568 + 53.2027i −0.538815 + 0.0722862i
\(737\) 2344.44i 3.18106i
\(738\) 340.960 + 234.088i 0.462005 + 0.317193i
\(739\) −497.686 −0.673459 −0.336729 0.941601i \(-0.609321\pi\)
−0.336729 + 0.941601i \(0.609321\pi\)
\(740\) 0 0
\(741\) 226.864i 0.306159i
\(742\) −322.951 221.724i −0.435244 0.298819i
\(743\) −657.468 −0.884883 −0.442441 0.896797i \(-0.645888\pi\)
−0.442441 + 0.896797i \(0.645888\pi\)
\(744\) −104.788 + 439.332i −0.140845 + 0.590501i
\(745\) 0 0
\(746\) 696.720 + 478.337i 0.933940 + 0.641203i
\(747\) 100.114i 0.134022i
\(748\) 222.531 85.6733i 0.297502 0.114537i
\(749\) 645.522i 0.861846i
\(750\) 0 0
\(751\) 379.552i 0.505396i 0.967545 + 0.252698i \(0.0813179\pi\)
−0.967545 + 0.252698i \(0.918682\pi\)
\(752\) 549.223 496.485i 0.730350 0.660219i
\(753\) 46.1931i 0.0613455i
\(754\) −13.5163 + 19.6871i −0.0179261 + 0.0261102i
\(755\) 0 0
\(756\) 226.816 87.3227i 0.300021 0.115506i
\(757\) 195.966 0.258872 0.129436 0.991588i \(-0.458683\pi\)
0.129436 + 0.991588i \(0.458683\pi\)
\(758\) −691.255 474.586i −0.911946 0.626103i
\(759\) 418.845i 0.551838i
\(760\) 0 0
\(761\) −963.030 −1.26548 −0.632740 0.774364i \(-0.718070\pi\)
−0.632740 + 0.774364i \(0.718070\pi\)
\(762\) −89.7513 + 130.727i −0.117784 + 0.171557i
\(763\) 908.209i 1.19031i
\(764\) 1083.82 417.264i 1.41861 0.546156i
\(765\) 0 0
\(766\) −505.792 347.254i −0.660302 0.453335i
\(767\) 930.661 1.21338
\(768\) 441.155 + 44.6112i 0.574421 + 0.0580875i
\(769\) −81.3670 −0.105809 −0.0529044 0.998600i \(-0.516848\pi\)
−0.0529044 + 0.998600i \(0.516848\pi\)
\(770\) 0 0
\(771\) 294.717 0.382253
\(772\) −682.562 + 262.782i −0.884147 + 0.340392i
\(773\) 781.463 1.01095 0.505474 0.862842i \(-0.331318\pi\)
0.505474 + 0.862842i \(0.331318\pi\)
\(774\) 237.001 345.203i 0.306203 0.445998i
\(775\) 0 0
\(776\) −102.865 24.5351i −0.132558 0.0316174i
\(777\) 63.8613i 0.0821896i
\(778\) 500.193 728.553i 0.642921 0.936443i
\(779\) −699.383 −0.897795
\(780\) 0 0
\(781\) 1303.71i 1.66928i
\(782\) 43.6296 63.5484i 0.0557923 0.0812639i
\(783\) −4.80609 −0.00613804
\(784\) −1041.38 + 941.379i −1.32829 + 1.20074i
\(785\) 0 0
\(786\) −365.234 + 531.979i −0.464674 + 0.676818i
\(787\) 1030.41i 1.30929i −0.755937 0.654644i \(-0.772818\pi\)
0.755937 0.654644i \(-0.227182\pi\)
\(788\) −141.076 366.437i −0.179031 0.465022i
\(789\) 183.005i 0.231945i
\(790\) 0 0
\(791\) 1061.68i 1.34220i
\(792\) 107.688 451.490i 0.135970 0.570063i
\(793\) 488.912i 0.616534i
\(794\) −264.454 181.563i −0.333066 0.228668i
\(795\) 0 0
\(796\) 841.229 323.868i 1.05682 0.406870i
\(797\) −85.4710 −0.107241 −0.0536205 0.998561i \(-0.517076\pi\)
−0.0536205 + 0.998561i \(0.517076\pi\)
\(798\) −232.624 + 338.827i −0.291509 + 0.424596i
\(799\) 142.633i 0.178514i
\(800\) 0 0
\(801\) −181.082 −0.226070
\(802\) 319.525 + 219.372i 0.398410 + 0.273531i
\(803\) 285.752i 0.355856i
\(804\) −301.751 783.782i −0.375313 0.974853i
\(805\) 0 0
\(806\) −476.327 + 693.792i −0.590977 + 0.860784i
\(807\) −358.342 −0.444042
\(808\) 1157.42 + 276.065i 1.43245 + 0.341664i
\(809\) −749.874 −0.926915 −0.463458 0.886119i \(-0.653391\pi\)
−0.463458 + 0.886119i \(0.653391\pi\)
\(810\) 0 0
\(811\) −454.606 −0.560550 −0.280275 0.959920i \(-0.590426\pi\)
−0.280275 + 0.959920i \(0.590426\pi\)
\(812\) 40.3739 15.5437i 0.0497216 0.0191425i
\(813\) 429.132 0.527837
\(814\) −100.544 69.0290i −0.123518 0.0848022i
\(815\) 0 0
\(816\) −63.3687 + 57.2838i −0.0776578 + 0.0702008i
\(817\) 708.085i 0.866689i
\(818\) 757.643 + 520.164i 0.926214 + 0.635898i
\(819\) 452.862 0.552945
\(820\) 0 0
\(821\) 40.2949i 0.0490802i 0.999699 + 0.0245401i \(0.00781214\pi\)
−0.999699 + 0.0245401i \(0.992188\pi\)
\(822\) 94.1059 + 64.6090i 0.114484 + 0.0785998i
\(823\) 1109.53 1.34815 0.674076 0.738662i \(-0.264542\pi\)
0.674076 + 0.738662i \(0.264542\pi\)
\(824\) −248.305 + 1041.03i −0.301340 + 1.26339i
\(825\) 0 0
\(826\) −1389.97 954.292i −1.68277 1.15532i
\(827\) 750.168i 0.907096i −0.891232 0.453548i \(-0.850158\pi\)
0.891232 0.453548i \(-0.149842\pi\)
\(828\) −53.9094 140.026i −0.0651079 0.169114i
\(829\) 182.949i 0.220687i −0.993894 0.110343i \(-0.964805\pi\)
0.993894 0.110343i \(-0.0351950\pi\)
\(830\) 0 0
\(831\) 46.6766i 0.0561692i
\(832\) 737.247 + 372.907i 0.886114 + 0.448206i
\(833\) 270.445i 0.324663i
\(834\) −164.417 + 239.481i −0.197143 + 0.287148i
\(835\) 0 0
\(836\) 282.005 + 732.491i 0.337326 + 0.876185i
\(837\) −169.371 −0.202355
\(838\) −368.413 252.936i −0.439634 0.301833i
\(839\) 719.345i 0.857384i 0.903451 + 0.428692i \(0.141025\pi\)
−0.903451 + 0.428692i \(0.858975\pi\)
\(840\) 0 0
\(841\) 840.145 0.998983
\(842\) −852.954 + 1242.37i −1.01301 + 1.47549i
\(843\) 501.410i 0.594793i
\(844\) 434.964 + 1129.79i 0.515360 + 1.33862i
\(845\) 0 0
\(846\) 228.886 + 157.143i 0.270551 + 0.185748i
\(847\) 2958.77 3.49323
\(848\) 198.812 179.722i 0.234449 0.211936i
\(849\) −5.21819 −0.00614628
\(850\) 0 0
\(851\) −39.4253 −0.0463282
\(852\) 167.800 + 435.850i 0.196948 + 0.511561i
\(853\) −593.155 −0.695375 −0.347688 0.937610i \(-0.613033\pi\)
−0.347688 + 0.937610i \(0.613033\pi\)
\(854\) 501.326 730.204i 0.587033 0.855040i
\(855\) 0 0
\(856\) 429.578 + 102.462i 0.501844 + 0.119698i
\(857\) 180.069i 0.210116i 0.994466 + 0.105058i \(0.0335028\pi\)
−0.994466 + 0.105058i \(0.966497\pi\)
\(858\) 489.508 712.990i 0.570522 0.830991i
\(859\) −509.587 −0.593232 −0.296616 0.954997i \(-0.595858\pi\)
−0.296616 + 0.954997i \(0.595858\pi\)
\(860\) 0 0
\(861\) 1396.10i 1.62149i
\(862\) −907.406 + 1321.68i −1.05267 + 1.53327i
\(863\) 1430.93 1.65809 0.829046 0.559181i \(-0.188884\pi\)
0.829046 + 0.559181i \(0.188884\pi\)
\(864\) 22.1092 + 164.800i 0.0255894 + 0.190741i
\(865\) 0 0
\(866\) −820.766 + 1195.48i −0.947767 + 1.38046i
\(867\) 484.106i 0.558369i
\(868\) 1422.82 547.776i 1.63919 0.631079i
\(869\) 2561.22i 2.94732i
\(870\) 0 0
\(871\) 1564.91i 1.79668i
\(872\) −604.390 144.157i −0.693107 0.165318i
\(873\) 39.6565i 0.0454256i
\(874\) 209.178 + 143.612i 0.239334 + 0.164316i
\(875\) 0 0
\(876\) 36.7790 + 95.5313i 0.0419852 + 0.109054i
\(877\) 905.426 1.03241 0.516207 0.856464i \(-0.327344\pi\)
0.516207 + 0.856464i \(0.327344\pi\)
\(878\) −623.802 + 908.595i −0.710480 + 1.03485i
\(879\) 164.883i 0.187580i
\(880\) 0 0
\(881\) 1479.51 1.67935 0.839677 0.543086i \(-0.182744\pi\)
0.839677 + 0.543086i \(0.182744\pi\)
\(882\) −433.988 297.957i −0.492050 0.337820i
\(883\) 360.404i 0.408158i 0.978954 + 0.204079i \(0.0654200\pi\)
−0.978954 + 0.204079i \(0.934580\pi\)
\(884\) −148.539 + 57.1867i −0.168031 + 0.0646908i
\(885\) 0 0
\(886\) −41.6326 + 60.6397i −0.0469894 + 0.0684422i
\(887\) −1106.42 −1.24738 −0.623688 0.781674i \(-0.714366\pi\)
−0.623688 + 0.781674i \(0.714366\pi\)
\(888\) 42.4981 + 10.1365i 0.0478582 + 0.0114150i
\(889\) 535.276 0.602110
\(890\) 0 0
\(891\) 174.058 0.195351
\(892\) −621.620 1614.62i −0.696884 1.81012i
\(893\) −469.494 −0.525750
\(894\) −232.584 159.682i −0.260161 0.178615i
\(895\) 0 0
\(896\) −718.724 1312.91i −0.802147 1.46531i
\(897\) 279.578i 0.311681i
\(898\) −548.462 376.550i −0.610759 0.419321i
\(899\) −30.1486 −0.0335357
\(900\) 0 0
\(901\) 51.6315i 0.0573046i
\(902\) −2198.03 1509.07i −2.43684 1.67303i
\(903\) −1413.47 −1.56530
\(904\) 706.520 + 168.517i 0.781549 + 0.186413i
\(905\) 0 0
\(906\) −241.951 166.113i −0.267054 0.183347i
\(907\) 1467.30i 1.61775i −0.587979 0.808876i \(-0.700076\pi\)
0.587979 0.808876i \(-0.299924\pi\)
\(908\) −1341.31 + 516.396i −1.47721 + 0.568718i
\(909\) 446.208i 0.490878i
\(910\) 0 0
\(911\) 1188.75i 1.30488i 0.757840 + 0.652441i \(0.226255\pi\)
−0.757840 + 0.652441i \(0.773745\pi\)
\(912\) −188.557 208.586i −0.206751 0.228713i
\(913\) 645.396i 0.706896i
\(914\) −388.592 + 566.002i −0.425156 + 0.619258i
\(915\) 0 0
\(916\) −792.166 + 304.979i −0.864810 + 0.332947i
\(917\) 2178.25 2.37541
\(918\) −26.4086 18.1310i −0.0287675 0.0197505i
\(919\) 917.844i 0.998743i 0.866388 + 0.499371i \(0.166436\pi\)
−0.866388 + 0.499371i \(0.833564\pi\)
\(920\) 0 0
\(921\) 289.856 0.314718
\(922\) 236.325 344.219i 0.256318 0.373339i
\(923\) 870.222i 0.942819i
\(924\) −1462.19 + 562.934i −1.58246 + 0.609236i
\(925\) 0 0
\(926\) 394.889 + 271.114i 0.426447 + 0.292780i
\(927\) −401.339 −0.432944
\(928\) 3.93552 + 29.3350i 0.00424086 + 0.0316110i
\(929\) 326.140 0.351066 0.175533 0.984474i \(-0.443835\pi\)
0.175533 + 0.984474i \(0.443835\pi\)
\(930\) 0 0
\(931\) 890.203 0.956179
\(932\) 1032.73 397.596i 1.10808 0.426605i
\(933\) −518.710 −0.555960
\(934\) −334.046 + 486.553i −0.357651 + 0.520935i
\(935\) 0 0
\(936\) −71.8814 + 301.368i −0.0767964 + 0.321974i
\(937\) 803.356i 0.857370i −0.903454 0.428685i \(-0.858977\pi\)
0.903454 0.428685i \(-0.141023\pi\)
\(938\) −1604.64 + 2337.23i −1.71070 + 2.49172i
\(939\) 214.122 0.228032
\(940\) 0 0
\(941\) 617.150i 0.655845i 0.944705 + 0.327922i \(0.106348\pi\)
−0.944705 + 0.327922i \(0.893652\pi\)
\(942\) −329.092 + 479.338i −0.349355 + 0.508851i
\(943\) −861.892 −0.913990
\(944\) 855.682 773.516i 0.906443 0.819403i
\(945\) 0 0
\(946\) −1527.85 + 2225.38i −1.61506 + 2.35241i
\(947\) 1372.28i 1.44908i 0.689231 + 0.724542i \(0.257948\pi\)
−0.689231 + 0.724542i \(0.742052\pi\)
\(948\) 329.654 + 856.256i 0.347736 + 0.903224i
\(949\) 190.739i 0.200989i
\(950\) 0 0
\(951\) 235.471i 0.247603i
\(952\) 280.486 + 66.9008i 0.294628 + 0.0702739i
\(953\) 313.823i 0.329300i −0.986352 0.164650i \(-0.947351\pi\)
0.986352 0.164650i \(-0.0526495\pi\)
\(954\) 82.8540 + 56.8840i 0.0868491 + 0.0596268i
\(955\) 0 0
\(956\) −104.188 + 40.1117i −0.108983 + 0.0419578i
\(957\) 30.9829 0.0323750
\(958\) −603.766 + 879.412i −0.630236 + 0.917966i
\(959\) 385.327i 0.401801i
\(960\) 0 0
\(961\) −101.467 −0.105585
\(962\) 67.1127 + 46.0767i 0.0697638 + 0.0478967i
\(963\) 165.611i 0.171974i
\(964\) −165.875 430.851i −0.172070 0.446941i
\(965\) 0 0
\(966\) −286.677 + 417.558i −0.296767 + 0.432254i
\(967\) 191.090 0.197611 0.0988055 0.995107i \(-0.468498\pi\)
0.0988055 + 0.995107i \(0.468498\pi\)
\(968\) −469.636 + 1968.98i −0.485161 + 2.03407i
\(969\) 54.1697 0.0559027
\(970\) 0 0
\(971\) 88.4914 0.0911343 0.0455671 0.998961i \(-0.485491\pi\)
0.0455671 + 0.998961i \(0.485491\pi\)
\(972\) −58.1903 + 22.4029i −0.0598665 + 0.0230483i
\(973\) 980.582 1.00779
\(974\) 471.023 + 323.384i 0.483597 + 0.332016i
\(975\) 0 0
\(976\) 406.358 + 449.522i 0.416350 + 0.460576i
\(977\) 1367.80i 1.40000i 0.714142 + 0.700001i \(0.246817\pi\)
−0.714142 + 0.700001i \(0.753183\pi\)
\(978\) −236.666 162.484i −0.241989 0.166139i
\(979\) 1167.36 1.19240
\(980\) 0 0
\(981\) 233.004i 0.237517i
\(982\) 310.378 + 213.092i 0.316067 + 0.216998i
\(983\) 266.437 0.271045 0.135522 0.990774i \(-0.456729\pi\)
0.135522 + 0.990774i \(0.456729\pi\)
\(984\) 929.067 + 221.598i 0.944174 + 0.225202i
\(985\) 0 0
\(986\) −4.70081 3.22737i −0.00476756 0.00327320i
\(987\) 937.199i 0.949543i
\(988\) −188.237 488.935i −0.190524 0.494874i
\(989\) 872.617i 0.882322i
\(990\) 0 0
\(991\) 842.673i 0.850326i 0.905117 + 0.425163i \(0.139783\pi\)
−0.905117 + 0.425163i \(0.860217\pi\)
\(992\) 138.691 + 1033.79i 0.139810 + 1.04213i
\(993\) 71.3408i 0.0718437i
\(994\) 892.318 1299.70i 0.897705 1.30755i
\(995\) 0 0
\(996\) 83.0686 + 215.766i 0.0834022 + 0.216632i
\(997\) −1590.97 −1.59576 −0.797879 0.602817i \(-0.794045\pi\)
−0.797879 + 0.602817i \(0.794045\pi\)
\(998\) −1031.39 708.105i −1.03345 0.709524i
\(999\) 16.3838i 0.0164002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.p.b.499.28 32
4.3 odd 2 2400.3.p.b.1999.21 32
5.2 odd 4 120.3.g.a.91.8 yes 16
5.3 odd 4 600.3.g.d.451.9 16
5.4 even 2 inner 600.3.p.b.499.5 32
8.3 odd 2 inner 600.3.p.b.499.6 32
8.5 even 2 2400.3.p.b.1999.9 32
15.2 even 4 360.3.g.c.91.9 16
20.3 even 4 2400.3.g.b.751.16 16
20.7 even 4 480.3.g.a.271.1 16
20.19 odd 2 2400.3.p.b.1999.10 32
40.3 even 4 600.3.g.d.451.10 16
40.13 odd 4 2400.3.g.b.751.9 16
40.19 odd 2 inner 600.3.p.b.499.27 32
40.27 even 4 120.3.g.a.91.7 16
40.29 even 2 2400.3.p.b.1999.22 32
40.37 odd 4 480.3.g.a.271.8 16
60.47 odd 4 1440.3.g.c.271.9 16
120.77 even 4 1440.3.g.c.271.8 16
120.107 odd 4 360.3.g.c.91.10 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.3.g.a.91.7 16 40.27 even 4
120.3.g.a.91.8 yes 16 5.2 odd 4
360.3.g.c.91.9 16 15.2 even 4
360.3.g.c.91.10 16 120.107 odd 4
480.3.g.a.271.1 16 20.7 even 4
480.3.g.a.271.8 16 40.37 odd 4
600.3.g.d.451.9 16 5.3 odd 4
600.3.g.d.451.10 16 40.3 even 4
600.3.p.b.499.5 32 5.4 even 2 inner
600.3.p.b.499.6 32 8.3 odd 2 inner
600.3.p.b.499.27 32 40.19 odd 2 inner
600.3.p.b.499.28 32 1.1 even 1 trivial
1440.3.g.c.271.8 16 120.77 even 4
1440.3.g.c.271.9 16 60.47 odd 4
2400.3.g.b.751.9 16 40.13 odd 4
2400.3.g.b.751.16 16 20.3 even 4
2400.3.p.b.1999.9 32 8.5 even 2
2400.3.p.b.1999.10 32 20.19 odd 2
2400.3.p.b.1999.21 32 4.3 odd 2
2400.3.p.b.1999.22 32 40.29 even 2