Properties

Label 576.2.y.a.47.5
Level $576$
Weight $2$
Character 576.47
Analytic conductor $4.599$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [576,2,Mod(47,576)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("576.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(576, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 576 = 2^{6} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 576.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59938315643\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.5
Character \(\chi\) \(=\) 576.47
Dual form 576.2.y.a.527.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.33407 + 1.10465i) q^{3} +(0.178044 - 0.664471i) q^{5} +(-0.645693 + 1.11837i) q^{7} +(0.559489 - 2.94737i) q^{9} +(-0.860301 - 3.21069i) q^{11} +(1.27203 - 4.74727i) q^{13} +(0.496485 + 1.08313i) q^{15} +5.58523i q^{17} +(2.49649 - 2.49649i) q^{19} +(-0.374013 - 2.20525i) q^{21} +(2.36529 - 1.36560i) q^{23} +(3.92031 + 2.26339i) q^{25} +(2.50942 + 4.55004i) q^{27} +(-0.792277 - 2.95682i) q^{29} +(5.28160 - 3.04933i) q^{31} +(4.69439 + 3.33295i) q^{33} +(0.628165 + 0.628165i) q^{35} +(0.507420 - 0.507420i) q^{37} +(3.54711 + 7.73835i) q^{39} +(-4.89892 - 8.48518i) q^{41} +(0.949956 - 0.254540i) q^{43} +(-1.85883 - 0.896527i) q^{45} +(6.13774 - 10.6309i) q^{47} +(2.66616 + 4.61793i) q^{49} +(-6.16973 - 7.45109i) q^{51} +(0.601793 + 0.601793i) q^{53} -2.28658 q^{55} +(-0.572741 + 6.08824i) q^{57} +(-4.77715 - 1.28003i) q^{59} +(10.8292 - 2.90167i) q^{61} +(2.93500 + 2.52881i) q^{63} +(-2.92795 - 1.69045i) q^{65} +(-0.110351 - 0.0295686i) q^{67} +(-1.64695 + 4.43463i) q^{69} +0.0447904i q^{71} +13.2931i q^{73} +(-7.73022 + 1.31105i) q^{75} +(4.14624 + 1.11098i) q^{77} +(2.50052 + 1.44368i) q^{79} +(-8.37394 - 3.29804i) q^{81} +(-3.79568 + 1.01705i) q^{83} +(3.71122 + 0.994419i) q^{85} +(4.32321 + 3.06941i) q^{87} -12.7362 q^{89} +(4.48788 + 4.48788i) q^{91} +(-3.67758 + 9.90236i) q^{93} +(-1.21436 - 2.10333i) q^{95} +(4.41066 - 7.63949i) q^{97} +(-9.94440 + 0.739279i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 4 q^{3} - 6 q^{5} + 4 q^{7} + 6 q^{11} - 2 q^{13} + 8 q^{19} + 2 q^{21} + 12 q^{23} + 16 q^{27} - 6 q^{29} - 8 q^{33} - 8 q^{37} + 32 q^{39} + 2 q^{43} + 6 q^{45} - 24 q^{49} + 12 q^{51} + 16 q^{55}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/576\mathbb{Z}\right)^\times\).

\(n\) \(65\) \(127\) \(325\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.33407 + 1.10465i −0.770226 + 0.637771i
\(4\) 0 0
\(5\) 0.178044 0.664471i 0.0796239 0.297161i −0.914618 0.404319i \(-0.867509\pi\)
0.994242 + 0.107158i \(0.0341752\pi\)
\(6\) 0 0
\(7\) −0.645693 + 1.11837i −0.244049 + 0.422705i −0.961864 0.273529i \(-0.911809\pi\)
0.717815 + 0.696234i \(0.245142\pi\)
\(8\) 0 0
\(9\) 0.559489 2.94737i 0.186496 0.982456i
\(10\) 0 0
\(11\) −0.860301 3.21069i −0.259390 0.968058i −0.965595 0.260051i \(-0.916261\pi\)
0.706205 0.708008i \(-0.250406\pi\)
\(12\) 0 0
\(13\) 1.27203 4.74727i 0.352797 1.31666i −0.530437 0.847725i \(-0.677972\pi\)
0.883234 0.468933i \(-0.155361\pi\)
\(14\) 0 0
\(15\) 0.496485 + 1.08313i 0.128192 + 0.279663i
\(16\) 0 0
\(17\) 5.58523i 1.35462i 0.735699 + 0.677308i \(0.236854\pi\)
−0.735699 + 0.677308i \(0.763146\pi\)
\(18\) 0 0
\(19\) 2.49649 2.49649i 0.572733 0.572733i −0.360158 0.932891i \(-0.617277\pi\)
0.932891 + 0.360158i \(0.117277\pi\)
\(20\) 0 0
\(21\) −0.374013 2.20525i −0.0816163 0.481226i
\(22\) 0 0
\(23\) 2.36529 1.36560i 0.493197 0.284747i −0.232703 0.972548i \(-0.574757\pi\)
0.725900 + 0.687801i \(0.241424\pi\)
\(24\) 0 0
\(25\) 3.92031 + 2.26339i 0.784061 + 0.452678i
\(26\) 0 0
\(27\) 2.50942 + 4.55004i 0.482937 + 0.875655i
\(28\) 0 0
\(29\) −0.792277 2.95682i −0.147122 0.549067i −0.999652 0.0263884i \(-0.991599\pi\)
0.852530 0.522679i \(-0.175067\pi\)
\(30\) 0 0
\(31\) 5.28160 3.04933i 0.948604 0.547677i 0.0559568 0.998433i \(-0.482179\pi\)
0.892647 + 0.450757i \(0.148846\pi\)
\(32\) 0 0
\(33\) 4.69439 + 3.33295i 0.817189 + 0.580192i
\(34\) 0 0
\(35\) 0.628165 + 0.628165i 0.106179 + 0.106179i
\(36\) 0 0
\(37\) 0.507420 0.507420i 0.0834193 0.0834193i −0.664166 0.747585i \(-0.731213\pi\)
0.747585 + 0.664166i \(0.231213\pi\)
\(38\) 0 0
\(39\) 3.54711 + 7.73835i 0.567992 + 1.23913i
\(40\) 0 0
\(41\) −4.89892 8.48518i −0.765083 1.32516i −0.940203 0.340616i \(-0.889365\pi\)
0.175120 0.984547i \(-0.443969\pi\)
\(42\) 0 0
\(43\) 0.949956 0.254540i 0.144867 0.0388170i −0.185657 0.982615i \(-0.559441\pi\)
0.330524 + 0.943798i \(0.392775\pi\)
\(44\) 0 0
\(45\) −1.85883 0.896527i −0.277097 0.133646i
\(46\) 0 0
\(47\) 6.13774 10.6309i 0.895281 1.55067i 0.0618250 0.998087i \(-0.480308\pi\)
0.833456 0.552586i \(-0.186359\pi\)
\(48\) 0 0
\(49\) 2.66616 + 4.61793i 0.380880 + 0.659704i
\(50\) 0 0
\(51\) −6.16973 7.45109i −0.863935 1.04336i
\(52\) 0 0
\(53\) 0.601793 + 0.601793i 0.0826626 + 0.0826626i 0.747229 0.664567i \(-0.231384\pi\)
−0.664567 + 0.747229i \(0.731384\pi\)
\(54\) 0 0
\(55\) −2.28658 −0.308322
\(56\) 0 0
\(57\) −0.572741 + 6.08824i −0.0758614 + 0.806407i
\(58\) 0 0
\(59\) −4.77715 1.28003i −0.621932 0.166646i −0.0659263 0.997824i \(-0.521000\pi\)
−0.556006 + 0.831178i \(0.687667\pi\)
\(60\) 0 0
\(61\) 10.8292 2.90167i 1.38653 0.371520i 0.513043 0.858363i \(-0.328518\pi\)
0.873490 + 0.486842i \(0.161851\pi\)
\(62\) 0 0
\(63\) 2.93500 + 2.52881i 0.369775 + 0.318600i
\(64\) 0 0
\(65\) −2.92795 1.69045i −0.363167 0.209675i
\(66\) 0 0
\(67\) −0.110351 0.0295686i −0.0134816 0.00361238i 0.252072 0.967708i \(-0.418888\pi\)
−0.265554 + 0.964096i \(0.585555\pi\)
\(68\) 0 0
\(69\) −1.64695 + 4.43463i −0.198269 + 0.533866i
\(70\) 0 0
\(71\) 0.0447904i 0.00531565i 0.999996 + 0.00265782i \(0.000846013\pi\)
−0.999996 + 0.00265782i \(0.999154\pi\)
\(72\) 0 0
\(73\) 13.2931i 1.55585i 0.628360 + 0.777923i \(0.283726\pi\)
−0.628360 + 0.777923i \(0.716274\pi\)
\(74\) 0 0
\(75\) −7.73022 + 1.31105i −0.892609 + 0.151387i
\(76\) 0 0
\(77\) 4.14624 + 1.11098i 0.472507 + 0.126608i
\(78\) 0 0
\(79\) 2.50052 + 1.44368i 0.281331 + 0.162426i 0.634026 0.773312i \(-0.281401\pi\)
−0.352695 + 0.935738i \(0.614735\pi\)
\(80\) 0 0
\(81\) −8.37394 3.29804i −0.930438 0.366449i
\(82\) 0 0
\(83\) −3.79568 + 1.01705i −0.416630 + 0.111636i −0.461043 0.887378i \(-0.652525\pi\)
0.0444135 + 0.999013i \(0.485858\pi\)
\(84\) 0 0
\(85\) 3.71122 + 0.994419i 0.402539 + 0.107860i
\(86\) 0 0
\(87\) 4.32321 + 3.06941i 0.463497 + 0.329076i
\(88\) 0 0
\(89\) −12.7362 −1.35003 −0.675017 0.737802i \(-0.735864\pi\)
−0.675017 + 0.737802i \(0.735864\pi\)
\(90\) 0 0
\(91\) 4.48788 + 4.48788i 0.470458 + 0.470458i
\(92\) 0 0
\(93\) −3.67758 + 9.90236i −0.381347 + 1.02683i
\(94\) 0 0
\(95\) −1.21436 2.10333i −0.124590 0.215797i
\(96\) 0 0
\(97\) 4.41066 7.63949i 0.447835 0.775673i −0.550410 0.834895i \(-0.685529\pi\)
0.998245 + 0.0592215i \(0.0188618\pi\)
\(98\) 0 0
\(99\) −9.94440 + 0.739279i −0.999450 + 0.0743004i
\(100\) 0 0
\(101\) −7.02523 + 1.88240i −0.699037 + 0.187306i −0.590799 0.806819i \(-0.701187\pi\)
−0.108238 + 0.994125i \(0.534521\pi\)
\(102\) 0 0
\(103\) −9.50698 16.4666i −0.936750 1.62250i −0.771483 0.636250i \(-0.780485\pi\)
−0.165267 0.986249i \(-0.552849\pi\)
\(104\) 0 0
\(105\) −1.53192 0.144113i −0.149500 0.0140640i
\(106\) 0 0
\(107\) −8.28797 + 8.28797i −0.801228 + 0.801228i −0.983287 0.182060i \(-0.941724\pi\)
0.182060 + 0.983287i \(0.441724\pi\)
\(108\) 0 0
\(109\) −14.3799 14.3799i −1.37735 1.37735i −0.849074 0.528273i \(-0.822840\pi\)
−0.528273 0.849074i \(-0.677160\pi\)
\(110\) 0 0
\(111\) −0.116412 + 1.23746i −0.0110493 + 0.117454i
\(112\) 0 0
\(113\) −2.18778 + 1.26312i −0.205809 + 0.118824i −0.599362 0.800478i \(-0.704579\pi\)
0.393553 + 0.919302i \(0.371246\pi\)
\(114\) 0 0
\(115\) −0.486275 1.81480i −0.0453454 0.169231i
\(116\) 0 0
\(117\) −13.2803 6.40518i −1.22776 0.592159i
\(118\) 0 0
\(119\) −6.24637 3.60634i −0.572604 0.330593i
\(120\) 0 0
\(121\) −0.0421101 + 0.0243123i −0.00382819 + 0.00221021i
\(122\) 0 0
\(123\) 15.9087 + 5.90823i 1.43444 + 0.532727i
\(124\) 0 0
\(125\) 4.63408 4.63408i 0.414485 0.414485i
\(126\) 0 0
\(127\) 17.5157i 1.55427i 0.629333 + 0.777135i \(0.283328\pi\)
−0.629333 + 0.777135i \(0.716672\pi\)
\(128\) 0 0
\(129\) −0.986131 + 1.38895i −0.0868240 + 0.122290i
\(130\) 0 0
\(131\) −3.21241 + 11.9889i −0.280669 + 1.04747i 0.671277 + 0.741207i \(0.265746\pi\)
−0.951946 + 0.306266i \(0.900920\pi\)
\(132\) 0 0
\(133\) 1.18004 + 4.40397i 0.102322 + 0.381872i
\(134\) 0 0
\(135\) 3.47016 0.857326i 0.298663 0.0737869i
\(136\) 0 0
\(137\) 5.00063 8.66134i 0.427232 0.739988i −0.569394 0.822065i \(-0.692822\pi\)
0.996626 + 0.0820768i \(0.0261553\pi\)
\(138\) 0 0
\(139\) 0.368654 1.37583i 0.0312688 0.116697i −0.948528 0.316695i \(-0.897427\pi\)
0.979796 + 0.199998i \(0.0640936\pi\)
\(140\) 0 0
\(141\) 3.55524 + 20.9624i 0.299405 + 1.76535i
\(142\) 0 0
\(143\) −16.3363 −1.36611
\(144\) 0 0
\(145\) −2.10578 −0.174876
\(146\) 0 0
\(147\) −8.65805 3.21546i −0.714104 0.265207i
\(148\) 0 0
\(149\) 1.48172 5.52986i 0.121387 0.453024i −0.878298 0.478114i \(-0.841321\pi\)
0.999685 + 0.0250901i \(0.00798725\pi\)
\(150\) 0 0
\(151\) −8.10127 + 14.0318i −0.659272 + 1.14189i 0.321533 + 0.946899i \(0.395802\pi\)
−0.980804 + 0.194994i \(0.937531\pi\)
\(152\) 0 0
\(153\) 16.4617 + 3.12487i 1.33085 + 0.252631i
\(154\) 0 0
\(155\) −1.08583 4.05239i −0.0872163 0.325496i
\(156\) 0 0
\(157\) −2.02762 + 7.56718i −0.161822 + 0.603927i 0.836602 + 0.547810i \(0.184538\pi\)
−0.998424 + 0.0561165i \(0.982128\pi\)
\(158\) 0 0
\(159\) −1.46761 0.138063i −0.116389 0.0109491i
\(160\) 0 0
\(161\) 3.52703i 0.277969i
\(162\) 0 0
\(163\) 4.89763 4.89763i 0.383612 0.383612i −0.488789 0.872402i \(-0.662561\pi\)
0.872402 + 0.488789i \(0.162561\pi\)
\(164\) 0 0
\(165\) 3.05046 2.52587i 0.237478 0.196639i
\(166\) 0 0
\(167\) 18.7832 10.8445i 1.45349 0.839174i 0.454814 0.890587i \(-0.349706\pi\)
0.998677 + 0.0514129i \(0.0163725\pi\)
\(168\) 0 0
\(169\) −9.66023 5.57734i −0.743095 0.429026i
\(170\) 0 0
\(171\) −5.96130 8.75482i −0.455872 0.669497i
\(172\) 0 0
\(173\) −2.05946 7.68601i −0.156578 0.584356i −0.998965 0.0454836i \(-0.985517\pi\)
0.842387 0.538873i \(-0.181150\pi\)
\(174\) 0 0
\(175\) −5.06263 + 2.92291i −0.382699 + 0.220951i
\(176\) 0 0
\(177\) 7.78705 3.56944i 0.585311 0.268295i
\(178\) 0 0
\(179\) 9.47991 + 9.47991i 0.708562 + 0.708562i 0.966233 0.257671i \(-0.0829551\pi\)
−0.257671 + 0.966233i \(0.582955\pi\)
\(180\) 0 0
\(181\) 8.00075 8.00075i 0.594691 0.594691i −0.344204 0.938895i \(-0.611851\pi\)
0.938895 + 0.344204i \(0.111851\pi\)
\(182\) 0 0
\(183\) −11.2415 + 15.8335i −0.830999 + 1.17045i
\(184\) 0 0
\(185\) −0.246822 0.427509i −0.0181467 0.0314311i
\(186\) 0 0
\(187\) 17.9324 4.80498i 1.31135 0.351375i
\(188\) 0 0
\(189\) −6.70895 0.131462i −0.488004 0.00956248i
\(190\) 0 0
\(191\) −9.22986 + 15.9866i −0.667850 + 1.15675i 0.310655 + 0.950523i \(0.399452\pi\)
−0.978504 + 0.206227i \(0.933882\pi\)
\(192\) 0 0
\(193\) 2.61643 + 4.53179i 0.188335 + 0.326205i 0.944695 0.327950i \(-0.106358\pi\)
−0.756360 + 0.654155i \(0.773024\pi\)
\(194\) 0 0
\(195\) 5.77345 0.979182i 0.413445 0.0701207i
\(196\) 0 0
\(197\) 14.3573 + 14.3573i 1.02292 + 1.02292i 0.999731 + 0.0231869i \(0.00738128\pi\)
0.0231869 + 0.999731i \(0.492619\pi\)
\(198\) 0 0
\(199\) 13.8358 0.980797 0.490399 0.871498i \(-0.336851\pi\)
0.490399 + 0.871498i \(0.336851\pi\)
\(200\) 0 0
\(201\) 0.179880 0.0824533i 0.0126877 0.00581581i
\(202\) 0 0
\(203\) 3.81839 + 1.02314i 0.267999 + 0.0718100i
\(204\) 0 0
\(205\) −6.51038 + 1.74445i −0.454705 + 0.121838i
\(206\) 0 0
\(207\) −2.70157 7.73541i −0.187772 0.537648i
\(208\) 0 0
\(209\) −10.1632 5.86770i −0.703001 0.405878i
\(210\) 0 0
\(211\) 25.6481 + 6.87239i 1.76569 + 0.473115i 0.987858 0.155358i \(-0.0496531\pi\)
0.777831 + 0.628473i \(0.216320\pi\)
\(212\) 0 0
\(213\) −0.0494778 0.0597536i −0.00339017 0.00409425i
\(214\) 0 0
\(215\) 0.676538i 0.0461395i
\(216\) 0 0
\(217\) 7.87574i 0.534640i
\(218\) 0 0
\(219\) −14.6843 17.7340i −0.992273 1.19835i
\(220\) 0 0
\(221\) 26.5146 + 7.10457i 1.78357 + 0.477905i
\(222\) 0 0
\(223\) −2.77266 1.60079i −0.185671 0.107197i 0.404284 0.914634i \(-0.367521\pi\)
−0.589954 + 0.807437i \(0.700854\pi\)
\(224\) 0 0
\(225\) 8.86441 10.2882i 0.590960 0.685882i
\(226\) 0 0
\(227\) −2.78291 + 0.745680i −0.184708 + 0.0494925i −0.349988 0.936754i \(-0.613814\pi\)
0.165279 + 0.986247i \(0.447148\pi\)
\(228\) 0 0
\(229\) −17.6277 4.72334i −1.16487 0.312127i −0.375963 0.926635i \(-0.622688\pi\)
−0.788911 + 0.614508i \(0.789355\pi\)
\(230\) 0 0
\(231\) −6.75862 + 3.09802i −0.444684 + 0.203835i
\(232\) 0 0
\(233\) 6.00585 0.393456 0.196728 0.980458i \(-0.436968\pi\)
0.196728 + 0.980458i \(0.436968\pi\)
\(234\) 0 0
\(235\) −5.97112 5.97112i −0.389513 0.389513i
\(236\) 0 0
\(237\) −4.93063 + 0.836239i −0.320279 + 0.0543196i
\(238\) 0 0
\(239\) −6.00788 10.4059i −0.388617 0.673105i 0.603647 0.797252i \(-0.293714\pi\)
−0.992264 + 0.124147i \(0.960381\pi\)
\(240\) 0 0
\(241\) 1.51923 2.63138i 0.0978622 0.169502i −0.812937 0.582351i \(-0.802133\pi\)
0.910800 + 0.412849i \(0.135466\pi\)
\(242\) 0 0
\(243\) 14.8146 4.85048i 0.950358 0.311158i
\(244\) 0 0
\(245\) 3.54317 0.949391i 0.226365 0.0606543i
\(246\) 0 0
\(247\) −8.67590 15.0271i −0.552034 0.956152i
\(248\) 0 0
\(249\) 3.94022 5.54972i 0.249701 0.351699i
\(250\) 0 0
\(251\) −2.95387 + 2.95387i −0.186447 + 0.186447i −0.794158 0.607711i \(-0.792088\pi\)
0.607711 + 0.794158i \(0.292088\pi\)
\(252\) 0 0
\(253\) −6.41937 6.41937i −0.403582 0.403582i
\(254\) 0 0
\(255\) −6.04952 + 2.77298i −0.378836 + 0.173651i
\(256\) 0 0
\(257\) 1.67398 0.966474i 0.104420 0.0602870i −0.446880 0.894594i \(-0.647465\pi\)
0.551301 + 0.834307i \(0.314132\pi\)
\(258\) 0 0
\(259\) 0.239847 + 0.895122i 0.0149034 + 0.0556202i
\(260\) 0 0
\(261\) −9.15810 + 0.680824i −0.566872 + 0.0421420i
\(262\) 0 0
\(263\) 1.51993 + 0.877533i 0.0937230 + 0.0541110i 0.546129 0.837701i \(-0.316101\pi\)
−0.452406 + 0.891812i \(0.649434\pi\)
\(264\) 0 0
\(265\) 0.507020 0.292728i 0.0311460 0.0179821i
\(266\) 0 0
\(267\) 16.9910 14.0691i 1.03983 0.861013i
\(268\) 0 0
\(269\) −14.2013 + 14.2013i −0.865871 + 0.865871i −0.992012 0.126141i \(-0.959741\pi\)
0.126141 + 0.992012i \(0.459741\pi\)
\(270\) 0 0
\(271\) 11.3712i 0.690754i −0.938464 0.345377i \(-0.887751\pi\)
0.938464 0.345377i \(-0.112249\pi\)
\(272\) 0 0
\(273\) −10.9447 1.02961i −0.662404 0.0623145i
\(274\) 0 0
\(275\) 3.89439 14.5341i 0.234841 0.876437i
\(276\) 0 0
\(277\) 1.81439 + 6.77138i 0.109016 + 0.406853i 0.998770 0.0495877i \(-0.0157907\pi\)
−0.889754 + 0.456441i \(0.849124\pi\)
\(278\) 0 0
\(279\) −6.03251 17.2729i −0.361157 1.03410i
\(280\) 0 0
\(281\) 5.16379 8.94395i 0.308046 0.533552i −0.669889 0.742461i \(-0.733658\pi\)
0.977935 + 0.208910i \(0.0669916\pi\)
\(282\) 0 0
\(283\) −6.25018 + 23.3260i −0.371535 + 1.38659i 0.486807 + 0.873509i \(0.338161\pi\)
−0.858342 + 0.513078i \(0.828505\pi\)
\(284\) 0 0
\(285\) 3.94348 + 1.46455i 0.233592 + 0.0867523i
\(286\) 0 0
\(287\) 12.6528 0.746871
\(288\) 0 0
\(289\) −14.1948 −0.834987
\(290\) 0 0
\(291\) 2.55484 + 15.0639i 0.149768 + 0.883060i
\(292\) 0 0
\(293\) −5.04554 + 18.8302i −0.294763 + 1.10007i 0.646642 + 0.762794i \(0.276173\pi\)
−0.941405 + 0.337278i \(0.890494\pi\)
\(294\) 0 0
\(295\) −1.70109 + 2.94638i −0.0990414 + 0.171545i
\(296\) 0 0
\(297\) 12.4499 11.9713i 0.722416 0.694648i
\(298\) 0 0
\(299\) −3.47416 12.9658i −0.200916 0.749829i
\(300\) 0 0
\(301\) −0.328709 + 1.22676i −0.0189465 + 0.0707093i
\(302\) 0 0
\(303\) 7.29275 10.2717i 0.418958 0.590093i
\(304\) 0 0
\(305\) 7.71230i 0.441605i
\(306\) 0 0
\(307\) 4.37646 4.37646i 0.249778 0.249778i −0.571101 0.820879i \(-0.693484\pi\)
0.820879 + 0.571101i \(0.193484\pi\)
\(308\) 0 0
\(309\) 30.8728 + 11.4657i 1.75629 + 0.652259i
\(310\) 0 0
\(311\) 2.65273 1.53155i 0.150423 0.0868465i −0.422900 0.906177i \(-0.638988\pi\)
0.573322 + 0.819330i \(0.305654\pi\)
\(312\) 0 0
\(313\) −2.59526 1.49837i −0.146693 0.0846930i 0.424857 0.905260i \(-0.360324\pi\)
−0.571550 + 0.820567i \(0.693658\pi\)
\(314\) 0 0
\(315\) 2.20288 1.49998i 0.124118 0.0845143i
\(316\) 0 0
\(317\) 2.47692 + 9.24401i 0.139118 + 0.519195i 0.999947 + 0.0103009i \(0.00327892\pi\)
−0.860829 + 0.508894i \(0.830054\pi\)
\(318\) 0 0
\(319\) −8.81182 + 5.08751i −0.493367 + 0.284846i
\(320\) 0 0
\(321\) 1.90142 20.2120i 0.106127 1.12813i
\(322\) 0 0
\(323\) 13.9434 + 13.9434i 0.775834 + 0.775834i
\(324\) 0 0
\(325\) 15.7317 15.7317i 0.872636 0.872636i
\(326\) 0 0
\(327\) 35.0687 + 3.29903i 1.93930 + 0.182437i
\(328\) 0 0
\(329\) 7.92619 + 13.7286i 0.436985 + 0.756880i
\(330\) 0 0
\(331\) −14.5870 + 3.90856i −0.801772 + 0.214834i −0.636362 0.771391i \(-0.719561\pi\)
−0.165410 + 0.986225i \(0.552895\pi\)
\(332\) 0 0
\(333\) −1.21166 1.77945i −0.0663984 0.0975131i
\(334\) 0 0
\(335\) −0.0392949 + 0.0680608i −0.00214691 + 0.00371856i
\(336\) 0 0
\(337\) 1.09448 + 1.89569i 0.0596200 + 0.103265i 0.894295 0.447478i \(-0.147678\pi\)
−0.834675 + 0.550743i \(0.814344\pi\)
\(338\) 0 0
\(339\) 1.52335 4.10183i 0.0827372 0.222781i
\(340\) 0 0
\(341\) −14.3342 14.3342i −0.776242 0.776242i
\(342\) 0 0
\(343\) −15.9258 −0.859912
\(344\) 0 0
\(345\) 2.65345 + 1.88391i 0.142857 + 0.101426i
\(346\) 0 0
\(347\) 27.6810 + 7.41711i 1.48599 + 0.398171i 0.908382 0.418140i \(-0.137318\pi\)
0.577612 + 0.816311i \(0.303985\pi\)
\(348\) 0 0
\(349\) −23.0850 + 6.18561i −1.23571 + 0.331108i −0.816801 0.576919i \(-0.804255\pi\)
−0.418911 + 0.908027i \(0.637588\pi\)
\(350\) 0 0
\(351\) 24.7923 6.12512i 1.32332 0.326934i
\(352\) 0 0
\(353\) −0.355770 0.205404i −0.0189357 0.0109325i 0.490502 0.871440i \(-0.336813\pi\)
−0.509438 + 0.860507i \(0.670147\pi\)
\(354\) 0 0
\(355\) 0.0297620 + 0.00797469i 0.00157960 + 0.000423253i
\(356\) 0 0
\(357\) 12.3169 2.08895i 0.651877 0.110559i
\(358\) 0 0
\(359\) 1.19383i 0.0630078i −0.999504 0.0315039i \(-0.989970\pi\)
0.999504 0.0315039i \(-0.0100297\pi\)
\(360\) 0 0
\(361\) 6.53512i 0.343954i
\(362\) 0 0
\(363\) 0.0293212 0.0789513i 0.00153897 0.00414387i
\(364\) 0 0
\(365\) 8.83291 + 2.36677i 0.462336 + 0.123883i
\(366\) 0 0
\(367\) −16.1698 9.33562i −0.844055 0.487316i 0.0145854 0.999894i \(-0.495357\pi\)
−0.858641 + 0.512578i \(0.828690\pi\)
\(368\) 0 0
\(369\) −27.7498 + 9.69156i −1.44460 + 0.504522i
\(370\) 0 0
\(371\) −1.06160 + 0.284455i −0.0551156 + 0.0147682i
\(372\) 0 0
\(373\) 11.5442 + 3.09325i 0.597735 + 0.160163i 0.544986 0.838445i \(-0.316535\pi\)
0.0527491 + 0.998608i \(0.483202\pi\)
\(374\) 0 0
\(375\) −1.06314 + 11.3012i −0.0549006 + 0.583593i
\(376\) 0 0
\(377\) −15.0446 −0.774838
\(378\) 0 0
\(379\) −15.3650 15.3650i −0.789248 0.789248i 0.192123 0.981371i \(-0.438463\pi\)
−0.981371 + 0.192123i \(0.938463\pi\)
\(380\) 0 0
\(381\) −19.3488 23.3672i −0.991269 1.19714i
\(382\) 0 0
\(383\) 11.1162 + 19.2539i 0.568013 + 0.983827i 0.996762 + 0.0804037i \(0.0256210\pi\)
−0.428750 + 0.903423i \(0.641046\pi\)
\(384\) 0 0
\(385\) 1.47643 2.55725i 0.0752458 0.130330i
\(386\) 0 0
\(387\) −0.218733 2.94228i −0.0111188 0.149565i
\(388\) 0 0
\(389\) 15.6338 4.18905i 0.792663 0.212393i 0.160303 0.987068i \(-0.448753\pi\)
0.632360 + 0.774675i \(0.282086\pi\)
\(390\) 0 0
\(391\) 7.62718 + 13.2107i 0.385723 + 0.668092i
\(392\) 0 0
\(393\) −8.95795 19.5426i −0.451869 0.985794i
\(394\) 0 0
\(395\) 1.40449 1.40449i 0.0706674 0.0706674i
\(396\) 0 0
\(397\) 14.5828 + 14.5828i 0.731887 + 0.731887i 0.970993 0.239106i \(-0.0768543\pi\)
−0.239106 + 0.970993i \(0.576854\pi\)
\(398\) 0 0
\(399\) −6.43910 4.57167i −0.322358 0.228870i
\(400\) 0 0
\(401\) 27.9585 16.1418i 1.39618 0.806085i 0.402191 0.915556i \(-0.368249\pi\)
0.993990 + 0.109470i \(0.0349155\pi\)
\(402\) 0 0
\(403\) −7.75768 28.9521i −0.386438 1.44220i
\(404\) 0 0
\(405\) −3.68239 + 4.97705i −0.182979 + 0.247311i
\(406\) 0 0
\(407\) −2.06570 1.19263i −0.102393 0.0591166i
\(408\) 0 0
\(409\) 12.9975 7.50409i 0.642683 0.371053i −0.142964 0.989728i \(-0.545663\pi\)
0.785647 + 0.618674i \(0.212330\pi\)
\(410\) 0 0
\(411\) 2.89658 + 17.0788i 0.142878 + 0.842435i
\(412\) 0 0
\(413\) 4.51613 4.51613i 0.222224 0.222224i
\(414\) 0 0
\(415\) 2.70320i 0.132695i
\(416\) 0 0
\(417\) 1.02801 + 2.24269i 0.0503417 + 0.109825i
\(418\) 0 0
\(419\) −6.00718 + 22.4191i −0.293470 + 1.09525i 0.648955 + 0.760827i \(0.275206\pi\)
−0.942425 + 0.334418i \(0.891460\pi\)
\(420\) 0 0
\(421\) 4.05109 + 15.1189i 0.197438 + 0.736849i 0.991622 + 0.129172i \(0.0412319\pi\)
−0.794184 + 0.607677i \(0.792101\pi\)
\(422\) 0 0
\(423\) −27.8991 24.0380i −1.35650 1.16877i
\(424\) 0 0
\(425\) −12.6415 + 21.8958i −0.613205 + 1.06210i
\(426\) 0 0
\(427\) −3.74717 + 13.9846i −0.181338 + 0.676764i
\(428\) 0 0
\(429\) 21.7938 18.0460i 1.05222 0.871267i
\(430\) 0 0
\(431\) 1.63818 0.0789082 0.0394541 0.999221i \(-0.487438\pi\)
0.0394541 + 0.999221i \(0.487438\pi\)
\(432\) 0 0
\(433\) 24.1284 1.15954 0.579769 0.814781i \(-0.303143\pi\)
0.579769 + 0.814781i \(0.303143\pi\)
\(434\) 0 0
\(435\) 2.80926 2.32615i 0.134694 0.111531i
\(436\) 0 0
\(437\) 2.49571 9.31411i 0.119386 0.445554i
\(438\) 0 0
\(439\) −6.04546 + 10.4711i −0.288534 + 0.499756i −0.973460 0.228857i \(-0.926501\pi\)
0.684926 + 0.728613i \(0.259835\pi\)
\(440\) 0 0
\(441\) 15.1024 5.27448i 0.719162 0.251166i
\(442\) 0 0
\(443\) 4.35450 + 16.2512i 0.206889 + 0.772119i 0.988866 + 0.148811i \(0.0475448\pi\)
−0.781977 + 0.623307i \(0.785789\pi\)
\(444\) 0 0
\(445\) −2.26761 + 8.46284i −0.107495 + 0.401177i
\(446\) 0 0
\(447\) 4.13185 + 9.01401i 0.195430 + 0.426348i
\(448\) 0 0
\(449\) 31.8270i 1.50201i 0.660298 + 0.751004i \(0.270430\pi\)
−0.660298 + 0.751004i \(0.729570\pi\)
\(450\) 0 0
\(451\) −23.0287 + 23.0287i −1.08438 + 1.08438i
\(452\) 0 0
\(453\) −4.69260 27.6685i −0.220477 1.29998i
\(454\) 0 0
\(455\) 3.78111 2.18303i 0.177261 0.102342i
\(456\) 0 0
\(457\) −24.8553 14.3502i −1.16268 0.671275i −0.210737 0.977543i \(-0.567586\pi\)
−0.951945 + 0.306268i \(0.900920\pi\)
\(458\) 0 0
\(459\) −25.4130 + 14.0157i −1.18618 + 0.654195i
\(460\) 0 0
\(461\) 0.483918 + 1.80601i 0.0225383 + 0.0841141i 0.976279 0.216517i \(-0.0694695\pi\)
−0.953741 + 0.300631i \(0.902803\pi\)
\(462\) 0 0
\(463\) 4.71990 2.72503i 0.219352 0.126643i −0.386298 0.922374i \(-0.626246\pi\)
0.605650 + 0.795731i \(0.292913\pi\)
\(464\) 0 0
\(465\) 5.92506 + 4.20670i 0.274768 + 0.195081i
\(466\) 0 0
\(467\) −8.95228 8.95228i −0.414262 0.414262i 0.468958 0.883220i \(-0.344630\pi\)
−0.883220 + 0.468958i \(0.844630\pi\)
\(468\) 0 0
\(469\) 0.104322 0.104322i 0.00481713 0.00481713i
\(470\) 0 0
\(471\) −5.65411 12.3350i −0.260528 0.568365i
\(472\) 0 0
\(473\) −1.63450 2.83103i −0.0751542 0.130171i
\(474\) 0 0
\(475\) 15.4375 4.13647i 0.708321 0.189794i
\(476\) 0 0
\(477\) 2.11040 1.43701i 0.0966286 0.0657961i
\(478\) 0 0
\(479\) 4.27809 7.40987i 0.195471 0.338566i −0.751584 0.659638i \(-0.770710\pi\)
0.947055 + 0.321072i \(0.104043\pi\)
\(480\) 0 0
\(481\) −1.76341 3.05431i −0.0804045 0.139265i
\(482\) 0 0
\(483\) −3.89614 4.70531i −0.177281 0.214099i
\(484\) 0 0
\(485\) −4.29093 4.29093i −0.194841 0.194841i
\(486\) 0 0
\(487\) 13.1689 0.596738 0.298369 0.954451i \(-0.403557\pi\)
0.298369 + 0.954451i \(0.403557\pi\)
\(488\) 0 0
\(489\) −1.12361 + 11.9440i −0.0508114 + 0.540125i
\(490\) 0 0
\(491\) −8.09692 2.16956i −0.365409 0.0979110i 0.0714425 0.997445i \(-0.477240\pi\)
−0.436851 + 0.899534i \(0.643906\pi\)
\(492\) 0 0
\(493\) 16.5145 4.42505i 0.743776 0.199294i
\(494\) 0 0
\(495\) −1.27932 + 6.73939i −0.0575010 + 0.302913i
\(496\) 0 0
\(497\) −0.0500924 0.0289209i −0.00224695 0.00129728i
\(498\) 0 0
\(499\) −31.2957 8.38567i −1.40099 0.375394i −0.522289 0.852768i \(-0.674922\pi\)
−0.878700 + 0.477374i \(0.841589\pi\)
\(500\) 0 0
\(501\) −13.0788 + 35.2163i −0.584316 + 1.57335i
\(502\) 0 0
\(503\) 20.8126i 0.927989i 0.885838 + 0.463994i \(0.153584\pi\)
−0.885838 + 0.463994i \(0.846416\pi\)
\(504\) 0 0
\(505\) 5.00321i 0.222640i
\(506\) 0 0
\(507\) 19.0484 3.23063i 0.845971 0.143477i
\(508\) 0 0
\(509\) −20.7078 5.54865i −0.917859 0.245940i −0.231189 0.972909i \(-0.574262\pi\)
−0.686670 + 0.726969i \(0.740928\pi\)
\(510\) 0 0
\(511\) −14.8667 8.58329i −0.657664 0.379703i
\(512\) 0 0
\(513\) 17.6238 + 5.09438i 0.778111 + 0.224922i
\(514\) 0 0
\(515\) −12.6342 + 3.38533i −0.556730 + 0.149175i
\(516\) 0 0
\(517\) −39.4127 10.5606i −1.73337 0.464455i
\(518\) 0 0
\(519\) 11.2378 + 7.97869i 0.493286 + 0.350226i
\(520\) 0 0
\(521\) 20.1534 0.882938 0.441469 0.897277i \(-0.354458\pi\)
0.441469 + 0.897277i \(0.354458\pi\)
\(522\) 0 0
\(523\) −14.7713 14.7713i −0.645905 0.645905i 0.306096 0.952001i \(-0.400977\pi\)
−0.952001 + 0.306096i \(0.900977\pi\)
\(524\) 0 0
\(525\) 3.52511 9.49181i 0.153848 0.414256i
\(526\) 0 0
\(527\) 17.0312 + 29.4990i 0.741892 + 1.28499i
\(528\) 0 0
\(529\) −7.77028 + 13.4585i −0.337838 + 0.585153i
\(530\) 0 0
\(531\) −6.44550 + 13.3639i −0.279711 + 0.579942i
\(532\) 0 0
\(533\) −46.5131 + 12.4631i −2.01470 + 0.539838i
\(534\) 0 0
\(535\) 4.03149 + 6.98274i 0.174296 + 0.301890i
\(536\) 0 0
\(537\) −23.1189 2.17487i −0.997653 0.0938525i
\(538\) 0 0
\(539\) 12.5330 12.5330i 0.539835 0.539835i
\(540\) 0 0
\(541\) 11.1739 + 11.1739i 0.480403 + 0.480403i 0.905260 0.424857i \(-0.139676\pi\)
−0.424857 + 0.905260i \(0.639676\pi\)
\(542\) 0 0
\(543\) −1.83552 + 19.5116i −0.0787698 + 0.837324i
\(544\) 0 0
\(545\) −12.1153 + 6.99478i −0.518963 + 0.299624i
\(546\) 0 0
\(547\) 3.23236 + 12.0633i 0.138206 + 0.515791i 0.999964 + 0.00847177i \(0.00269668\pi\)
−0.861758 + 0.507319i \(0.830637\pi\)
\(548\) 0 0
\(549\) −2.49348 33.5410i −0.106419 1.43149i
\(550\) 0 0
\(551\) −9.35956 5.40375i −0.398731 0.230207i
\(552\) 0 0
\(553\) −3.22914 + 1.86435i −0.137317 + 0.0792800i
\(554\) 0 0
\(555\) 0.801527 + 0.297674i 0.0340229 + 0.0126356i
\(556\) 0 0
\(557\) −4.41323 + 4.41323i −0.186995 + 0.186995i −0.794395 0.607401i \(-0.792212\pi\)
0.607401 + 0.794395i \(0.292212\pi\)
\(558\) 0 0
\(559\) 4.83349i 0.204435i
\(560\) 0 0
\(561\) −18.6153 + 26.2193i −0.785938 + 1.10698i
\(562\) 0 0
\(563\) 9.09152 33.9300i 0.383162 1.42998i −0.457882 0.889013i \(-0.651392\pi\)
0.841044 0.540967i \(-0.181942\pi\)
\(564\) 0 0
\(565\) 0.449782 + 1.67861i 0.0189225 + 0.0706197i
\(566\) 0 0
\(567\) 9.09543 7.23568i 0.381972 0.303870i
\(568\) 0 0
\(569\) −10.8432 + 18.7810i −0.454572 + 0.787342i −0.998663 0.0516841i \(-0.983541\pi\)
0.544091 + 0.839026i \(0.316874\pi\)
\(570\) 0 0
\(571\) −2.69081 + 10.0422i −0.112607 + 0.420255i −0.999097 0.0424934i \(-0.986470\pi\)
0.886490 + 0.462748i \(0.153137\pi\)
\(572\) 0 0
\(573\) −5.34633 31.5230i −0.223346 1.31689i
\(574\) 0 0
\(575\) 12.3635 0.515595
\(576\) 0 0
\(577\) −33.2014 −1.38219 −0.691096 0.722763i \(-0.742872\pi\)
−0.691096 + 0.722763i \(0.742872\pi\)
\(578\) 0 0
\(579\) −8.49655 3.15548i −0.353105 0.131137i
\(580\) 0 0
\(581\) 1.31340 4.90169i 0.0544891 0.203356i
\(582\) 0 0
\(583\) 1.41444 2.44989i 0.0585803 0.101464i
\(584\) 0 0
\(585\) −6.62054 + 7.68395i −0.273726 + 0.317692i
\(586\) 0 0
\(587\) 0.554497 + 2.06941i 0.0228865 + 0.0854137i 0.976425 0.215859i \(-0.0692552\pi\)
−0.953538 + 0.301273i \(0.902589\pi\)
\(588\) 0 0
\(589\) 5.57282 20.7981i 0.229624 0.856969i
\(590\) 0 0
\(591\) −35.0136 3.29384i −1.44027 0.135491i
\(592\) 0 0
\(593\) 13.9278i 0.571945i −0.958238 0.285973i \(-0.907683\pi\)
0.958238 0.285973i \(-0.0923166\pi\)
\(594\) 0 0
\(595\) −3.50844 + 3.50844i −0.143832 + 0.143832i
\(596\) 0 0
\(597\) −18.4580 + 15.2838i −0.755436 + 0.625524i
\(598\) 0 0
\(599\) −20.2130 + 11.6700i −0.825881 + 0.476823i −0.852440 0.522825i \(-0.824878\pi\)
0.0265594 + 0.999647i \(0.491545\pi\)
\(600\) 0 0
\(601\) −10.3379 5.96857i −0.421691 0.243463i 0.274110 0.961698i \(-0.411617\pi\)
−0.695800 + 0.718235i \(0.744950\pi\)
\(602\) 0 0
\(603\) −0.148890 + 0.308703i −0.00606326 + 0.0125714i
\(604\) 0 0
\(605\) 0.00865733 + 0.0323096i 0.000351971 + 0.00131357i
\(606\) 0 0
\(607\) 10.3919 5.99979i 0.421796 0.243524i −0.274050 0.961716i \(-0.588363\pi\)
0.695845 + 0.718192i \(0.255030\pi\)
\(608\) 0 0
\(609\) −6.22422 + 2.85306i −0.252218 + 0.115612i
\(610\) 0 0
\(611\) −42.6603 42.6603i −1.72585 1.72585i
\(612\) 0 0
\(613\) −18.1803 + 18.1803i −0.734296 + 0.734296i −0.971468 0.237172i \(-0.923780\pi\)
0.237172 + 0.971468i \(0.423780\pi\)
\(614\) 0 0
\(615\) 6.75830 9.51893i 0.272521 0.383840i
\(616\) 0 0
\(617\) 18.9672 + 32.8521i 0.763589 + 1.32257i 0.940989 + 0.338436i \(0.109898\pi\)
−0.177401 + 0.984139i \(0.556769\pi\)
\(618\) 0 0
\(619\) 0.00230201 0.000616823i 9.25258e−5 2.47922e-5i −0.258773 0.965938i \(-0.583318\pi\)
0.258865 + 0.965913i \(0.416651\pi\)
\(620\) 0 0
\(621\) 12.1490 + 7.33529i 0.487523 + 0.294355i
\(622\) 0 0
\(623\) 8.22368 14.2438i 0.329475 0.570667i
\(624\) 0 0
\(625\) 9.06281 + 15.6972i 0.362512 + 0.627890i
\(626\) 0 0
\(627\) 20.0401 3.39882i 0.800326 0.135736i
\(628\) 0 0
\(629\) 2.83406 + 2.83406i 0.113001 + 0.113001i
\(630\) 0 0
\(631\) 39.2643 1.56309 0.781543 0.623852i \(-0.214433\pi\)
0.781543 + 0.623852i \(0.214433\pi\)
\(632\) 0 0
\(633\) −41.8080 + 19.1640i −1.66172 + 0.761700i
\(634\) 0 0
\(635\) 11.6387 + 3.11858i 0.461868 + 0.123757i
\(636\) 0 0
\(637\) 25.3140 6.78286i 1.00298 0.268747i
\(638\) 0 0
\(639\) 0.132014 + 0.0250598i 0.00522239 + 0.000991349i
\(640\) 0 0
\(641\) 15.2983 + 8.83246i 0.604245 + 0.348861i 0.770710 0.637186i \(-0.219902\pi\)
−0.166465 + 0.986047i \(0.553235\pi\)
\(642\) 0 0
\(643\) 6.60298 + 1.76926i 0.260396 + 0.0697729i 0.386655 0.922224i \(-0.373630\pi\)
−0.126259 + 0.991997i \(0.540297\pi\)
\(644\) 0 0
\(645\) 0.747339 + 0.902549i 0.0294264 + 0.0355378i
\(646\) 0 0
\(647\) 4.24252i 0.166791i 0.996517 + 0.0833953i \(0.0265764\pi\)
−0.996517 + 0.0833953i \(0.973424\pi\)
\(648\) 0 0
\(649\) 16.4392i 0.645293i
\(650\) 0 0
\(651\) −8.69995 10.5068i −0.340978 0.411793i
\(652\) 0 0
\(653\) −26.6484 7.14041i −1.04283 0.279426i −0.303545 0.952817i \(-0.598170\pi\)
−0.739286 + 0.673391i \(0.764837\pi\)
\(654\) 0 0
\(655\) 7.39431 + 4.26911i 0.288919 + 0.166808i
\(656\) 0 0
\(657\) 39.1798 + 7.43737i 1.52855 + 0.290159i
\(658\) 0 0
\(659\) 10.1504 2.71978i 0.395402 0.105948i −0.0556391 0.998451i \(-0.517720\pi\)
0.451041 + 0.892503i \(0.351053\pi\)
\(660\) 0 0
\(661\) −28.3410 7.59396i −1.10234 0.295371i −0.338622 0.940922i \(-0.609961\pi\)
−0.763717 + 0.645552i \(0.776628\pi\)
\(662\) 0 0
\(663\) −43.2204 + 19.8114i −1.67854 + 0.769412i
\(664\) 0 0
\(665\) 3.13641 0.121625
\(666\) 0 0
\(667\) −5.91179 5.91179i −0.228905 0.228905i
\(668\) 0 0
\(669\) 5.46724 0.927247i 0.211376 0.0358495i
\(670\) 0 0
\(671\) −18.6327 32.2728i −0.719307 1.24588i
\(672\) 0 0
\(673\) −5.32418 + 9.22175i −0.205232 + 0.355472i −0.950207 0.311621i \(-0.899128\pi\)
0.744975 + 0.667093i \(0.232462\pi\)
\(674\) 0 0
\(675\) −0.460823 + 23.5173i −0.0177371 + 0.905182i
\(676\) 0 0
\(677\) 21.2938 5.70565i 0.818387 0.219286i 0.174746 0.984614i \(-0.444090\pi\)
0.643641 + 0.765327i \(0.277423\pi\)
\(678\) 0 0
\(679\) 5.69587 + 9.86554i 0.218587 + 0.378605i
\(680\) 0 0
\(681\) 2.88889 4.06894i 0.110702 0.155922i
\(682\) 0 0
\(683\) −1.68202 + 1.68202i −0.0643609 + 0.0643609i −0.738555 0.674194i \(-0.764491\pi\)
0.674194 + 0.738555i \(0.264491\pi\)
\(684\) 0 0
\(685\) −4.86488 4.86488i −0.185877 0.185877i
\(686\) 0 0
\(687\) 28.7343 13.1712i 1.09628 0.502514i
\(688\) 0 0
\(689\) 3.62237 2.09138i 0.138001 0.0796751i
\(690\) 0 0
\(691\) 0.595784 + 2.22350i 0.0226647 + 0.0845858i 0.976332 0.216278i \(-0.0693917\pi\)
−0.953667 + 0.300864i \(0.902725\pi\)
\(692\) 0 0
\(693\) 5.59424 11.5989i 0.212508 0.440606i
\(694\) 0 0
\(695\) −0.848565 0.489919i −0.0321879 0.0185837i
\(696\) 0 0
\(697\) 47.3917 27.3616i 1.79509 1.03639i
\(698\) 0 0
\(699\) −8.01223 + 6.63437i −0.303050 + 0.250935i
\(700\) 0 0
\(701\) 10.2728 10.2728i 0.387997 0.387997i −0.485976 0.873972i \(-0.661536\pi\)
0.873972 + 0.485976i \(0.161536\pi\)
\(702\) 0 0
\(703\) 2.53353i 0.0955540i
\(704\) 0 0
\(705\) 14.5619 + 1.36989i 0.548433 + 0.0515929i
\(706\) 0 0
\(707\) 2.43091 9.07228i 0.0914238 0.341198i
\(708\) 0 0
\(709\) 1.30925 + 4.88619i 0.0491700 + 0.183505i 0.986143 0.165896i \(-0.0530517\pi\)
−0.936973 + 0.349401i \(0.886385\pi\)
\(710\) 0 0
\(711\) 5.65406 6.56224i 0.212044 0.246103i
\(712\) 0 0
\(713\) 8.32834 14.4251i 0.311899 0.540224i
\(714\) 0 0
\(715\) −2.90859 + 10.8550i −0.108775 + 0.405955i
\(716\) 0 0
\(717\) 19.5099 + 7.24566i 0.728610 + 0.270594i
\(718\) 0 0
\(719\) −6.73858 −0.251307 −0.125653 0.992074i \(-0.540103\pi\)
−0.125653 + 0.992074i \(0.540103\pi\)
\(720\) 0 0
\(721\) 24.5544 0.914452
\(722\) 0 0
\(723\) 0.880003 + 5.18867i 0.0327277 + 0.192969i
\(724\) 0 0
\(725\) 3.58646 13.3849i 0.133198 0.497101i
\(726\) 0 0
\(727\) 4.14056 7.17166i 0.153565 0.265982i −0.778971 0.627060i \(-0.784258\pi\)
0.932536 + 0.361078i \(0.117591\pi\)
\(728\) 0 0
\(729\) −14.4057 + 22.8359i −0.533543 + 0.845773i
\(730\) 0 0
\(731\) 1.42166 + 5.30572i 0.0525821 + 0.196239i
\(732\) 0 0
\(733\) −11.7070 + 43.6909i −0.432406 + 1.61376i 0.314792 + 0.949161i \(0.398065\pi\)
−0.747198 + 0.664601i \(0.768601\pi\)
\(734\) 0 0
\(735\) −3.67810 + 5.18053i −0.135669 + 0.191087i
\(736\) 0 0
\(737\) 0.379742i 0.0139880i
\(738\) 0 0
\(739\) −22.0530 + 22.0530i −0.811234 + 0.811234i −0.984819 0.173585i \(-0.944465\pi\)
0.173585 + 0.984819i \(0.444465\pi\)
\(740\) 0 0
\(741\) 28.1740 + 10.4634i 1.03500 + 0.384381i
\(742\) 0 0
\(743\) −29.9386 + 17.2851i −1.09834 + 0.634128i −0.935785 0.352571i \(-0.885307\pi\)
−0.162557 + 0.986699i \(0.551974\pi\)
\(744\) 0 0
\(745\) −3.41062 1.96912i −0.124955 0.0721431i
\(746\) 0 0
\(747\) 0.873977 + 11.7563i 0.0319772 + 0.430140i
\(748\) 0 0
\(749\) −3.91756 14.6205i −0.143144 0.534222i
\(750\) 0 0
\(751\) 38.8676 22.4402i 1.41830 0.818855i 0.422149 0.906526i \(-0.361276\pi\)
0.996149 + 0.0876713i \(0.0279425\pi\)
\(752\) 0 0
\(753\) 0.677674 7.20367i 0.0246958 0.262516i
\(754\) 0 0
\(755\) 7.88134 + 7.88134i 0.286832 + 0.286832i
\(756\) 0 0
\(757\) 27.6111 27.6111i 1.00354 1.00354i 0.00354931 0.999994i \(-0.498870\pi\)
0.999994 0.00354931i \(-0.00112978\pi\)
\(758\) 0 0
\(759\) 15.6551 + 1.47272i 0.568243 + 0.0534565i
\(760\) 0 0
\(761\) −17.8578 30.9307i −0.647346 1.12124i −0.983754 0.179520i \(-0.942545\pi\)
0.336408 0.941716i \(-0.390788\pi\)
\(762\) 0 0
\(763\) 25.3672 6.79711i 0.918353 0.246072i
\(764\) 0 0
\(765\) 5.00731 10.3820i 0.181040 0.375361i
\(766\) 0 0
\(767\) −12.1534 + 21.0502i −0.438832 + 0.760079i
\(768\) 0 0
\(769\) −22.6077 39.1577i −0.815254 1.41206i −0.909145 0.416479i \(-0.863264\pi\)
0.0938910 0.995582i \(-0.470069\pi\)
\(770\) 0 0
\(771\) −1.16559 + 3.13851i −0.0419778 + 0.113031i
\(772\) 0 0
\(773\) 5.57961 + 5.57961i 0.200685 + 0.200685i 0.800293 0.599609i \(-0.204677\pi\)
−0.599609 + 0.800293i \(0.704677\pi\)
\(774\) 0 0
\(775\) 27.6073 0.991684
\(776\) 0 0
\(777\) −1.30877 0.929208i −0.0469519 0.0333352i
\(778\) 0 0
\(779\) −33.4132 8.95305i −1.19715 0.320776i
\(780\) 0 0
\(781\) 0.143808 0.0385333i 0.00514586 0.00137883i
\(782\) 0 0
\(783\) 11.4655 11.0248i 0.409743 0.393993i
\(784\) 0 0
\(785\) 4.66717 + 2.69459i 0.166578 + 0.0961741i
\(786\) 0 0
\(787\) −8.95529 2.39956i −0.319221 0.0855351i 0.0956504 0.995415i \(-0.469507\pi\)
−0.414872 + 0.909880i \(0.636174\pi\)
\(788\) 0 0
\(789\) −2.99706 + 0.508304i −0.106698 + 0.0180961i
\(790\) 0 0
\(791\) 3.26235i 0.115996i
\(792\) 0 0
\(793\) 55.1001i 1.95666i
\(794\) 0 0
\(795\) −0.353038 + 0.950600i −0.0125210 + 0.0337143i
\(796\) 0 0
\(797\) −24.5310 6.57307i −0.868934 0.232830i −0.203307 0.979115i \(-0.565169\pi\)
−0.665627 + 0.746285i \(0.731836\pi\)
\(798\) 0 0
\(799\) 59.3759 + 34.2807i 2.10057 + 1.21276i
\(800\) 0 0
\(801\) −7.12576 + 37.5383i −0.251776 + 1.32635i
\(802\) 0 0
\(803\) 42.6801 11.4361i 1.50615 0.403571i
\(804\) 0 0
\(805\) 2.34361 + 0.627969i 0.0826014 + 0.0221330i
\(806\) 0 0
\(807\) 3.25806 34.6331i 0.114689 1.21914i
\(808\) 0 0
\(809\) 33.1931 1.16701 0.583503 0.812111i \(-0.301682\pi\)
0.583503 + 0.812111i \(0.301682\pi\)
\(810\) 0 0
\(811\) −7.35128 7.35128i −0.258138 0.258138i 0.566158 0.824297i \(-0.308429\pi\)
−0.824297 + 0.566158i \(0.808429\pi\)
\(812\) 0 0
\(813\) 12.5613 + 15.1700i 0.440543 + 0.532037i
\(814\) 0 0
\(815\) −2.38234 4.12633i −0.0834497 0.144539i
\(816\) 0 0
\(817\) 1.73610 3.00701i 0.0607383 0.105202i
\(818\) 0 0
\(819\) 15.7384 10.7165i 0.549943 0.374466i
\(820\) 0 0
\(821\) 38.6179 10.3476i 1.34777 0.361135i 0.488462 0.872585i \(-0.337558\pi\)
0.859313 + 0.511450i \(0.170891\pi\)
\(822\) 0 0
\(823\) −11.8717 20.5623i −0.413821 0.716758i 0.581483 0.813558i \(-0.302473\pi\)
−0.995304 + 0.0968000i \(0.969139\pi\)
\(824\) 0 0
\(825\) 10.8597 + 23.6914i 0.378086 + 0.824829i
\(826\) 0 0
\(827\) −25.1545 + 25.1545i −0.874708 + 0.874708i −0.992981 0.118273i \(-0.962264\pi\)
0.118273 + 0.992981i \(0.462264\pi\)
\(828\) 0 0
\(829\) 6.12372 + 6.12372i 0.212686 + 0.212686i 0.805407 0.592722i \(-0.201947\pi\)
−0.592722 + 0.805407i \(0.701947\pi\)
\(830\) 0 0
\(831\) −9.90054 7.02924i −0.343446 0.243842i
\(832\) 0 0
\(833\) −25.7922 + 14.8911i −0.893646 + 0.515947i
\(834\) 0 0
\(835\) −3.86161 14.4117i −0.133637 0.498739i
\(836\) 0 0
\(837\) 27.1283 + 16.3794i 0.937692 + 0.566156i
\(838\) 0 0
\(839\) 35.2084 + 20.3276i 1.21553 + 0.701786i 0.963958 0.266054i \(-0.0857198\pi\)
0.251570 + 0.967839i \(0.419053\pi\)
\(840\) 0 0
\(841\) 16.9997 9.81476i 0.586195 0.338440i
\(842\) 0 0
\(843\) 2.99109 + 17.6361i 0.103019 + 0.607418i
\(844\) 0 0
\(845\) −5.42593 + 5.42593i −0.186658 + 0.186658i
\(846\) 0 0
\(847\) 0.0627931i 0.00215760i
\(848\) 0 0
\(849\) −17.4289 38.0228i −0.598159 1.30494i
\(850\) 0 0
\(851\) 0.507262 1.89313i 0.0173887 0.0648955i
\(852\) 0 0
\(853\) 11.1499 + 41.6120i 0.381765 + 1.42477i 0.843203 + 0.537595i \(0.180667\pi\)
−0.461437 + 0.887173i \(0.652666\pi\)
\(854\) 0 0
\(855\) −6.87870 + 2.40237i −0.235247 + 0.0821592i
\(856\) 0 0
\(857\) 4.72246 8.17953i 0.161316 0.279408i −0.774025 0.633155i \(-0.781759\pi\)
0.935341 + 0.353748i \(0.115093\pi\)
\(858\) 0 0
\(859\) 5.87045 21.9088i 0.200297 0.747519i −0.790535 0.612417i \(-0.790197\pi\)
0.990832 0.135102i \(-0.0431361\pi\)
\(860\) 0 0
\(861\) −16.8797 + 13.9769i −0.575260 + 0.476333i
\(862\) 0 0
\(863\) 3.58147 0.121915 0.0609573 0.998140i \(-0.480585\pi\)
0.0609573 + 0.998140i \(0.480585\pi\)
\(864\) 0 0
\(865\) −5.47380 −0.186115
\(866\) 0 0
\(867\) 18.9368 15.6803i 0.643128 0.532530i
\(868\) 0 0
\(869\) 2.48399 9.27039i 0.0842637 0.314476i
\(870\) 0 0
\(871\) −0.280740 + 0.486256i −0.00951252 + 0.0164762i
\(872\) 0 0
\(873\) −20.0487 17.2741i −0.678545 0.584638i
\(874\) 0 0
\(875\) 2.19044 + 8.17482i 0.0740503 + 0.276359i
\(876\) 0 0
\(877\) 4.52743 16.8966i 0.152881 0.570558i −0.846397 0.532553i \(-0.821233\pi\)
0.999278 0.0380056i \(-0.0121005\pi\)
\(878\) 0 0
\(879\) −14.0697 30.6944i −0.474559 1.03530i
\(880\) 0 0
\(881\) 46.1363i 1.55437i −0.629272 0.777185i \(-0.716647\pi\)
0.629272 0.777185i \(-0.283353\pi\)
\(882\) 0 0
\(883\) −19.7311 + 19.7311i −0.664003 + 0.664003i −0.956321 0.292318i \(-0.905573\pi\)
0.292318 + 0.956321i \(0.405573\pi\)
\(884\) 0 0
\(885\) −0.985345 5.80979i −0.0331220 0.195294i
\(886\) 0 0
\(887\) −29.7760 + 17.1912i −0.999780 + 0.577223i −0.908183 0.418573i \(-0.862530\pi\)
−0.0915965 + 0.995796i \(0.529197\pi\)
\(888\) 0 0
\(889\) −19.5891 11.3098i −0.656999 0.379318i
\(890\) 0 0
\(891\) −3.38485 + 29.7234i −0.113397 + 0.995772i
\(892\) 0 0
\(893\) −11.2171 41.8626i −0.375364 1.40088i
\(894\) 0 0
\(895\) 7.98697 4.61128i 0.266975 0.154138i
\(896\) 0 0
\(897\) 18.9574 + 13.4595i 0.632970 + 0.449399i
\(898\) 0 0
\(899\) −13.2008 13.2008i −0.440272 0.440272i
\(900\) 0 0
\(901\) −3.36115 + 3.36115i −0.111976 + 0.111976i
\(902\) 0 0
\(903\) −0.916621 1.99969i −0.0305033 0.0665457i
\(904\) 0 0
\(905\) −3.89178 6.74076i −0.129367 0.224070i
\(906\) 0 0
\(907\) 53.7121 14.3921i 1.78348 0.477883i 0.792271 0.610170i \(-0.208899\pi\)
0.991211 + 0.132287i \(0.0422322\pi\)
\(908\) 0 0
\(909\) 1.61760 + 21.7591i 0.0536524 + 0.721704i
\(910\) 0 0
\(911\) 6.01435 10.4172i 0.199264 0.345136i −0.749026 0.662541i \(-0.769478\pi\)
0.948290 + 0.317405i \(0.102811\pi\)
\(912\) 0 0
\(913\) 6.53085 + 11.3118i 0.216140 + 0.374365i
\(914\) 0 0
\(915\) 8.51940 + 10.2887i 0.281643 + 0.340136i
\(916\) 0 0
\(917\) −11.3338 11.3338i −0.374275 0.374275i
\(918\) 0 0
\(919\) 11.8860 0.392084 0.196042 0.980595i \(-0.437191\pi\)
0.196042 + 0.980595i \(0.437191\pi\)
\(920\) 0 0
\(921\) −1.00404 + 10.6730i −0.0330844 + 0.351687i
\(922\) 0 0
\(923\) 0.212633 + 0.0569747i 0.00699889 + 0.00187535i
\(924\) 0 0
\(925\) 3.13773 0.840752i 0.103168 0.0276438i
\(926\) 0 0
\(927\) −53.8521 + 18.8077i −1.76873 + 0.617725i
\(928\) 0 0
\(929\) −3.44934 1.99148i −0.113169 0.0653382i 0.442347 0.896844i \(-0.354146\pi\)
−0.555516 + 0.831506i \(0.687479\pi\)
\(930\) 0 0
\(931\) 18.1846 + 4.87255i 0.595977 + 0.159692i
\(932\) 0 0
\(933\) −1.84710 + 4.97355i −0.0604712 + 0.162827i
\(934\) 0 0
\(935\) 12.7711i 0.417659i
\(936\) 0 0
\(937\) 26.0017i 0.849438i 0.905325 + 0.424719i \(0.139627\pi\)
−0.905325 + 0.424719i \(0.860373\pi\)
\(938\) 0 0
\(939\) 5.11744 0.867921i 0.167001 0.0283235i
\(940\) 0 0
\(941\) −41.3717 11.0855i −1.34868 0.361378i −0.489033 0.872265i \(-0.662650\pi\)
−0.859648 + 0.510888i \(0.829317\pi\)
\(942\) 0 0
\(943\) −23.1747 13.3799i −0.754673 0.435710i
\(944\) 0 0
\(945\) −1.28184 + 4.43450i −0.0416984 + 0.144254i
\(946\) 0 0
\(947\) −17.6066 + 4.71769i −0.572139 + 0.153304i −0.533277 0.845940i \(-0.679040\pi\)
−0.0388617 + 0.999245i \(0.512373\pi\)
\(948\) 0 0
\(949\) 63.1062 + 16.9093i 2.04851 + 0.548898i
\(950\) 0 0
\(951\) −13.5158 9.59602i −0.438280 0.311172i
\(952\) 0 0
\(953\) 16.9031 0.547545 0.273772 0.961795i \(-0.411729\pi\)
0.273772 + 0.961795i \(0.411729\pi\)
\(954\) 0 0
\(955\) 8.97930 + 8.97930i 0.290563 + 0.290563i
\(956\) 0 0
\(957\) 6.13567 16.5211i 0.198338 0.534051i
\(958\) 0 0
\(959\) 6.45774 + 11.1851i 0.208531 + 0.361187i
\(960\) 0 0
\(961\) 3.09688 5.36395i 0.0998993 0.173031i
\(962\) 0 0
\(963\) 19.7907 + 29.0647i 0.637745 + 0.936597i
\(964\) 0 0
\(965\) 3.47708 0.931682i 0.111931 0.0299919i
\(966\) 0 0
\(967\) −1.50617 2.60876i −0.0484351 0.0838921i 0.840791 0.541359i \(-0.182090\pi\)
−0.889227 + 0.457467i \(0.848757\pi\)
\(968\) 0 0
\(969\) −34.0042 3.19889i −1.09237 0.102763i
\(970\) 0 0
\(971\) 35.4934 35.4934i 1.13904 1.13904i 0.150413 0.988623i \(-0.451940\pi\)
0.988623 0.150413i \(-0.0480604\pi\)
\(972\) 0 0
\(973\) 1.30066 + 1.30066i 0.0416972 + 0.0416972i
\(974\) 0 0
\(975\) −3.60914 + 38.3652i −0.115585 + 1.22867i
\(976\) 0 0
\(977\) 8.03784 4.64065i 0.257153 0.148467i −0.365882 0.930661i \(-0.619233\pi\)
0.623035 + 0.782194i \(0.285899\pi\)
\(978\) 0 0
\(979\) 10.9570 + 40.8920i 0.350186 + 1.30691i
\(980\) 0 0
\(981\) −50.4283 + 34.3375i −1.61005 + 1.09631i
\(982\) 0 0
\(983\) −11.0480 6.37856i −0.352376 0.203444i 0.313355 0.949636i \(-0.398547\pi\)
−0.665731 + 0.746192i \(0.731880\pi\)
\(984\) 0 0
\(985\) 12.0963 6.98379i 0.385420 0.222522i
\(986\) 0 0
\(987\) −25.7394 9.55919i −0.819294 0.304273i
\(988\) 0 0
\(989\) 1.89932 1.89932i 0.0603949 0.0603949i
\(990\) 0 0
\(991\) 6.60967i 0.209963i 0.994474 + 0.104982i \(0.0334784\pi\)
−0.994474 + 0.104982i \(0.966522\pi\)
\(992\) 0 0
\(993\) 15.1424 21.3278i 0.480530 0.676817i
\(994\) 0 0
\(995\) 2.46340 9.19352i 0.0780949 0.291454i
\(996\) 0 0
\(997\) −9.80194 36.5814i −0.310431 1.15854i −0.928169 0.372159i \(-0.878618\pi\)
0.617738 0.786384i \(-0.288049\pi\)
\(998\) 0 0
\(999\) 3.58211 + 1.03545i 0.113333 + 0.0327602i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 576.2.y.a.47.5 88
3.2 odd 2 1728.2.z.a.1007.10 88
4.3 odd 2 144.2.u.a.83.8 yes 88
9.4 even 3 1728.2.z.a.1583.10 88
9.5 odd 6 inner 576.2.y.a.239.7 88
12.11 even 2 432.2.v.a.35.15 88
16.5 even 4 144.2.u.a.11.15 88
16.11 odd 4 inner 576.2.y.a.335.7 88
36.23 even 6 144.2.u.a.131.15 yes 88
36.31 odd 6 432.2.v.a.179.8 88
48.5 odd 4 432.2.v.a.251.8 88
48.11 even 4 1728.2.z.a.143.10 88
144.5 odd 12 144.2.u.a.59.8 yes 88
144.59 even 12 inner 576.2.y.a.527.5 88
144.85 even 12 432.2.v.a.395.15 88
144.139 odd 12 1728.2.z.a.719.10 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.15 88 16.5 even 4
144.2.u.a.59.8 yes 88 144.5 odd 12
144.2.u.a.83.8 yes 88 4.3 odd 2
144.2.u.a.131.15 yes 88 36.23 even 6
432.2.v.a.35.15 88 12.11 even 2
432.2.v.a.179.8 88 36.31 odd 6
432.2.v.a.251.8 88 48.5 odd 4
432.2.v.a.395.15 88 144.85 even 12
576.2.y.a.47.5 88 1.1 even 1 trivial
576.2.y.a.239.7 88 9.5 odd 6 inner
576.2.y.a.335.7 88 16.11 odd 4 inner
576.2.y.a.527.5 88 144.59 even 12 inner
1728.2.z.a.143.10 88 48.11 even 4
1728.2.z.a.719.10 88 144.139 odd 12
1728.2.z.a.1007.10 88 3.2 odd 2
1728.2.z.a.1583.10 88 9.4 even 3