Newspace parameters
| Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 576.y (of order \(12\), degree \(4\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.59938315643\) |
| Analytic rank: | \(0\) |
| Dimension: | \(88\) |
| Relative dimension: | \(22\) over \(\Q(\zeta_{12})\) |
| Twist minimal: | no (minimal twist has level 144) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 47.1 | 0 | −1.72804 | + | 0.117756i | 0 | −0.961558 | + | 3.58858i | 0 | 1.29216 | − | 2.23809i | 0 | 2.97227 | − | 0.406975i | 0 | ||||||||||
| 47.2 | 0 | −1.68223 | − | 0.412428i | 0 | 0.0776974 | − | 0.289971i | 0 | 0.374023 | − | 0.647827i | 0 | 2.65981 | + | 1.38760i | 0 | ||||||||||
| 47.3 | 0 | −1.53620 | − | 0.800065i | 0 | 1.00059 | − | 3.73424i | 0 | 1.68236 | − | 2.91393i | 0 | 1.71979 | + | 2.45811i | 0 | ||||||||||
| 47.4 | 0 | −1.38573 | + | 1.03912i | 0 | 0.310357 | − | 1.15827i | 0 | −0.356047 | + | 0.616691i | 0 | 0.840471 | − | 2.87986i | 0 | ||||||||||
| 47.5 | 0 | −1.33407 | + | 1.10465i | 0 | 0.178044 | − | 0.664471i | 0 | −0.645693 | + | 1.11837i | 0 | 0.559489 | − | 2.94737i | 0 | ||||||||||
| 47.6 | 0 | −1.06447 | − | 1.36635i | 0 | 0.619079 | − | 2.31044i | 0 | −2.51270 | + | 4.35213i | 0 | −0.733803 | + | 2.90887i | 0 | ||||||||||
| 47.7 | 0 | −1.05993 | − | 1.36987i | 0 | −0.746784 | + | 2.78704i | 0 | −1.16672 | + | 2.02082i | 0 | −0.753089 | + | 2.90394i | 0 | ||||||||||
| 47.8 | 0 | −0.819834 | + | 1.52574i | 0 | −0.206232 | + | 0.769670i | 0 | 2.17574 | − | 3.76849i | 0 | −1.65574 | − | 2.50170i | 0 | ||||||||||
| 47.9 | 0 | −0.632098 | + | 1.61259i | 0 | −1.02195 | + | 3.81396i | 0 | −1.46715 | + | 2.54117i | 0 | −2.20090 | − | 2.03863i | 0 | ||||||||||
| 47.10 | 0 | −0.517369 | − | 1.65298i | 0 | −0.521033 | + | 1.94452i | 0 | 0.322227 | − | 0.558114i | 0 | −2.46466 | + | 1.71040i | 0 | ||||||||||
| 47.11 | 0 | 0.256373 | − | 1.71297i | 0 | 0.546024 | − | 2.03779i | 0 | 0.0638076 | − | 0.110518i | 0 | −2.86855 | − | 0.878321i | 0 | ||||||||||
| 47.12 | 0 | 0.313101 | + | 1.70352i | 0 | 0.752772 | − | 2.80938i | 0 | 1.02581 | − | 1.77675i | 0 | −2.80394 | + | 1.06674i | 0 | ||||||||||
| 47.13 | 0 | 0.377192 | − | 1.69048i | 0 | 0.282421 | − | 1.05401i | 0 | 1.93586 | − | 3.35301i | 0 | −2.71545 | − | 1.27527i | 0 | ||||||||||
| 47.14 | 0 | 0.427367 | + | 1.67850i | 0 | −0.0458174 | + | 0.170993i | 0 | −1.17432 | + | 2.03397i | 0 | −2.63471 | + | 1.43467i | 0 | ||||||||||
| 47.15 | 0 | 0.692394 | − | 1.58764i | 0 | −0.759273 | + | 2.83365i | 0 | −1.41719 | + | 2.45465i | 0 | −2.04118 | − | 2.19854i | 0 | ||||||||||
| 47.16 | 0 | 1.21512 | + | 1.23430i | 0 | −0.726024 | + | 2.70956i | 0 | 0.00424642 | − | 0.00735502i | 0 | −0.0469689 | + | 2.99963i | 0 | ||||||||||
| 47.17 | 0 | 1.32549 | + | 1.11494i | 0 | 0.323102 | − | 1.20583i | 0 | −0.140266 | + | 0.242948i | 0 | 0.513832 | + | 2.95567i | 0 | ||||||||||
| 47.18 | 0 | 1.49488 | − | 0.874828i | 0 | 0.473330 | − | 1.76649i | 0 | −1.40613 | + | 2.43549i | 0 | 1.46935 | − | 2.61553i | 0 | ||||||||||
| 47.19 | 0 | 1.59321 | − | 0.679468i | 0 | −0.642590 | + | 2.39818i | 0 | 1.93190 | − | 3.34616i | 0 | 2.07665 | − | 2.16507i | 0 | ||||||||||
| 47.20 | 0 | 1.65787 | − | 0.501476i | 0 | 0.997280 | − | 3.72190i | 0 | 0.481387 | − | 0.833787i | 0 | 2.49704 | − | 1.66276i | 0 | ||||||||||
| See all 88 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 9.d | odd | 6 | 1 | inner |
| 16.f | odd | 4 | 1 | inner |
| 144.u | even | 12 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 576.2.y.a | 88 | |
| 3.b | odd | 2 | 1 | 1728.2.z.a | 88 | ||
| 4.b | odd | 2 | 1 | 144.2.u.a | ✓ | 88 | |
| 9.c | even | 3 | 1 | 1728.2.z.a | 88 | ||
| 9.d | odd | 6 | 1 | inner | 576.2.y.a | 88 | |
| 12.b | even | 2 | 1 | 432.2.v.a | 88 | ||
| 16.e | even | 4 | 1 | 144.2.u.a | ✓ | 88 | |
| 16.f | odd | 4 | 1 | inner | 576.2.y.a | 88 | |
| 36.f | odd | 6 | 1 | 432.2.v.a | 88 | ||
| 36.h | even | 6 | 1 | 144.2.u.a | ✓ | 88 | |
| 48.i | odd | 4 | 1 | 432.2.v.a | 88 | ||
| 48.k | even | 4 | 1 | 1728.2.z.a | 88 | ||
| 144.u | even | 12 | 1 | inner | 576.2.y.a | 88 | |
| 144.v | odd | 12 | 1 | 1728.2.z.a | 88 | ||
| 144.w | odd | 12 | 1 | 144.2.u.a | ✓ | 88 | |
| 144.x | even | 12 | 1 | 432.2.v.a | 88 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 144.2.u.a | ✓ | 88 | 4.b | odd | 2 | 1 | |
| 144.2.u.a | ✓ | 88 | 16.e | even | 4 | 1 | |
| 144.2.u.a | ✓ | 88 | 36.h | even | 6 | 1 | |
| 144.2.u.a | ✓ | 88 | 144.w | odd | 12 | 1 | |
| 432.2.v.a | 88 | 12.b | even | 2 | 1 | ||
| 432.2.v.a | 88 | 36.f | odd | 6 | 1 | ||
| 432.2.v.a | 88 | 48.i | odd | 4 | 1 | ||
| 432.2.v.a | 88 | 144.x | even | 12 | 1 | ||
| 576.2.y.a | 88 | 1.a | even | 1 | 1 | trivial | |
| 576.2.y.a | 88 | 9.d | odd | 6 | 1 | inner | |
| 576.2.y.a | 88 | 16.f | odd | 4 | 1 | inner | |
| 576.2.y.a | 88 | 144.u | even | 12 | 1 | inner | |
| 1728.2.z.a | 88 | 3.b | odd | 2 | 1 | ||
| 1728.2.z.a | 88 | 9.c | even | 3 | 1 | ||
| 1728.2.z.a | 88 | 48.k | even | 4 | 1 | ||
| 1728.2.z.a | 88 | 144.v | odd | 12 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(576, [\chi])\).