Properties

Label 1728.2.z.a.719.10
Level $1728$
Weight $2$
Character 1728.719
Analytic conductor $13.798$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,2,Mod(143,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 719.10
Character \(\chi\) \(=\) 1728.719
Dual form 1728.2.z.a.1007.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.178044 - 0.664471i) q^{5} +(-0.645693 - 1.11837i) q^{7} +(0.860301 - 3.21069i) q^{11} +(1.27203 + 4.74727i) q^{13} +5.58523i q^{17} +(2.49649 + 2.49649i) q^{19} +(-2.36529 - 1.36560i) q^{23} +(3.92031 - 2.26339i) q^{25} +(0.792277 - 2.95682i) q^{29} +(5.28160 + 3.04933i) q^{31} +(-0.628165 + 0.628165i) q^{35} +(0.507420 + 0.507420i) q^{37} +(4.89892 - 8.48518i) q^{41} +(0.949956 + 0.254540i) q^{43} +(-6.13774 - 10.6309i) q^{47} +(2.66616 - 4.61793i) q^{49} +(-0.601793 + 0.601793i) q^{53} -2.28658 q^{55} +(4.77715 - 1.28003i) q^{59} +(10.8292 + 2.90167i) q^{61} +(2.92795 - 1.69045i) q^{65} +(-0.110351 + 0.0295686i) q^{67} +0.0447904i q^{71} -13.2931i q^{73} +(-4.14624 + 1.11098i) q^{77} +(2.50052 - 1.44368i) q^{79} +(3.79568 + 1.01705i) q^{83} +(3.71122 - 0.994419i) q^{85} +12.7362 q^{89} +(4.48788 - 4.48788i) q^{91} +(1.21436 - 2.10333i) q^{95} +(4.41066 + 7.63949i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{5} + 4 q^{7} - 6 q^{11} - 2 q^{13} + 8 q^{19} - 12 q^{23} + 6 q^{29} - 8 q^{37} + 2 q^{43} - 24 q^{49} + 16 q^{55} - 42 q^{59} - 2 q^{61} + 12 q^{65} + 2 q^{67} + 6 q^{77} + 54 q^{83} + 8 q^{85}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.178044 0.664471i −0.0796239 0.297161i 0.914618 0.404319i \(-0.132491\pi\)
−0.994242 + 0.107158i \(0.965825\pi\)
\(6\) 0 0
\(7\) −0.645693 1.11837i −0.244049 0.422705i 0.717815 0.696234i \(-0.245142\pi\)
−0.961864 + 0.273529i \(0.911809\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.860301 3.21069i 0.259390 0.968058i −0.706205 0.708008i \(-0.749594\pi\)
0.965595 0.260051i \(-0.0837392\pi\)
\(12\) 0 0
\(13\) 1.27203 + 4.74727i 0.352797 + 1.31666i 0.883234 + 0.468933i \(0.155361\pi\)
−0.530437 + 0.847725i \(0.677972\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.58523i 1.35462i 0.735699 + 0.677308i \(0.236854\pi\)
−0.735699 + 0.677308i \(0.763146\pi\)
\(18\) 0 0
\(19\) 2.49649 + 2.49649i 0.572733 + 0.572733i 0.932891 0.360158i \(-0.117277\pi\)
−0.360158 + 0.932891i \(0.617277\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.36529 1.36560i −0.493197 0.284747i 0.232703 0.972548i \(-0.425243\pi\)
−0.725900 + 0.687801i \(0.758576\pi\)
\(24\) 0 0
\(25\) 3.92031 2.26339i 0.784061 0.452678i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.792277 2.95682i 0.147122 0.549067i −0.852530 0.522679i \(-0.824933\pi\)
0.999652 0.0263884i \(-0.00840066\pi\)
\(30\) 0 0
\(31\) 5.28160 + 3.04933i 0.948604 + 0.547677i 0.892647 0.450757i \(-0.148846\pi\)
0.0559568 + 0.998433i \(0.482179\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.628165 + 0.628165i −0.106179 + 0.106179i
\(36\) 0 0
\(37\) 0.507420 + 0.507420i 0.0834193 + 0.0834193i 0.747585 0.664166i \(-0.231213\pi\)
−0.664166 + 0.747585i \(0.731213\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.89892 8.48518i 0.765083 1.32516i −0.175120 0.984547i \(-0.556031\pi\)
0.940203 0.340616i \(-0.110635\pi\)
\(42\) 0 0
\(43\) 0.949956 + 0.254540i 0.144867 + 0.0388170i 0.330524 0.943798i \(-0.392775\pi\)
−0.185657 + 0.982615i \(0.559441\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.13774 10.6309i −0.895281 1.55067i −0.833456 0.552586i \(-0.813641\pi\)
−0.0618250 0.998087i \(-0.519692\pi\)
\(48\) 0 0
\(49\) 2.66616 4.61793i 0.380880 0.659704i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.601793 + 0.601793i −0.0826626 + 0.0826626i −0.747229 0.664567i \(-0.768616\pi\)
0.664567 + 0.747229i \(0.268616\pi\)
\(54\) 0 0
\(55\) −2.28658 −0.308322
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.77715 1.28003i 0.621932 0.166646i 0.0659263 0.997824i \(-0.479000\pi\)
0.556006 + 0.831178i \(0.312333\pi\)
\(60\) 0 0
\(61\) 10.8292 + 2.90167i 1.38653 + 0.371520i 0.873490 0.486842i \(-0.161851\pi\)
0.513043 + 0.858363i \(0.328518\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.92795 1.69045i 0.363167 0.209675i
\(66\) 0 0
\(67\) −0.110351 + 0.0295686i −0.0134816 + 0.00361238i −0.265554 0.964096i \(-0.585555\pi\)
0.252072 + 0.967708i \(0.418888\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.0447904i 0.00531565i 0.999996 + 0.00265782i \(0.000846013\pi\)
−0.999996 + 0.00265782i \(0.999154\pi\)
\(72\) 0 0
\(73\) 13.2931i 1.55585i −0.628360 0.777923i \(-0.716274\pi\)
0.628360 0.777923i \(-0.283726\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.14624 + 1.11098i −0.472507 + 0.126608i
\(78\) 0 0
\(79\) 2.50052 1.44368i 0.281331 0.162426i −0.352695 0.935738i \(-0.614735\pi\)
0.634026 + 0.773312i \(0.281401\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.79568 + 1.01705i 0.416630 + 0.111636i 0.461043 0.887378i \(-0.347475\pi\)
−0.0444135 + 0.999013i \(0.514142\pi\)
\(84\) 0 0
\(85\) 3.71122 0.994419i 0.402539 0.107860i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.7362 1.35003 0.675017 0.737802i \(-0.264136\pi\)
0.675017 + 0.737802i \(0.264136\pi\)
\(90\) 0 0
\(91\) 4.48788 4.48788i 0.470458 0.470458i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.21436 2.10333i 0.124590 0.215797i
\(96\) 0 0
\(97\) 4.41066 + 7.63949i 0.447835 + 0.775673i 0.998245 0.0592215i \(-0.0188618\pi\)
−0.550410 + 0.834895i \(0.685529\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.02523 + 1.88240i 0.699037 + 0.187306i 0.590799 0.806819i \(-0.298813\pi\)
0.108238 + 0.994125i \(0.465479\pi\)
\(102\) 0 0
\(103\) −9.50698 + 16.4666i −0.936750 + 1.62250i −0.165267 + 0.986249i \(0.552849\pi\)
−0.771483 + 0.636250i \(0.780485\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.28797 + 8.28797i 0.801228 + 0.801228i 0.983287 0.182060i \(-0.0582764\pi\)
−0.182060 + 0.983287i \(0.558276\pi\)
\(108\) 0 0
\(109\) −14.3799 + 14.3799i −1.37735 + 1.37735i −0.528273 + 0.849074i \(0.677160\pi\)
−0.849074 + 0.528273i \(0.822840\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.18778 + 1.26312i 0.205809 + 0.118824i 0.599362 0.800478i \(-0.295421\pi\)
−0.393553 + 0.919302i \(0.628754\pi\)
\(114\) 0 0
\(115\) −0.486275 + 1.81480i −0.0453454 + 0.169231i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.24637 3.60634i 0.572604 0.330593i
\(120\) 0 0
\(121\) −0.0421101 0.0243123i −0.00382819 0.00221021i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −4.63408 4.63408i −0.414485 0.414485i
\(126\) 0 0
\(127\) 17.5157i 1.55427i −0.629333 0.777135i \(-0.716672\pi\)
0.629333 0.777135i \(-0.283328\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.21241 + 11.9889i 0.280669 + 1.04747i 0.951946 + 0.306266i \(0.0990796\pi\)
−0.671277 + 0.741207i \(0.734254\pi\)
\(132\) 0 0
\(133\) 1.18004 4.40397i 0.102322 0.381872i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.00063 8.66134i −0.427232 0.739988i 0.569394 0.822065i \(-0.307178\pi\)
−0.996626 + 0.0820768i \(0.973845\pi\)
\(138\) 0 0
\(139\) 0.368654 + 1.37583i 0.0312688 + 0.116697i 0.979796 0.199998i \(-0.0640936\pi\)
−0.948528 + 0.316695i \(0.897427\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 16.3363 1.36611
\(144\) 0 0
\(145\) −2.10578 −0.174876
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.48172 5.52986i −0.121387 0.453024i 0.878298 0.478114i \(-0.158679\pi\)
−0.999685 + 0.0250901i \(0.992013\pi\)
\(150\) 0 0
\(151\) −8.10127 14.0318i −0.659272 1.14189i −0.980804 0.194994i \(-0.937531\pi\)
0.321533 0.946899i \(-0.395802\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.08583 4.05239i 0.0872163 0.325496i
\(156\) 0 0
\(157\) −2.02762 7.56718i −0.161822 0.603927i −0.998424 0.0561165i \(-0.982128\pi\)
0.836602 0.547810i \(-0.184538\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.52703i 0.277969i
\(162\) 0 0
\(163\) 4.89763 + 4.89763i 0.383612 + 0.383612i 0.872402 0.488789i \(-0.162561\pi\)
−0.488789 + 0.872402i \(0.662561\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.7832 10.8445i −1.45349 0.839174i −0.454814 0.890587i \(-0.650294\pi\)
−0.998677 + 0.0514129i \(0.983628\pi\)
\(168\) 0 0
\(169\) −9.66023 + 5.57734i −0.743095 + 0.429026i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.05946 7.68601i 0.156578 0.584356i −0.842387 0.538873i \(-0.818850\pi\)
0.998965 0.0454836i \(-0.0144829\pi\)
\(174\) 0 0
\(175\) −5.06263 2.92291i −0.382699 0.220951i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.47991 + 9.47991i −0.708562 + 0.708562i −0.966233 0.257671i \(-0.917045\pi\)
0.257671 + 0.966233i \(0.417045\pi\)
\(180\) 0 0
\(181\) 8.00075 + 8.00075i 0.594691 + 0.594691i 0.938895 0.344204i \(-0.111851\pi\)
−0.344204 + 0.938895i \(0.611851\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.246822 0.427509i 0.0181467 0.0314311i
\(186\) 0 0
\(187\) 17.9324 + 4.80498i 1.31135 + 0.351375i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.22986 + 15.9866i 0.667850 + 1.15675i 0.978504 + 0.206227i \(0.0661184\pi\)
−0.310655 + 0.950523i \(0.600548\pi\)
\(192\) 0 0
\(193\) 2.61643 4.53179i 0.188335 0.326205i −0.756360 0.654155i \(-0.773024\pi\)
0.944695 + 0.327950i \(0.106358\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.3573 + 14.3573i −1.02292 + 1.02292i −0.0231869 + 0.999731i \(0.507381\pi\)
−0.999731 + 0.0231869i \(0.992619\pi\)
\(198\) 0 0
\(199\) 13.8358 0.980797 0.490399 0.871498i \(-0.336851\pi\)
0.490399 + 0.871498i \(0.336851\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.81839 + 1.02314i −0.267999 + 0.0718100i
\(204\) 0 0
\(205\) −6.51038 1.74445i −0.454705 0.121838i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.1632 5.86770i 0.703001 0.405878i
\(210\) 0 0
\(211\) 25.6481 6.87239i 1.76569 0.473115i 0.777831 0.628473i \(-0.216320\pi\)
0.987858 + 0.155358i \(0.0496531\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.676538i 0.0461395i
\(216\) 0 0
\(217\) 7.87574i 0.534640i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −26.5146 + 7.10457i −1.78357 + 0.477905i
\(222\) 0 0
\(223\) −2.77266 + 1.60079i −0.185671 + 0.107197i −0.589954 0.807437i \(-0.700854\pi\)
0.404284 + 0.914634i \(0.367521\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.78291 + 0.745680i 0.184708 + 0.0494925i 0.349988 0.936754i \(-0.386186\pi\)
−0.165279 + 0.986247i \(0.552852\pi\)
\(228\) 0 0
\(229\) −17.6277 + 4.72334i −1.16487 + 0.312127i −0.788911 0.614508i \(-0.789355\pi\)
−0.375963 + 0.926635i \(0.622688\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00585 −0.393456 −0.196728 0.980458i \(-0.563032\pi\)
−0.196728 + 0.980458i \(0.563032\pi\)
\(234\) 0 0
\(235\) −5.97112 + 5.97112i −0.389513 + 0.389513i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.00788 10.4059i 0.388617 0.673105i −0.603647 0.797252i \(-0.706286\pi\)
0.992264 + 0.124147i \(0.0396195\pi\)
\(240\) 0 0
\(241\) 1.51923 + 2.63138i 0.0978622 + 0.169502i 0.910800 0.412849i \(-0.135466\pi\)
−0.812937 + 0.582351i \(0.802133\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.54317 0.949391i −0.226365 0.0606543i
\(246\) 0 0
\(247\) −8.67590 + 15.0271i −0.552034 + 0.956152i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.95387 + 2.95387i 0.186447 + 0.186447i 0.794158 0.607711i \(-0.207912\pi\)
−0.607711 + 0.794158i \(0.707912\pi\)
\(252\) 0 0
\(253\) −6.41937 + 6.41937i −0.403582 + 0.403582i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.67398 0.966474i −0.104420 0.0602870i 0.446880 0.894594i \(-0.352535\pi\)
−0.551301 + 0.834307i \(0.685868\pi\)
\(258\) 0 0
\(259\) 0.239847 0.895122i 0.0149034 0.0556202i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.51993 + 0.877533i −0.0937230 + 0.0541110i −0.546129 0.837701i \(-0.683899\pi\)
0.452406 + 0.891812i \(0.350566\pi\)
\(264\) 0 0
\(265\) 0.507020 + 0.292728i 0.0311460 + 0.0179821i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.2013 + 14.2013i 0.865871 + 0.865871i 0.992012 0.126141i \(-0.0402592\pi\)
−0.126141 + 0.992012i \(0.540259\pi\)
\(270\) 0 0
\(271\) 11.3712i 0.690754i 0.938464 + 0.345377i \(0.112249\pi\)
−0.938464 + 0.345377i \(0.887751\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −3.89439 14.5341i −0.234841 0.876437i
\(276\) 0 0
\(277\) 1.81439 6.77138i 0.109016 0.406853i −0.889754 0.456441i \(-0.849124\pi\)
0.998770 + 0.0495877i \(0.0157907\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.16379 8.94395i −0.308046 0.533552i 0.669889 0.742461i \(-0.266342\pi\)
−0.977935 + 0.208910i \(0.933008\pi\)
\(282\) 0 0
\(283\) −6.25018 23.3260i −0.371535 1.38659i −0.858342 0.513078i \(-0.828505\pi\)
0.486807 0.873509i \(-0.338161\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −12.6528 −0.746871
\(288\) 0 0
\(289\) −14.1948 −0.834987
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.04554 + 18.8302i 0.294763 + 1.10007i 0.941405 + 0.337278i \(0.109506\pi\)
−0.646642 + 0.762794i \(0.723827\pi\)
\(294\) 0 0
\(295\) −1.70109 2.94638i −0.0990414 0.171545i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.47416 12.9658i 0.200916 0.749829i
\(300\) 0 0
\(301\) −0.328709 1.22676i −0.0189465 0.0707093i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.71230i 0.441605i
\(306\) 0 0
\(307\) 4.37646 + 4.37646i 0.249778 + 0.249778i 0.820879 0.571101i \(-0.193484\pi\)
−0.571101 + 0.820879i \(0.693484\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.65273 1.53155i −0.150423 0.0868465i 0.422900 0.906177i \(-0.361012\pi\)
−0.573322 + 0.819330i \(0.694346\pi\)
\(312\) 0 0
\(313\) −2.59526 + 1.49837i −0.146693 + 0.0846930i −0.571550 0.820567i \(-0.693658\pi\)
0.424857 + 0.905260i \(0.360324\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.47692 + 9.24401i −0.139118 + 0.519195i 0.860829 + 0.508894i \(0.169946\pi\)
−0.999947 + 0.0103009i \(0.996721\pi\)
\(318\) 0 0
\(319\) −8.81182 5.08751i −0.493367 0.284846i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −13.9434 + 13.9434i −0.775834 + 0.775834i
\(324\) 0 0
\(325\) 15.7317 + 15.7317i 0.872636 + 0.872636i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −7.92619 + 13.7286i −0.436985 + 0.756880i
\(330\) 0 0
\(331\) −14.5870 3.90856i −0.801772 0.214834i −0.165410 0.986225i \(-0.552895\pi\)
−0.636362 + 0.771391i \(0.719561\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.0392949 + 0.0680608i 0.00214691 + 0.00371856i
\(336\) 0 0
\(337\) 1.09448 1.89569i 0.0596200 0.103265i −0.834675 0.550743i \(-0.814344\pi\)
0.894295 + 0.447478i \(0.147678\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 14.3342 14.3342i 0.776242 0.776242i
\(342\) 0 0
\(343\) −15.9258 −0.859912
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −27.6810 + 7.41711i −1.48599 + 0.398171i −0.908382 0.418140i \(-0.862682\pi\)
−0.577612 + 0.816311i \(0.696015\pi\)
\(348\) 0 0
\(349\) −23.0850 6.18561i −1.23571 0.331108i −0.418911 0.908027i \(-0.637588\pi\)
−0.816801 + 0.576919i \(0.804255\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.355770 0.205404i 0.0189357 0.0109325i −0.490502 0.871440i \(-0.663187\pi\)
0.509438 + 0.860507i \(0.329853\pi\)
\(354\) 0 0
\(355\) 0.0297620 0.00797469i 0.00157960 0.000423253i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.19383i 0.0630078i −0.999504 0.0315039i \(-0.989970\pi\)
0.999504 0.0315039i \(-0.0100297\pi\)
\(360\) 0 0
\(361\) 6.53512i 0.343954i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −8.83291 + 2.36677i −0.462336 + 0.123883i
\(366\) 0 0
\(367\) −16.1698 + 9.33562i −0.844055 + 0.487316i −0.858641 0.512578i \(-0.828690\pi\)
0.0145854 + 0.999894i \(0.495357\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.06160 + 0.284455i 0.0551156 + 0.0147682i
\(372\) 0 0
\(373\) 11.5442 3.09325i 0.597735 0.160163i 0.0527491 0.998608i \(-0.483202\pi\)
0.544986 + 0.838445i \(0.316535\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.0446 0.774838
\(378\) 0 0
\(379\) −15.3650 + 15.3650i −0.789248 + 0.789248i −0.981371 0.192123i \(-0.938463\pi\)
0.192123 + 0.981371i \(0.438463\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.1162 + 19.2539i −0.568013 + 0.983827i 0.428750 + 0.903423i \(0.358954\pi\)
−0.996762 + 0.0804037i \(0.974379\pi\)
\(384\) 0 0
\(385\) 1.47643 + 2.55725i 0.0752458 + 0.130330i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.6338 4.18905i −0.792663 0.212393i −0.160303 0.987068i \(-0.551247\pi\)
−0.632360 + 0.774675i \(0.717914\pi\)
\(390\) 0 0
\(391\) 7.62718 13.2107i 0.385723 0.668092i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.40449 1.40449i −0.0706674 0.0706674i
\(396\) 0 0
\(397\) 14.5828 14.5828i 0.731887 0.731887i −0.239106 0.970993i \(-0.576854\pi\)
0.970993 + 0.239106i \(0.0768543\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.9585 16.1418i −1.39618 0.806085i −0.402191 0.915556i \(-0.631751\pi\)
−0.993990 + 0.109470i \(0.965085\pi\)
\(402\) 0 0
\(403\) −7.75768 + 28.9521i −0.386438 + 1.44220i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.06570 1.19263i 0.102393 0.0591166i
\(408\) 0 0
\(409\) 12.9975 + 7.50409i 0.642683 + 0.371053i 0.785647 0.618674i \(-0.212330\pi\)
−0.142964 + 0.989728i \(0.545663\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.51613 4.51613i −0.222224 0.222224i
\(414\) 0 0
\(415\) 2.70320i 0.132695i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.00718 + 22.4191i 0.293470 + 1.09525i 0.942425 + 0.334418i \(0.108540\pi\)
−0.648955 + 0.760827i \(0.724794\pi\)
\(420\) 0 0
\(421\) 4.05109 15.1189i 0.197438 0.736849i −0.794184 0.607677i \(-0.792101\pi\)
0.991622 0.129172i \(-0.0412319\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 12.6415 + 21.8958i 0.613205 + 1.06210i
\(426\) 0 0
\(427\) −3.74717 13.9846i −0.181338 0.676764i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.63818 −0.0789082 −0.0394541 0.999221i \(-0.512562\pi\)
−0.0394541 + 0.999221i \(0.512562\pi\)
\(432\) 0 0
\(433\) 24.1284 1.15954 0.579769 0.814781i \(-0.303143\pi\)
0.579769 + 0.814781i \(0.303143\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.49571 9.31411i −0.119386 0.445554i
\(438\) 0 0
\(439\) −6.04546 10.4711i −0.288534 0.499756i 0.684926 0.728613i \(-0.259835\pi\)
−0.973460 + 0.228857i \(0.926501\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.35450 + 16.2512i −0.206889 + 0.772119i 0.781977 + 0.623307i \(0.214211\pi\)
−0.988866 + 0.148811i \(0.952455\pi\)
\(444\) 0 0
\(445\) −2.26761 8.46284i −0.107495 0.401177i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.8270i 1.50201i 0.660298 + 0.751004i \(0.270430\pi\)
−0.660298 + 0.751004i \(0.729570\pi\)
\(450\) 0 0
\(451\) −23.0287 23.0287i −1.08438 1.08438i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.78111 2.18303i −0.177261 0.102342i
\(456\) 0 0
\(457\) −24.8553 + 14.3502i −1.16268 + 0.671275i −0.951945 0.306268i \(-0.900920\pi\)
−0.210737 + 0.977543i \(0.567586\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −0.483918 + 1.80601i −0.0225383 + 0.0841141i −0.976279 0.216517i \(-0.930530\pi\)
0.953741 + 0.300631i \(0.0971971\pi\)
\(462\) 0 0
\(463\) 4.71990 + 2.72503i 0.219352 + 0.126643i 0.605650 0.795731i \(-0.292913\pi\)
−0.386298 + 0.922374i \(0.626246\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.95228 8.95228i 0.414262 0.414262i −0.468958 0.883220i \(-0.655370\pi\)
0.883220 + 0.468958i \(0.155370\pi\)
\(468\) 0 0
\(469\) 0.104322 + 0.104322i 0.00481713 + 0.00481713i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.63450 2.83103i 0.0751542 0.130171i
\(474\) 0 0
\(475\) 15.4375 + 4.13647i 0.708321 + 0.189794i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.27809 7.40987i −0.195471 0.338566i 0.751584 0.659638i \(-0.229290\pi\)
−0.947055 + 0.321072i \(0.895957\pi\)
\(480\) 0 0
\(481\) −1.76341 + 3.05431i −0.0804045 + 0.139265i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.29093 4.29093i 0.194841 0.194841i
\(486\) 0 0
\(487\) 13.1689 0.596738 0.298369 0.954451i \(-0.403557\pi\)
0.298369 + 0.954451i \(0.403557\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.09692 2.16956i 0.365409 0.0979110i −0.0714425 0.997445i \(-0.522760\pi\)
0.436851 + 0.899534i \(0.356094\pi\)
\(492\) 0 0
\(493\) 16.5145 + 4.42505i 0.743776 + 0.199294i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.0500924 0.0289209i 0.00224695 0.00129728i
\(498\) 0 0
\(499\) −31.2957 + 8.38567i −1.40099 + 0.375394i −0.878700 0.477374i \(-0.841589\pi\)
−0.522289 + 0.852768i \(0.674922\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.8126i 0.927989i 0.885838 + 0.463994i \(0.153584\pi\)
−0.885838 + 0.463994i \(0.846416\pi\)
\(504\) 0 0
\(505\) 5.00321i 0.222640i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.7078 5.54865i 0.917859 0.245940i 0.231189 0.972909i \(-0.425738\pi\)
0.686670 + 0.726969i \(0.259072\pi\)
\(510\) 0 0
\(511\) −14.8667 + 8.58329i −0.657664 + 0.379703i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12.6342 + 3.38533i 0.556730 + 0.149175i
\(516\) 0 0
\(517\) −39.4127 + 10.5606i −1.73337 + 0.464455i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.1534 −0.882938 −0.441469 0.897277i \(-0.645542\pi\)
−0.441469 + 0.897277i \(0.645542\pi\)
\(522\) 0 0
\(523\) −14.7713 + 14.7713i −0.645905 + 0.645905i −0.952001 0.306096i \(-0.900977\pi\)
0.306096 + 0.952001i \(0.400977\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −17.0312 + 29.4990i −0.741892 + 1.28499i
\(528\) 0 0
\(529\) −7.77028 13.4585i −0.337838 0.585153i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 46.5131 + 12.4631i 2.01470 + 0.539838i
\(534\) 0 0
\(535\) 4.03149 6.98274i 0.174296 0.301890i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.5330 12.5330i −0.539835 0.539835i
\(540\) 0 0
\(541\) 11.1739 11.1739i 0.480403 0.480403i −0.424857 0.905260i \(-0.639676\pi\)
0.905260 + 0.424857i \(0.139676\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12.1153 + 6.99478i 0.518963 + 0.299624i
\(546\) 0 0
\(547\) 3.23236 12.0633i 0.138206 0.515791i −0.861758 0.507319i \(-0.830637\pi\)
0.999964 0.00847177i \(-0.00269668\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.35956 5.40375i 0.398731 0.230207i
\(552\) 0 0
\(553\) −3.22914 1.86435i −0.137317 0.0792800i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.41323 + 4.41323i 0.186995 + 0.186995i 0.794395 0.607401i \(-0.207788\pi\)
−0.607401 + 0.794395i \(0.707788\pi\)
\(558\) 0 0
\(559\) 4.83349i 0.204435i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.09152 33.9300i −0.383162 1.42998i −0.841044 0.540967i \(-0.818058\pi\)
0.457882 0.889013i \(-0.348608\pi\)
\(564\) 0 0
\(565\) 0.449782 1.67861i 0.0189225 0.0706197i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.8432 + 18.7810i 0.454572 + 0.787342i 0.998663 0.0516841i \(-0.0164589\pi\)
−0.544091 + 0.839026i \(0.683126\pi\)
\(570\) 0 0
\(571\) −2.69081 10.0422i −0.112607 0.420255i 0.886490 0.462748i \(-0.153137\pi\)
−0.999097 + 0.0424934i \(0.986470\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −12.3635 −0.515595
\(576\) 0 0
\(577\) −33.2014 −1.38219 −0.691096 0.722763i \(-0.742872\pi\)
−0.691096 + 0.722763i \(0.742872\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.31340 4.90169i −0.0544891 0.203356i
\(582\) 0 0
\(583\) 1.41444 + 2.44989i 0.0585803 + 0.101464i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.554497 + 2.06941i −0.0228865 + 0.0854137i −0.976425 0.215859i \(-0.930745\pi\)
0.953538 + 0.301273i \(0.0974115\pi\)
\(588\) 0 0
\(589\) 5.57282 + 20.7981i 0.229624 + 0.856969i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.9278i 0.571945i −0.958238 0.285973i \(-0.907683\pi\)
0.958238 0.285973i \(-0.0923166\pi\)
\(594\) 0 0
\(595\) −3.50844 3.50844i −0.143832 0.143832i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.2130 + 11.6700i 0.825881 + 0.476823i 0.852440 0.522825i \(-0.175122\pi\)
−0.0265594 + 0.999647i \(0.508455\pi\)
\(600\) 0 0
\(601\) −10.3379 + 5.96857i −0.421691 + 0.243463i −0.695800 0.718235i \(-0.744950\pi\)
0.274110 + 0.961698i \(0.411617\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.00865733 + 0.0323096i −0.000351971 + 0.00131357i
\(606\) 0 0
\(607\) 10.3919 + 5.99979i 0.421796 + 0.243524i 0.695845 0.718192i \(-0.255030\pi\)
−0.274050 + 0.961716i \(0.588363\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 42.6603 42.6603i 1.72585 1.72585i
\(612\) 0 0
\(613\) −18.1803 18.1803i −0.734296 0.734296i 0.237172 0.971468i \(-0.423780\pi\)
−0.971468 + 0.237172i \(0.923780\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.9672 + 32.8521i −0.763589 + 1.32257i 0.177401 + 0.984139i \(0.443231\pi\)
−0.940989 + 0.338436i \(0.890102\pi\)
\(618\) 0 0
\(619\) 0.00230201 0.000616823i 9.25258e−5 2.47922e-5i 0.258865 0.965913i \(-0.416651\pi\)
−0.258773 + 0.965938i \(0.583318\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.22368 14.2438i −0.329475 0.570667i
\(624\) 0 0
\(625\) 9.06281 15.6972i 0.362512 0.627890i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2.83406 + 2.83406i −0.113001 + 0.113001i
\(630\) 0 0
\(631\) 39.2643 1.56309 0.781543 0.623852i \(-0.214433\pi\)
0.781543 + 0.623852i \(0.214433\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.6387 + 3.11858i −0.461868 + 0.123757i
\(636\) 0 0
\(637\) 25.3140 + 6.78286i 1.00298 + 0.268747i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15.2983 + 8.83246i −0.604245 + 0.348861i −0.770710 0.637186i \(-0.780098\pi\)
0.166465 + 0.986047i \(0.446765\pi\)
\(642\) 0 0
\(643\) 6.60298 1.76926i 0.260396 0.0697729i −0.126259 0.991997i \(-0.540297\pi\)
0.386655 + 0.922224i \(0.373630\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.24252i 0.166791i 0.996517 + 0.0833953i \(0.0265764\pi\)
−0.996517 + 0.0833953i \(0.973424\pi\)
\(648\) 0 0
\(649\) 16.4392i 0.645293i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.6484 7.14041i 1.04283 0.279426i 0.303545 0.952817i \(-0.401830\pi\)
0.739286 + 0.673391i \(0.235163\pi\)
\(654\) 0 0
\(655\) 7.39431 4.26911i 0.288919 0.166808i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.1504 2.71978i −0.395402 0.105948i 0.0556391 0.998451i \(-0.482280\pi\)
−0.451041 + 0.892503i \(0.648947\pi\)
\(660\) 0 0
\(661\) −28.3410 + 7.59396i −1.10234 + 0.295371i −0.763717 0.645552i \(-0.776628\pi\)
−0.338622 + 0.940922i \(0.609961\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.13641 −0.121625
\(666\) 0 0
\(667\) −5.91179 + 5.91179i −0.228905 + 0.228905i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 18.6327 32.2728i 0.719307 1.24588i
\(672\) 0 0
\(673\) −5.32418 9.22175i −0.205232 0.355472i 0.744975 0.667093i \(-0.232462\pi\)
−0.950207 + 0.311621i \(0.899128\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.2938 5.70565i −0.818387 0.219286i −0.174746 0.984614i \(-0.555910\pi\)
−0.643641 + 0.765327i \(0.722577\pi\)
\(678\) 0 0
\(679\) 5.69587 9.86554i 0.218587 0.378605i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.68202 + 1.68202i 0.0643609 + 0.0643609i 0.738555 0.674194i \(-0.235509\pi\)
−0.674194 + 0.738555i \(0.735509\pi\)
\(684\) 0 0
\(685\) −4.86488 + 4.86488i −0.185877 + 0.185877i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.62237 2.09138i −0.138001 0.0796751i
\(690\) 0 0
\(691\) 0.595784 2.22350i 0.0226647 0.0845858i −0.953667 0.300864i \(-0.902725\pi\)
0.976332 + 0.216278i \(0.0693917\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.848565 0.489919i 0.0321879 0.0185837i
\(696\) 0 0
\(697\) 47.3917 + 27.3616i 1.79509 + 1.03639i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −10.2728 10.2728i −0.387997 0.387997i 0.485976 0.873972i \(-0.338464\pi\)
−0.873972 + 0.485976i \(0.838464\pi\)
\(702\) 0 0
\(703\) 2.53353i 0.0955540i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.43091 9.07228i −0.0914238 0.341198i
\(708\) 0 0
\(709\) 1.30925 4.88619i 0.0491700 0.183505i −0.936973 0.349401i \(-0.886385\pi\)
0.986143 + 0.165896i \(0.0530517\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.32834 14.4251i −0.311899 0.540224i
\(714\) 0 0
\(715\) −2.90859 10.8550i −0.108775 0.405955i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.73858 0.251307 0.125653 0.992074i \(-0.459897\pi\)
0.125653 + 0.992074i \(0.459897\pi\)
\(720\) 0 0
\(721\) 24.5544 0.914452
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.58646 13.3849i −0.133198 0.497101i
\(726\) 0 0
\(727\) 4.14056 + 7.17166i 0.153565 + 0.265982i 0.932536 0.361078i \(-0.117591\pi\)
−0.778971 + 0.627060i \(0.784258\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.42166 + 5.30572i −0.0525821 + 0.196239i
\(732\) 0 0
\(733\) −11.7070 43.6909i −0.432406 1.61376i −0.747198 0.664601i \(-0.768601\pi\)
0.314792 0.949161i \(-0.398065\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.379742i 0.0139880i
\(738\) 0 0
\(739\) −22.0530 22.0530i −0.811234 0.811234i 0.173585 0.984819i \(-0.444465\pi\)
−0.984819 + 0.173585i \(0.944465\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.9386 + 17.2851i 1.09834 + 0.634128i 0.935785 0.352571i \(-0.114693\pi\)
0.162557 + 0.986699i \(0.448026\pi\)
\(744\) 0 0
\(745\) −3.41062 + 1.96912i −0.124955 + 0.0721431i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.91756 14.6205i 0.143144 0.534222i
\(750\) 0 0
\(751\) 38.8676 + 22.4402i 1.41830 + 0.818855i 0.996149 0.0876713i \(-0.0279425\pi\)
0.422149 + 0.906526i \(0.361276\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.88134 + 7.88134i −0.286832 + 0.286832i
\(756\) 0 0
\(757\) 27.6111 + 27.6111i 1.00354 + 1.00354i 0.999994 + 0.00354931i \(0.00112978\pi\)
0.00354931 + 0.999994i \(0.498870\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.8578 30.9307i 0.647346 1.12124i −0.336408 0.941716i \(-0.609212\pi\)
0.983754 0.179520i \(-0.0574545\pi\)
\(762\) 0 0
\(763\) 25.3672 + 6.79711i 0.918353 + 0.246072i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.1534 + 21.0502i 0.438832 + 0.760079i
\(768\) 0 0
\(769\) −22.6077 + 39.1577i −0.815254 + 1.41206i 0.0938910 + 0.995582i \(0.470069\pi\)
−0.909145 + 0.416479i \(0.863264\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.57961 + 5.57961i −0.200685 + 0.200685i −0.800293 0.599609i \(-0.795323\pi\)
0.599609 + 0.800293i \(0.295323\pi\)
\(774\) 0 0
\(775\) 27.6073 0.991684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 33.4132 8.95305i 1.19715 0.320776i
\(780\) 0 0
\(781\) 0.143808 + 0.0385333i 0.00514586 + 0.00137883i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.66717 + 2.69459i −0.166578 + 0.0961741i
\(786\) 0 0
\(787\) −8.95529 + 2.39956i −0.319221 + 0.0855351i −0.414872 0.909880i \(-0.636174\pi\)
0.0956504 + 0.995415i \(0.469507\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.26235i 0.115996i
\(792\) 0 0
\(793\) 55.1001i 1.95666i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24.5310 6.57307i 0.868934 0.232830i 0.203307 0.979115i \(-0.434831\pi\)
0.665627 + 0.746285i \(0.268164\pi\)
\(798\) 0 0
\(799\) 59.3759 34.2807i 2.10057 1.21276i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −42.6801 11.4361i −1.50615 0.403571i
\(804\) 0 0
\(805\) 2.34361 0.627969i 0.0826014 0.0221330i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −33.1931 −1.16701 −0.583503 0.812111i \(-0.698318\pi\)
−0.583503 + 0.812111i \(0.698318\pi\)
\(810\) 0 0
\(811\) −7.35128 + 7.35128i −0.258138 + 0.258138i −0.824297 0.566158i \(-0.808429\pi\)
0.566158 + 0.824297i \(0.308429\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 2.38234 4.12633i 0.0834497 0.144539i
\(816\) 0 0
\(817\) 1.73610 + 3.00701i 0.0607383 + 0.105202i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −38.6179 10.3476i −1.34777 0.361135i −0.488462 0.872585i \(-0.662442\pi\)
−0.859313 + 0.511450i \(0.829109\pi\)
\(822\) 0 0
\(823\) −11.8717 + 20.5623i −0.413821 + 0.716758i −0.995304 0.0968000i \(-0.969139\pi\)
0.581483 + 0.813558i \(0.302473\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25.1545 + 25.1545i 0.874708 + 0.874708i 0.992981 0.118273i \(-0.0377357\pi\)
−0.118273 + 0.992981i \(0.537736\pi\)
\(828\) 0 0
\(829\) 6.12372 6.12372i 0.212686 0.212686i −0.592722 0.805407i \(-0.701947\pi\)
0.805407 + 0.592722i \(0.201947\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.7922 + 14.8911i 0.893646 + 0.515947i
\(834\) 0 0
\(835\) −3.86161 + 14.4117i −0.133637 + 0.498739i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −35.2084 + 20.3276i −1.21553 + 0.701786i −0.963958 0.266054i \(-0.914280\pi\)
−0.251570 + 0.967839i \(0.580947\pi\)
\(840\) 0 0
\(841\) 16.9997 + 9.81476i 0.586195 + 0.338440i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.42593 + 5.42593i 0.186658 + 0.186658i
\(846\) 0 0
\(847\) 0.0627931i 0.00215760i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.507262 1.89313i −0.0173887 0.0648955i
\(852\) 0 0
\(853\) 11.1499 41.6120i 0.381765 1.42477i −0.461437 0.887173i \(-0.652666\pi\)
0.843203 0.537595i \(-0.180667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.72246 8.17953i −0.161316 0.279408i 0.774025 0.633155i \(-0.218241\pi\)
−0.935341 + 0.353748i \(0.884907\pi\)
\(858\) 0 0
\(859\) 5.87045 + 21.9088i 0.200297 + 0.747519i 0.990832 + 0.135102i \(0.0431361\pi\)
−0.790535 + 0.612417i \(0.790197\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.58147 −0.121915 −0.0609573 0.998140i \(-0.519415\pi\)
−0.0609573 + 0.998140i \(0.519415\pi\)
\(864\) 0 0
\(865\) −5.47380 −0.186115
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.48399 9.27039i −0.0842637 0.314476i
\(870\) 0 0
\(871\) −0.280740 0.486256i −0.00951252 0.0164762i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.19044 + 8.17482i −0.0740503 + 0.276359i
\(876\) 0 0
\(877\) 4.52743 + 16.8966i 0.152881 + 0.570558i 0.999278 + 0.0380056i \(0.0121005\pi\)
−0.846397 + 0.532553i \(0.821233\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 46.1363i 1.55437i −0.629272 0.777185i \(-0.716647\pi\)
0.629272 0.777185i \(-0.283353\pi\)
\(882\) 0 0
\(883\) −19.7311 19.7311i −0.664003 0.664003i 0.292318 0.956321i \(-0.405573\pi\)
−0.956321 + 0.292318i \(0.905573\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.7760 + 17.1912i 0.999780 + 0.577223i 0.908183 0.418573i \(-0.137470\pi\)
0.0915965 + 0.995796i \(0.470803\pi\)
\(888\) 0 0
\(889\) −19.5891 + 11.3098i −0.656999 + 0.379318i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 11.2171 41.8626i 0.375364 1.40088i
\(894\) 0 0
\(895\) 7.98697 + 4.61128i 0.266975 + 0.154138i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.2008 13.2008i 0.440272 0.440272i
\(900\) 0 0
\(901\) −3.36115 3.36115i −0.111976 0.111976i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.89178 6.74076i 0.129367 0.224070i
\(906\) 0 0
\(907\) 53.7121 + 14.3921i 1.78348 + 0.477883i 0.991211 0.132287i \(-0.0422322\pi\)
0.792271 + 0.610170i \(0.208899\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.01435 10.4172i −0.199264 0.345136i 0.749026 0.662541i \(-0.230522\pi\)
−0.948290 + 0.317405i \(0.897189\pi\)
\(912\) 0 0
\(913\) 6.53085 11.3118i 0.216140 0.374365i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11.3338 11.3338i 0.374275 0.374275i
\(918\) 0 0
\(919\) 11.8860 0.392084 0.196042 0.980595i \(-0.437191\pi\)
0.196042 + 0.980595i \(0.437191\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.212633 + 0.0569747i −0.00699889 + 0.00187535i
\(924\) 0 0
\(925\) 3.13773 + 0.840752i 0.103168 + 0.0276438i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.44934 1.99148i 0.113169 0.0653382i −0.442347 0.896844i \(-0.645854\pi\)
0.555516 + 0.831506i \(0.312521\pi\)
\(930\) 0 0
\(931\) 18.1846 4.87255i 0.595977 0.159692i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.7711i 0.417659i
\(936\) 0 0
\(937\) 26.0017i 0.849438i −0.905325 0.424719i \(-0.860373\pi\)
0.905325 0.424719i \(-0.139627\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 41.3717 11.0855i 1.34868 0.361378i 0.489033 0.872265i \(-0.337350\pi\)
0.859648 + 0.510888i \(0.170683\pi\)
\(942\) 0 0
\(943\) −23.1747 + 13.3799i −0.754673 + 0.435710i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.6066 + 4.71769i 0.572139 + 0.153304i 0.533277 0.845940i \(-0.320960\pi\)
0.0388617 + 0.999245i \(0.487627\pi\)
\(948\) 0 0
\(949\) 63.1062 16.9093i 2.04851 0.548898i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −16.9031 −0.547545 −0.273772 0.961795i \(-0.588271\pi\)
−0.273772 + 0.961795i \(0.588271\pi\)
\(954\) 0 0
\(955\) 8.97930 8.97930i 0.290563 0.290563i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.45774 + 11.1851i −0.208531 + 0.361187i
\(960\) 0 0
\(961\) 3.09688 + 5.36395i 0.0998993 + 0.173031i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3.47708 0.931682i −0.111931 0.0299919i
\(966\) 0 0
\(967\) −1.50617 + 2.60876i −0.0484351 + 0.0838921i −0.889227 0.457467i \(-0.848757\pi\)
0.840791 + 0.541359i \(0.182090\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −35.4934 35.4934i −1.13904 1.13904i −0.988623 0.150413i \(-0.951940\pi\)
−0.150413 0.988623i \(-0.548060\pi\)
\(972\) 0 0
\(973\) 1.30066 1.30066i 0.0416972 0.0416972i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.03784 4.64065i −0.257153 0.148467i 0.365882 0.930661i \(-0.380767\pi\)
−0.623035 + 0.782194i \(0.714101\pi\)
\(978\) 0 0
\(979\) 10.9570 40.8920i 0.350186 1.30691i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11.0480 6.37856i 0.352376 0.203444i −0.313355 0.949636i \(-0.601453\pi\)
0.665731 + 0.746192i \(0.268120\pi\)
\(984\) 0 0
\(985\) 12.0963 + 6.98379i 0.385420 + 0.222522i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.89932 1.89932i −0.0603949 0.0603949i
\(990\) 0 0
\(991\) 6.60967i 0.209963i −0.994474 0.104982i \(-0.966522\pi\)
0.994474 0.104982i \(-0.0334784\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.46340 9.19352i −0.0780949 0.291454i
\(996\) 0 0
\(997\) −9.80194 + 36.5814i −0.310431 + 1.15854i 0.617738 + 0.786384i \(0.288049\pi\)
−0.928169 + 0.372159i \(0.878618\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.z.a.719.10 88
3.2 odd 2 576.2.y.a.527.5 88
4.3 odd 2 432.2.v.a.395.15 88
9.2 odd 6 inner 1728.2.z.a.143.10 88
9.7 even 3 576.2.y.a.335.7 88
12.11 even 2 144.2.u.a.59.8 yes 88
16.3 odd 4 inner 1728.2.z.a.1583.10 88
16.13 even 4 432.2.v.a.179.8 88
36.7 odd 6 144.2.u.a.11.15 88
36.11 even 6 432.2.v.a.251.8 88
48.29 odd 4 144.2.u.a.131.15 yes 88
48.35 even 4 576.2.y.a.239.7 88
144.29 odd 12 432.2.v.a.35.15 88
144.61 even 12 144.2.u.a.83.8 yes 88
144.83 even 12 inner 1728.2.z.a.1007.10 88
144.115 odd 12 576.2.y.a.47.5 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.15 88 36.7 odd 6
144.2.u.a.59.8 yes 88 12.11 even 2
144.2.u.a.83.8 yes 88 144.61 even 12
144.2.u.a.131.15 yes 88 48.29 odd 4
432.2.v.a.35.15 88 144.29 odd 12
432.2.v.a.179.8 88 16.13 even 4
432.2.v.a.251.8 88 36.11 even 6
432.2.v.a.395.15 88 4.3 odd 2
576.2.y.a.47.5 88 144.115 odd 12
576.2.y.a.239.7 88 48.35 even 4
576.2.y.a.335.7 88 9.7 even 3
576.2.y.a.527.5 88 3.2 odd 2
1728.2.z.a.143.10 88 9.2 odd 6 inner
1728.2.z.a.719.10 88 1.1 even 1 trivial
1728.2.z.a.1007.10 88 144.83 even 12 inner
1728.2.z.a.1583.10 88 16.3 odd 4 inner