Defining parameters
| Level: | \( N \) | \(=\) | \( 576 = 2^{6} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 576.y (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 144 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(576, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 416 | 104 | 312 |
| Cusp forms | 352 | 88 | 264 |
| Eisenstein series | 64 | 16 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(576, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 576.2.y.a | $88$ | $4.599$ | None | \(0\) | \(4\) | \(-6\) | \(4\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(576, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(576, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 3}\)