Properties

Label 1728.2.z.a.143.10
Level $1728$
Weight $2$
Character 1728.143
Analytic conductor $13.798$
Analytic rank $0$
Dimension $88$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1728,2,Mod(143,1728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1728.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1728, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1728.z (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.7981494693\)
Analytic rank: \(0\)
Dimension: \(88\)
Relative dimension: \(22\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 143.10
Character \(\chi\) \(=\) 1728.143
Dual form 1728.2.z.a.1583.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.664471 - 0.178044i) q^{5} +(-0.645693 + 1.11837i) q^{7} +(3.21069 - 0.860301i) q^{11} +(-4.74727 - 1.27203i) q^{13} -5.58523i q^{17} +(2.49649 + 2.49649i) q^{19} +(-2.36529 + 1.36560i) q^{23} +(-3.92031 - 2.26339i) q^{25} +(2.95682 - 0.792277i) q^{29} +(-5.28160 + 3.04933i) q^{31} +(0.628165 - 0.628165i) q^{35} +(0.507420 + 0.507420i) q^{37} +(-4.89892 - 8.48518i) q^{41} +(-0.254540 - 0.949956i) q^{43} +(6.13774 - 10.6309i) q^{47} +(2.66616 + 4.61793i) q^{49} +(0.601793 - 0.601793i) q^{53} -2.28658 q^{55} +(1.28003 - 4.77715i) q^{59} +(-2.90167 - 10.8292i) q^{61} +(2.92795 + 1.69045i) q^{65} +(0.0295686 - 0.110351i) q^{67} -0.0447904i q^{71} -13.2931i q^{73} +(-1.11098 + 4.14624i) q^{77} +(-2.50052 - 1.44368i) q^{79} +(1.01705 + 3.79568i) q^{83} +(-0.994419 + 3.71122i) q^{85} -12.7362 q^{89} +(4.48788 - 4.48788i) q^{91} +(-1.21436 - 2.10333i) q^{95} +(4.41066 - 7.63949i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 88 q + 6 q^{5} + 4 q^{7} - 6 q^{11} - 2 q^{13} + 8 q^{19} - 12 q^{23} + 6 q^{29} - 8 q^{37} + 2 q^{43} - 24 q^{49} + 16 q^{55} - 42 q^{59} - 2 q^{61} + 12 q^{65} + 2 q^{67} + 6 q^{77} + 54 q^{83} + 8 q^{85}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1728\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(703\) \(1217\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.664471 0.178044i −0.297161 0.0796239i 0.107158 0.994242i \(-0.465825\pi\)
−0.404319 + 0.914618i \(0.632491\pi\)
\(6\) 0 0
\(7\) −0.645693 + 1.11837i −0.244049 + 0.422705i −0.961864 0.273529i \(-0.911809\pi\)
0.717815 + 0.696234i \(0.245142\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.21069 0.860301i 0.968058 0.259390i 0.260051 0.965595i \(-0.416261\pi\)
0.708008 + 0.706205i \(0.249594\pi\)
\(12\) 0 0
\(13\) −4.74727 1.27203i −1.31666 0.352797i −0.468933 0.883234i \(-0.655361\pi\)
−0.847725 + 0.530437i \(0.822028\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.58523i 1.35462i −0.735699 0.677308i \(-0.763146\pi\)
0.735699 0.677308i \(-0.236854\pi\)
\(18\) 0 0
\(19\) 2.49649 + 2.49649i 0.572733 + 0.572733i 0.932891 0.360158i \(-0.117277\pi\)
−0.360158 + 0.932891i \(0.617277\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.36529 + 1.36560i −0.493197 + 0.284747i −0.725900 0.687801i \(-0.758576\pi\)
0.232703 + 0.972548i \(0.425243\pi\)
\(24\) 0 0
\(25\) −3.92031 2.26339i −0.784061 0.452678i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.95682 0.792277i 0.549067 0.147122i 0.0263884 0.999652i \(-0.491599\pi\)
0.522679 + 0.852530i \(0.324933\pi\)
\(30\) 0 0
\(31\) −5.28160 + 3.04933i −0.948604 + 0.547677i −0.892647 0.450757i \(-0.851154\pi\)
−0.0559568 + 0.998433i \(0.517821\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.628165 0.628165i 0.106179 0.106179i
\(36\) 0 0
\(37\) 0.507420 + 0.507420i 0.0834193 + 0.0834193i 0.747585 0.664166i \(-0.231213\pi\)
−0.664166 + 0.747585i \(0.731213\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.89892 8.48518i −0.765083 1.32516i −0.940203 0.340616i \(-0.889365\pi\)
0.175120 0.984547i \(-0.443969\pi\)
\(42\) 0 0
\(43\) −0.254540 0.949956i −0.0388170 0.144867i 0.943798 0.330524i \(-0.107225\pi\)
−0.982615 + 0.185657i \(0.940559\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.13774 10.6309i 0.895281 1.55067i 0.0618250 0.998087i \(-0.480308\pi\)
0.833456 0.552586i \(-0.186359\pi\)
\(48\) 0 0
\(49\) 2.66616 + 4.61793i 0.380880 + 0.659704i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.601793 0.601793i 0.0826626 0.0826626i −0.664567 0.747229i \(-0.731384\pi\)
0.747229 + 0.664567i \(0.231384\pi\)
\(54\) 0 0
\(55\) −2.28658 −0.308322
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.28003 4.77715i 0.166646 0.621932i −0.831178 0.556006i \(-0.812333\pi\)
0.997824 0.0659263i \(-0.0210002\pi\)
\(60\) 0 0
\(61\) −2.90167 10.8292i −0.371520 1.38653i −0.858363 0.513043i \(-0.828518\pi\)
0.486842 0.873490i \(-0.338149\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.92795 + 1.69045i 0.363167 + 0.209675i
\(66\) 0 0
\(67\) 0.0295686 0.110351i 0.00361238 0.0134816i −0.964096 0.265554i \(-0.914445\pi\)
0.967708 + 0.252072i \(0.0811120\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.0447904i 0.00531565i −0.999996 0.00265782i \(-0.999154\pi\)
0.999996 0.00265782i \(-0.000846013\pi\)
\(72\) 0 0
\(73\) 13.2931i 1.55585i −0.628360 0.777923i \(-0.716274\pi\)
0.628360 0.777923i \(-0.283726\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.11098 + 4.14624i −0.126608 + 0.472507i
\(78\) 0 0
\(79\) −2.50052 1.44368i −0.281331 0.162426i 0.352695 0.935738i \(-0.385265\pi\)
−0.634026 + 0.773312i \(0.718599\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.01705 + 3.79568i 0.111636 + 0.416630i 0.999013 0.0444135i \(-0.0141419\pi\)
−0.887378 + 0.461043i \(0.847475\pi\)
\(84\) 0 0
\(85\) −0.994419 + 3.71122i −0.107860 + 0.402539i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.7362 −1.35003 −0.675017 0.737802i \(-0.735864\pi\)
−0.675017 + 0.737802i \(0.735864\pi\)
\(90\) 0 0
\(91\) 4.48788 4.48788i 0.470458 0.470458i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.21436 2.10333i −0.124590 0.215797i
\(96\) 0 0
\(97\) 4.41066 7.63949i 0.447835 0.775673i −0.550410 0.834895i \(-0.685529\pi\)
0.998245 + 0.0592215i \(0.0188618\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.88240 + 7.02523i 0.187306 + 0.699037i 0.994125 + 0.108238i \(0.0345207\pi\)
−0.806819 + 0.590799i \(0.798813\pi\)
\(102\) 0 0
\(103\) −9.50698 16.4666i −0.936750 1.62250i −0.771483 0.636250i \(-0.780485\pi\)
−0.165267 0.986249i \(-0.552849\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.28797 8.28797i −0.801228 0.801228i 0.182060 0.983287i \(-0.441724\pi\)
−0.983287 + 0.182060i \(0.941724\pi\)
\(108\) 0 0
\(109\) −14.3799 + 14.3799i −1.37735 + 1.37735i −0.528273 + 0.849074i \(0.677160\pi\)
−0.849074 + 0.528273i \(0.822840\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.18778 1.26312i 0.205809 0.118824i −0.393553 0.919302i \(-0.628754\pi\)
0.599362 + 0.800478i \(0.295421\pi\)
\(114\) 0 0
\(115\) 1.81480 0.486275i 0.169231 0.0453454i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 6.24637 + 3.60634i 0.572604 + 0.330593i
\(120\) 0 0
\(121\) 0.0421101 0.0243123i 0.00382819 0.00221021i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 4.63408 + 4.63408i 0.414485 + 0.414485i
\(126\) 0 0
\(127\) 17.5157i 1.55427i −0.629333 0.777135i \(-0.716672\pi\)
0.629333 0.777135i \(-0.283328\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.9889 + 3.21241i 1.04747 + 0.280669i 0.741207 0.671277i \(-0.234254\pi\)
0.306266 + 0.951946i \(0.400920\pi\)
\(132\) 0 0
\(133\) −4.40397 + 1.18004i −0.381872 + 0.102322i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.00063 8.66134i 0.427232 0.739988i −0.569394 0.822065i \(-0.692822\pi\)
0.996626 + 0.0820768i \(0.0261553\pi\)
\(138\) 0 0
\(139\) −1.37583 0.368654i −0.116697 0.0312688i 0.199998 0.979796i \(-0.435906\pi\)
−0.316695 + 0.948528i \(0.602573\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.3363 −1.36611
\(144\) 0 0
\(145\) −2.10578 −0.174876
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.52986 1.48172i −0.453024 0.121387i 0.0250901 0.999685i \(-0.492013\pi\)
−0.478114 + 0.878298i \(0.658679\pi\)
\(150\) 0 0
\(151\) −8.10127 + 14.0318i −0.659272 + 1.14189i 0.321533 + 0.946899i \(0.395802\pi\)
−0.980804 + 0.194994i \(0.937531\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.05239 1.08583i 0.325496 0.0872163i
\(156\) 0 0
\(157\) 7.56718 + 2.02762i 0.603927 + 0.161822i 0.547810 0.836602i \(-0.315462\pi\)
0.0561165 + 0.998424i \(0.482128\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.52703i 0.277969i
\(162\) 0 0
\(163\) 4.89763 + 4.89763i 0.383612 + 0.383612i 0.872402 0.488789i \(-0.162561\pi\)
−0.488789 + 0.872402i \(0.662561\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −18.7832 + 10.8445i −1.45349 + 0.839174i −0.998677 0.0514129i \(-0.983628\pi\)
−0.454814 + 0.890587i \(0.650294\pi\)
\(168\) 0 0
\(169\) 9.66023 + 5.57734i 0.743095 + 0.429026i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.68601 2.05946i 0.584356 0.156578i 0.0454836 0.998965i \(-0.485517\pi\)
0.538873 + 0.842387i \(0.318850\pi\)
\(174\) 0 0
\(175\) 5.06263 2.92291i 0.382699 0.220951i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.47991 9.47991i 0.708562 0.708562i −0.257671 0.966233i \(-0.582955\pi\)
0.966233 + 0.257671i \(0.0829551\pi\)
\(180\) 0 0
\(181\) 8.00075 + 8.00075i 0.594691 + 0.594691i 0.938895 0.344204i \(-0.111851\pi\)
−0.344204 + 0.938895i \(0.611851\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.246822 0.427509i −0.0181467 0.0314311i
\(186\) 0 0
\(187\) −4.80498 17.9324i −0.351375 1.31135i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.22986 + 15.9866i −0.667850 + 1.15675i 0.310655 + 0.950523i \(0.399452\pi\)
−0.978504 + 0.206227i \(0.933882\pi\)
\(192\) 0 0
\(193\) 2.61643 + 4.53179i 0.188335 + 0.326205i 0.944695 0.327950i \(-0.106358\pi\)
−0.756360 + 0.654155i \(0.773024\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.3573 14.3573i 1.02292 1.02292i 0.0231869 0.999731i \(-0.492619\pi\)
0.999731 0.0231869i \(-0.00738128\pi\)
\(198\) 0 0
\(199\) 13.8358 0.980797 0.490399 0.871498i \(-0.336851\pi\)
0.490399 + 0.871498i \(0.336851\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.02314 + 3.81839i −0.0718100 + 0.267999i
\(204\) 0 0
\(205\) 1.74445 + 6.51038i 0.121838 + 0.454705i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.1632 + 5.86770i 0.703001 + 0.405878i
\(210\) 0 0
\(211\) −6.87239 + 25.6481i −0.473115 + 1.76569i 0.155358 + 0.987858i \(0.450347\pi\)
−0.628473 + 0.777831i \(0.716320\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.676538i 0.0461395i
\(216\) 0 0
\(217\) 7.87574i 0.534640i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.10457 + 26.5146i −0.477905 + 1.78357i
\(222\) 0 0
\(223\) 2.77266 + 1.60079i 0.185671 + 0.107197i 0.589954 0.807437i \(-0.299146\pi\)
−0.404284 + 0.914634i \(0.632479\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0.745680 + 2.78291i 0.0494925 + 0.184708i 0.986247 0.165279i \(-0.0528525\pi\)
−0.936754 + 0.349988i \(0.886186\pi\)
\(228\) 0 0
\(229\) 4.72334 17.6277i 0.312127 1.16487i −0.614508 0.788911i \(-0.710645\pi\)
0.926635 0.375963i \(-0.122688\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00585 0.393456 0.196728 0.980458i \(-0.436968\pi\)
0.196728 + 0.980458i \(0.436968\pi\)
\(234\) 0 0
\(235\) −5.97112 + 5.97112i −0.389513 + 0.389513i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.00788 10.4059i −0.388617 0.673105i 0.603647 0.797252i \(-0.293714\pi\)
−0.992264 + 0.124147i \(0.960381\pi\)
\(240\) 0 0
\(241\) 1.51923 2.63138i 0.0978622 0.169502i −0.812937 0.582351i \(-0.802133\pi\)
0.910800 + 0.412849i \(0.135466\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.949391 3.54317i −0.0606543 0.226365i
\(246\) 0 0
\(247\) −8.67590 15.0271i −0.552034 0.956152i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.95387 2.95387i −0.186447 0.186447i 0.607711 0.794158i \(-0.292088\pi\)
−0.794158 + 0.607711i \(0.792088\pi\)
\(252\) 0 0
\(253\) −6.41937 + 6.41937i −0.403582 + 0.403582i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.67398 + 0.966474i −0.104420 + 0.0602870i −0.551301 0.834307i \(-0.685868\pi\)
0.446880 + 0.894594i \(0.352535\pi\)
\(258\) 0 0
\(259\) −0.895122 + 0.239847i −0.0556202 + 0.0149034i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1.51993 0.877533i −0.0937230 0.0541110i 0.452406 0.891812i \(-0.350566\pi\)
−0.546129 + 0.837701i \(0.683899\pi\)
\(264\) 0 0
\(265\) −0.507020 + 0.292728i −0.0311460 + 0.0179821i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.2013 14.2013i −0.865871 0.865871i 0.126141 0.992012i \(-0.459741\pi\)
−0.992012 + 0.126141i \(0.959741\pi\)
\(270\) 0 0
\(271\) 11.3712i 0.690754i 0.938464 + 0.345377i \(0.112249\pi\)
−0.938464 + 0.345377i \(0.887751\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −14.5341 3.89439i −0.876437 0.234841i
\(276\) 0 0
\(277\) −6.77138 + 1.81439i −0.406853 + 0.109016i −0.456441 0.889754i \(-0.650876\pi\)
0.0495877 + 0.998770i \(0.484209\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.16379 8.94395i 0.308046 0.533552i −0.669889 0.742461i \(-0.733658\pi\)
0.977935 + 0.208910i \(0.0669916\pi\)
\(282\) 0 0
\(283\) 23.3260 + 6.25018i 1.38659 + 0.371535i 0.873509 0.486807i \(-0.161839\pi\)
0.513078 + 0.858342i \(0.328505\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.6528 0.746871
\(288\) 0 0
\(289\) −14.1948 −0.834987
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 18.8302 + 5.04554i 1.10007 + 0.294763i 0.762794 0.646642i \(-0.223827\pi\)
0.337278 + 0.941405i \(0.390494\pi\)
\(294\) 0 0
\(295\) −1.70109 + 2.94638i −0.0990414 + 0.171545i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.9658 3.47416i 0.749829 0.200916i
\(300\) 0 0
\(301\) 1.22676 + 0.328709i 0.0707093 + 0.0189465i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.71230i 0.441605i
\(306\) 0 0
\(307\) 4.37646 + 4.37646i 0.249778 + 0.249778i 0.820879 0.571101i \(-0.193484\pi\)
−0.571101 + 0.820879i \(0.693484\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.65273 + 1.53155i −0.150423 + 0.0868465i −0.573322 0.819330i \(-0.694346\pi\)
0.422900 + 0.906177i \(0.361012\pi\)
\(312\) 0 0
\(313\) 2.59526 + 1.49837i 0.146693 + 0.0846930i 0.571550 0.820567i \(-0.306342\pi\)
−0.424857 + 0.905260i \(0.639676\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.24401 + 2.47692i −0.519195 + 0.139118i −0.508894 0.860829i \(-0.669946\pi\)
−0.0103009 + 0.999947i \(0.503279\pi\)
\(318\) 0 0
\(319\) 8.81182 5.08751i 0.493367 0.284846i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.9434 13.9434i 0.775834 0.775834i
\(324\) 0 0
\(325\) 15.7317 + 15.7317i 0.872636 + 0.872636i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.92619 + 13.7286i 0.436985 + 0.756880i
\(330\) 0 0
\(331\) 3.90856 + 14.5870i 0.214834 + 0.801772i 0.986225 + 0.165410i \(0.0528947\pi\)
−0.771391 + 0.636362i \(0.780439\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.0392949 + 0.0680608i −0.00214691 + 0.00371856i
\(336\) 0 0
\(337\) 1.09448 + 1.89569i 0.0596200 + 0.103265i 0.894295 0.447478i \(-0.147678\pi\)
−0.834675 + 0.550743i \(0.814344\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −14.3342 + 14.3342i −0.776242 + 0.776242i
\(342\) 0 0
\(343\) −15.9258 −0.859912
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.41711 + 27.6810i −0.398171 + 1.48599i 0.418140 + 0.908382i \(0.362682\pi\)
−0.816311 + 0.577612i \(0.803985\pi\)
\(348\) 0 0
\(349\) 6.18561 + 23.0850i 0.331108 + 1.23571i 0.908027 + 0.418911i \(0.137588\pi\)
−0.576919 + 0.816801i \(0.695745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.355770 + 0.205404i 0.0189357 + 0.0109325i 0.509438 0.860507i \(-0.329853\pi\)
−0.490502 + 0.871440i \(0.663187\pi\)
\(354\) 0 0
\(355\) −0.00797469 + 0.0297620i −0.000423253 + 0.00157960i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.19383i 0.0630078i 0.999504 + 0.0315039i \(0.0100297\pi\)
−0.999504 + 0.0315039i \(0.989970\pi\)
\(360\) 0 0
\(361\) 6.53512i 0.343954i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −2.36677 + 8.83291i −0.123883 + 0.462336i
\(366\) 0 0
\(367\) 16.1698 + 9.33562i 0.844055 + 0.487316i 0.858641 0.512578i \(-0.171310\pi\)
−0.0145854 + 0.999894i \(0.504643\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.284455 + 1.06160i 0.0147682 + 0.0551156i
\(372\) 0 0
\(373\) −3.09325 + 11.5442i −0.160163 + 0.597735i 0.838445 + 0.544986i \(0.183465\pi\)
−0.998608 + 0.0527491i \(0.983202\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.0446 −0.774838
\(378\) 0 0
\(379\) −15.3650 + 15.3650i −0.789248 + 0.789248i −0.981371 0.192123i \(-0.938463\pi\)
0.192123 + 0.981371i \(0.438463\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.1162 + 19.2539i 0.568013 + 0.983827i 0.996762 + 0.0804037i \(0.0256210\pi\)
−0.428750 + 0.903423i \(0.641046\pi\)
\(384\) 0 0
\(385\) 1.47643 2.55725i 0.0752458 0.130330i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.18905 15.6338i −0.212393 0.792663i −0.987068 0.160303i \(-0.948753\pi\)
0.774675 0.632360i \(-0.217914\pi\)
\(390\) 0 0
\(391\) 7.62718 + 13.2107i 0.385723 + 0.668092i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.40449 + 1.40449i 0.0706674 + 0.0706674i
\(396\) 0 0
\(397\) 14.5828 14.5828i 0.731887 0.731887i −0.239106 0.970993i \(-0.576854\pi\)
0.970993 + 0.239106i \(0.0768543\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.9585 + 16.1418i −1.39618 + 0.806085i −0.993990 0.109470i \(-0.965085\pi\)
−0.402191 + 0.915556i \(0.631751\pi\)
\(402\) 0 0
\(403\) 28.9521 7.75768i 1.44220 0.386438i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.06570 + 1.19263i 0.102393 + 0.0591166i
\(408\) 0 0
\(409\) −12.9975 + 7.50409i −0.642683 + 0.371053i −0.785647 0.618674i \(-0.787670\pi\)
0.142964 + 0.989728i \(0.454337\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.51613 + 4.51613i 0.222224 + 0.222224i
\(414\) 0 0
\(415\) 2.70320i 0.132695i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 22.4191 + 6.00718i 1.09525 + 0.293470i 0.760827 0.648955i \(-0.224794\pi\)
0.334418 + 0.942425i \(0.391460\pi\)
\(420\) 0 0
\(421\) −15.1189 + 4.05109i −0.736849 + 0.197438i −0.607677 0.794184i \(-0.707899\pi\)
−0.129172 + 0.991622i \(0.541232\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −12.6415 + 21.8958i −0.613205 + 1.06210i
\(426\) 0 0
\(427\) 13.9846 + 3.74717i 0.676764 + 0.181338i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.63818 0.0789082 0.0394541 0.999221i \(-0.487438\pi\)
0.0394541 + 0.999221i \(0.487438\pi\)
\(432\) 0 0
\(433\) 24.1284 1.15954 0.579769 0.814781i \(-0.303143\pi\)
0.579769 + 0.814781i \(0.303143\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9.31411 2.49571i −0.445554 0.119386i
\(438\) 0 0
\(439\) −6.04546 + 10.4711i −0.288534 + 0.499756i −0.973460 0.228857i \(-0.926501\pi\)
0.684926 + 0.728613i \(0.259835\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.2512 + 4.35450i −0.772119 + 0.206889i −0.623307 0.781977i \(-0.714211\pi\)
−0.148811 + 0.988866i \(0.547545\pi\)
\(444\) 0 0
\(445\) 8.46284 + 2.26761i 0.401177 + 0.107495i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 31.8270i 1.50201i −0.660298 0.751004i \(-0.729570\pi\)
0.660298 0.751004i \(-0.270430\pi\)
\(450\) 0 0
\(451\) −23.0287 23.0287i −1.08438 1.08438i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −3.78111 + 2.18303i −0.177261 + 0.102342i
\(456\) 0 0
\(457\) 24.8553 + 14.3502i 1.16268 + 0.671275i 0.951945 0.306268i \(-0.0990803\pi\)
0.210737 + 0.977543i \(0.432414\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −1.80601 + 0.483918i −0.0841141 + 0.0225383i −0.300631 0.953741i \(-0.597197\pi\)
0.216517 + 0.976279i \(0.430530\pi\)
\(462\) 0 0
\(463\) −4.71990 + 2.72503i −0.219352 + 0.126643i −0.605650 0.795731i \(-0.707087\pi\)
0.386298 + 0.922374i \(0.373754\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8.95228 + 8.95228i −0.414262 + 0.414262i −0.883220 0.468958i \(-0.844630\pi\)
0.468958 + 0.883220i \(0.344630\pi\)
\(468\) 0 0
\(469\) 0.104322 + 0.104322i 0.00481713 + 0.00481713i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.63450 2.83103i −0.0751542 0.130171i
\(474\) 0 0
\(475\) −4.13647 15.4375i −0.189794 0.708321i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.27809 7.40987i 0.195471 0.338566i −0.751584 0.659638i \(-0.770710\pi\)
0.947055 + 0.321072i \(0.104043\pi\)
\(480\) 0 0
\(481\) −1.76341 3.05431i −0.0804045 0.139265i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.29093 + 4.29093i −0.194841 + 0.194841i
\(486\) 0 0
\(487\) 13.1689 0.596738 0.298369 0.954451i \(-0.403557\pi\)
0.298369 + 0.954451i \(0.403557\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.16956 8.09692i 0.0979110 0.365409i −0.899534 0.436851i \(-0.856094\pi\)
0.997445 + 0.0714425i \(0.0227602\pi\)
\(492\) 0 0
\(493\) −4.42505 16.5145i −0.199294 0.743776i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.0500924 + 0.0289209i 0.00224695 + 0.00129728i
\(498\) 0 0
\(499\) 8.38567 31.2957i 0.375394 1.40099i −0.477374 0.878700i \(-0.658411\pi\)
0.852768 0.522289i \(-0.174922\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.8126i 0.927989i −0.885838 0.463994i \(-0.846416\pi\)
0.885838 0.463994i \(-0.153584\pi\)
\(504\) 0 0
\(505\) 5.00321i 0.222640i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 5.54865 20.7078i 0.245940 0.917859i −0.726969 0.686670i \(-0.759072\pi\)
0.972909 0.231189i \(-0.0742616\pi\)
\(510\) 0 0
\(511\) 14.8667 + 8.58329i 0.657664 + 0.379703i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.38533 + 12.6342i 0.149175 + 0.556730i
\(516\) 0 0
\(517\) 10.5606 39.4127i 0.464455 1.73337i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 20.1534 0.882938 0.441469 0.897277i \(-0.354458\pi\)
0.441469 + 0.897277i \(0.354458\pi\)
\(522\) 0 0
\(523\) −14.7713 + 14.7713i −0.645905 + 0.645905i −0.952001 0.306096i \(-0.900977\pi\)
0.306096 + 0.952001i \(0.400977\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.0312 + 29.4990i 0.741892 + 1.28499i
\(528\) 0 0
\(529\) −7.77028 + 13.4585i −0.337838 + 0.585153i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.4631 + 46.5131i 0.539838 + 2.01470i
\(534\) 0 0
\(535\) 4.03149 + 6.98274i 0.174296 + 0.301890i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.5330 + 12.5330i 0.539835 + 0.539835i
\(540\) 0 0
\(541\) 11.1739 11.1739i 0.480403 0.480403i −0.424857 0.905260i \(-0.639676\pi\)
0.905260 + 0.424857i \(0.139676\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12.1153 6.99478i 0.518963 0.299624i
\(546\) 0 0
\(547\) −12.0633 + 3.23236i −0.515791 + 0.138206i −0.507319 0.861758i \(-0.669363\pi\)
−0.00847177 + 0.999964i \(0.502697\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.35956 + 5.40375i 0.398731 + 0.230207i
\(552\) 0 0
\(553\) 3.22914 1.86435i 0.137317 0.0792800i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.41323 4.41323i −0.186995 0.186995i 0.607401 0.794395i \(-0.292212\pi\)
−0.794395 + 0.607401i \(0.792212\pi\)
\(558\) 0 0
\(559\) 4.83349i 0.204435i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −33.9300 9.09152i −1.42998 0.383162i −0.540967 0.841044i \(-0.681942\pi\)
−0.889013 + 0.457882i \(0.848608\pi\)
\(564\) 0 0
\(565\) −1.67861 + 0.449782i −0.0706197 + 0.0189225i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.8432 + 18.7810i −0.454572 + 0.787342i −0.998663 0.0516841i \(-0.983541\pi\)
0.544091 + 0.839026i \(0.316874\pi\)
\(570\) 0 0
\(571\) 10.0422 + 2.69081i 0.420255 + 0.112607i 0.462748 0.886490i \(-0.346863\pi\)
−0.0424934 + 0.999097i \(0.513530\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 12.3635 0.515595
\(576\) 0 0
\(577\) −33.2014 −1.38219 −0.691096 0.722763i \(-0.742872\pi\)
−0.691096 + 0.722763i \(0.742872\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.90169 1.31340i −0.203356 0.0544891i
\(582\) 0 0
\(583\) 1.41444 2.44989i 0.0585803 0.101464i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.06941 + 0.554497i −0.0854137 + 0.0228865i −0.301273 0.953538i \(-0.597411\pi\)
0.215859 + 0.976425i \(0.430745\pi\)
\(588\) 0 0
\(589\) −20.7981 5.57282i −0.856969 0.229624i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.9278i 0.571945i 0.958238 + 0.285973i \(0.0923166\pi\)
−0.958238 + 0.285973i \(0.907683\pi\)
\(594\) 0 0
\(595\) −3.50844 3.50844i −0.143832 0.143832i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.2130 11.6700i 0.825881 0.476823i −0.0265594 0.999647i \(-0.508455\pi\)
0.852440 + 0.522825i \(0.175122\pi\)
\(600\) 0 0
\(601\) 10.3379 + 5.96857i 0.421691 + 0.243463i 0.695800 0.718235i \(-0.255050\pi\)
−0.274110 + 0.961698i \(0.588383\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −0.0323096 + 0.00865733i −0.00131357 + 0.000351971i
\(606\) 0 0
\(607\) −10.3919 + 5.99979i −0.421796 + 0.243524i −0.695845 0.718192i \(-0.744970\pi\)
0.274050 + 0.961716i \(0.411637\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −42.6603 + 42.6603i −1.72585 + 1.72585i
\(612\) 0 0
\(613\) −18.1803 18.1803i −0.734296 0.734296i 0.237172 0.971468i \(-0.423780\pi\)
−0.971468 + 0.237172i \(0.923780\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.9672 + 32.8521i 0.763589 + 1.32257i 0.940989 + 0.338436i \(0.109898\pi\)
−0.177401 + 0.984139i \(0.556769\pi\)
\(618\) 0 0
\(619\) −0.000616823 0.00230201i −2.47922e−5 9.25258e-5i 0.965913 0.258865i \(-0.0833486\pi\)
−0.965938 + 0.258773i \(0.916682\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.22368 14.2438i 0.329475 0.570667i
\(624\) 0 0
\(625\) 9.06281 + 15.6972i 0.362512 + 0.627890i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.83406 2.83406i 0.113001 0.113001i
\(630\) 0 0
\(631\) 39.2643 1.56309 0.781543 0.623852i \(-0.214433\pi\)
0.781543 + 0.623852i \(0.214433\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.11858 + 11.6387i −0.123757 + 0.461868i
\(636\) 0 0
\(637\) −6.78286 25.3140i −0.268747 1.00298i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −15.2983 8.83246i −0.604245 0.348861i 0.166465 0.986047i \(-0.446765\pi\)
−0.770710 + 0.637186i \(0.780098\pi\)
\(642\) 0 0
\(643\) −1.76926 + 6.60298i −0.0697729 + 0.260396i −0.991997 0.126259i \(-0.959703\pi\)
0.922224 + 0.386655i \(0.126370\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.24252i 0.166791i −0.996517 0.0833953i \(-0.973424\pi\)
0.996517 0.0833953i \(-0.0265764\pi\)
\(648\) 0 0
\(649\) 16.4392i 0.645293i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.14041 26.6484i 0.279426 1.04283i −0.673391 0.739286i \(-0.735163\pi\)
0.952817 0.303545i \(-0.0981703\pi\)
\(654\) 0 0
\(655\) −7.39431 4.26911i −0.288919 0.166808i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.71978 10.1504i −0.105948 0.395402i 0.892503 0.451041i \(-0.148947\pi\)
−0.998451 + 0.0556391i \(0.982280\pi\)
\(660\) 0 0
\(661\) 7.59396 28.3410i 0.295371 1.10234i −0.645552 0.763717i \(-0.723372\pi\)
0.940922 0.338622i \(-0.109961\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.13641 0.121625
\(666\) 0 0
\(667\) −5.91179 + 5.91179i −0.228905 + 0.228905i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −18.6327 32.2728i −0.719307 1.24588i
\(672\) 0 0
\(673\) −5.32418 + 9.22175i −0.205232 + 0.355472i −0.950207 0.311621i \(-0.899128\pi\)
0.744975 + 0.667093i \(0.232462\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.70565 21.2938i −0.219286 0.818387i −0.984614 0.174746i \(-0.944090\pi\)
0.765327 0.643641i \(-0.222577\pi\)
\(678\) 0 0
\(679\) 5.69587 + 9.86554i 0.218587 + 0.378605i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.68202 1.68202i −0.0643609 0.0643609i 0.674194 0.738555i \(-0.264491\pi\)
−0.738555 + 0.674194i \(0.764491\pi\)
\(684\) 0 0
\(685\) −4.86488 + 4.86488i −0.185877 + 0.185877i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.62237 + 2.09138i −0.138001 + 0.0796751i
\(690\) 0 0
\(691\) −2.22350 + 0.595784i −0.0845858 + 0.0226647i −0.300864 0.953667i \(-0.597275\pi\)
0.216278 + 0.976332i \(0.430608\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0.848565 + 0.489919i 0.0321879 + 0.0185837i
\(696\) 0 0
\(697\) −47.3917 + 27.3616i −1.79509 + 1.03639i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10.2728 + 10.2728i 0.387997 + 0.387997i 0.873972 0.485976i \(-0.161536\pi\)
−0.485976 + 0.873972i \(0.661536\pi\)
\(702\) 0 0
\(703\) 2.53353i 0.0955540i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −9.07228 2.43091i −0.341198 0.0914238i
\(708\) 0 0
\(709\) −4.88619 + 1.30925i −0.183505 + 0.0491700i −0.349401 0.936973i \(-0.613615\pi\)
0.165896 + 0.986143i \(0.446948\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 8.32834 14.4251i 0.311899 0.540224i
\(714\) 0 0
\(715\) 10.8550 + 2.90859i 0.405955 + 0.108775i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −6.73858 −0.251307 −0.125653 0.992074i \(-0.540103\pi\)
−0.125653 + 0.992074i \(0.540103\pi\)
\(720\) 0 0
\(721\) 24.5544 0.914452
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −13.3849 3.58646i −0.497101 0.133198i
\(726\) 0 0
\(727\) 4.14056 7.17166i 0.153565 0.265982i −0.778971 0.627060i \(-0.784258\pi\)
0.932536 + 0.361078i \(0.117591\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.30572 + 1.42166i −0.196239 + 0.0525821i
\(732\) 0 0
\(733\) 43.6909 + 11.7070i 1.61376 + 0.432406i 0.949161 0.314792i \(-0.101935\pi\)
0.664601 + 0.747198i \(0.268601\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.379742i 0.0139880i
\(738\) 0 0
\(739\) −22.0530 22.0530i −0.811234 0.811234i 0.173585 0.984819i \(-0.444465\pi\)
−0.984819 + 0.173585i \(0.944465\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 29.9386 17.2851i 1.09834 0.634128i 0.162557 0.986699i \(-0.448026\pi\)
0.935785 + 0.352571i \(0.114693\pi\)
\(744\) 0 0
\(745\) 3.41062 + 1.96912i 0.124955 + 0.0721431i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 14.6205 3.91756i 0.534222 0.143144i
\(750\) 0 0
\(751\) −38.8676 + 22.4402i −1.41830 + 0.818855i −0.996149 0.0876713i \(-0.972057\pi\)
−0.422149 + 0.906526i \(0.638724\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.88134 7.88134i 0.286832 0.286832i
\(756\) 0 0
\(757\) 27.6111 + 27.6111i 1.00354 + 1.00354i 0.999994 + 0.00354931i \(0.00112978\pi\)
0.00354931 + 0.999994i \(0.498870\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −17.8578 30.9307i −0.647346 1.12124i −0.983754 0.179520i \(-0.942545\pi\)
0.336408 0.941716i \(-0.390788\pi\)
\(762\) 0 0
\(763\) −6.79711 25.3672i −0.246072 0.918353i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.1534 + 21.0502i −0.438832 + 0.760079i
\(768\) 0 0
\(769\) −22.6077 39.1577i −0.815254 1.41206i −0.909145 0.416479i \(-0.863264\pi\)
0.0938910 0.995582i \(-0.470069\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.57961 5.57961i 0.200685 0.200685i −0.599609 0.800293i \(-0.704677\pi\)
0.800293 + 0.599609i \(0.204677\pi\)
\(774\) 0 0
\(775\) 27.6073 0.991684
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.95305 33.4132i 0.320776 1.19715i
\(780\) 0 0
\(781\) −0.0385333 0.143808i −0.00137883 0.00514586i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.66717 2.69459i −0.166578 0.0961741i
\(786\) 0 0
\(787\) 2.39956 8.95529i 0.0855351 0.319221i −0.909880 0.414872i \(-0.863826\pi\)
0.995415 + 0.0956504i \(0.0304931\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 3.26235i 0.115996i
\(792\) 0 0
\(793\) 55.1001i 1.95666i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.57307 24.5310i 0.232830 0.868934i −0.746285 0.665627i \(-0.768164\pi\)
0.979115 0.203307i \(-0.0651690\pi\)
\(798\) 0 0
\(799\) −59.3759 34.2807i −2.10057 1.21276i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −11.4361 42.6801i −0.403571 1.50615i
\(804\) 0 0
\(805\) −0.627969 + 2.34361i −0.0221330 + 0.0826014i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 33.1931 1.16701 0.583503 0.812111i \(-0.301682\pi\)
0.583503 + 0.812111i \(0.301682\pi\)
\(810\) 0 0
\(811\) −7.35128 + 7.35128i −0.258138 + 0.258138i −0.824297 0.566158i \(-0.808429\pi\)
0.566158 + 0.824297i \(0.308429\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.38234 4.12633i −0.0834497 0.144539i
\(816\) 0 0
\(817\) 1.73610 3.00701i 0.0607383 0.105202i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.3476 38.6179i −0.361135 1.34777i −0.872585 0.488462i \(-0.837558\pi\)
0.511450 0.859313i \(-0.329109\pi\)
\(822\) 0 0
\(823\) −11.8717 20.5623i −0.413821 0.716758i 0.581483 0.813558i \(-0.302473\pi\)
−0.995304 + 0.0968000i \(0.969139\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25.1545 25.1545i −0.874708 0.874708i 0.118273 0.992981i \(-0.462264\pi\)
−0.992981 + 0.118273i \(0.962264\pi\)
\(828\) 0 0
\(829\) 6.12372 6.12372i 0.212686 0.212686i −0.592722 0.805407i \(-0.701947\pi\)
0.805407 + 0.592722i \(0.201947\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.7922 14.8911i 0.893646 0.515947i
\(834\) 0 0
\(835\) 14.4117 3.86161i 0.498739 0.133637i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −35.2084 20.3276i −1.21553 0.701786i −0.251570 0.967839i \(-0.580947\pi\)
−0.963958 + 0.266054i \(0.914280\pi\)
\(840\) 0 0
\(841\) −16.9997 + 9.81476i −0.586195 + 0.338440i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −5.42593 5.42593i −0.186658 0.186658i
\(846\) 0 0
\(847\) 0.0627931i 0.00215760i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.89313 0.507262i −0.0648955 0.0173887i
\(852\) 0 0
\(853\) −41.6120 + 11.1499i −1.42477 + 0.381765i −0.887173 0.461437i \(-0.847334\pi\)
−0.537595 + 0.843203i \(0.680667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.72246 8.17953i 0.161316 0.279408i −0.774025 0.633155i \(-0.781759\pi\)
0.935341 + 0.353748i \(0.115093\pi\)
\(858\) 0 0
\(859\) −21.9088 5.87045i −0.747519 0.200297i −0.135102 0.990832i \(-0.543136\pi\)
−0.612417 + 0.790535i \(0.709803\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 3.58147 0.121915 0.0609573 0.998140i \(-0.480585\pi\)
0.0609573 + 0.998140i \(0.480585\pi\)
\(864\) 0 0
\(865\) −5.47380 −0.186115
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9.27039 2.48399i −0.314476 0.0842637i
\(870\) 0 0
\(871\) −0.280740 + 0.486256i −0.00951252 + 0.0164762i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −8.17482 + 2.19044i −0.276359 + 0.0740503i
\(876\) 0 0
\(877\) −16.8966 4.52743i −0.570558 0.152881i −0.0380056 0.999278i \(-0.512100\pi\)
−0.532553 + 0.846397i \(0.678767\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 46.1363i 1.55437i 0.629272 + 0.777185i \(0.283353\pi\)
−0.629272 + 0.777185i \(0.716647\pi\)
\(882\) 0 0
\(883\) −19.7311 19.7311i −0.664003 0.664003i 0.292318 0.956321i \(-0.405573\pi\)
−0.956321 + 0.292318i \(0.905573\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 29.7760 17.1912i 0.999780 0.577223i 0.0915965 0.995796i \(-0.470803\pi\)
0.908183 + 0.418573i \(0.137470\pi\)
\(888\) 0 0
\(889\) 19.5891 + 11.3098i 0.656999 + 0.379318i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 41.8626 11.2171i 1.40088 0.375364i
\(894\) 0 0
\(895\) −7.98697 + 4.61128i −0.266975 + 0.154138i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.2008 + 13.2008i −0.440272 + 0.440272i
\(900\) 0 0
\(901\) −3.36115 3.36115i −0.111976 0.111976i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.89178 6.74076i −0.129367 0.224070i
\(906\) 0 0
\(907\) −14.3921 53.7121i −0.477883 1.78348i −0.610170 0.792271i \(-0.708899\pi\)
0.132287 0.991211i \(-0.457768\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.01435 10.4172i 0.199264 0.345136i −0.749026 0.662541i \(-0.769478\pi\)
0.948290 + 0.317405i \(0.102811\pi\)
\(912\) 0 0
\(913\) 6.53085 + 11.3118i 0.216140 + 0.374365i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −11.3338 + 11.3338i −0.374275 + 0.374275i
\(918\) 0 0
\(919\) 11.8860 0.392084 0.196042 0.980595i \(-0.437191\pi\)
0.196042 + 0.980595i \(0.437191\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −0.0569747 + 0.212633i −0.00187535 + 0.00699889i
\(924\) 0 0
\(925\) −0.840752 3.13773i −0.0276438 0.103168i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 3.44934 + 1.99148i 0.113169 + 0.0653382i 0.555516 0.831506i \(-0.312521\pi\)
−0.442347 + 0.896844i \(0.645854\pi\)
\(930\) 0 0
\(931\) −4.87255 + 18.1846i −0.159692 + 0.595977i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 12.7711i 0.417659i
\(936\) 0 0
\(937\) 26.0017i 0.849438i −0.905325 0.424719i \(-0.860373\pi\)
0.905325 0.424719i \(-0.139627\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.0855 41.3717i 0.361378 1.34868i −0.510888 0.859648i \(-0.670683\pi\)
0.872265 0.489033i \(-0.162650\pi\)
\(942\) 0 0
\(943\) 23.1747 + 13.3799i 0.754673 + 0.435710i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.71769 + 17.6066i 0.153304 + 0.572139i 0.999245 + 0.0388617i \(0.0123732\pi\)
−0.845940 + 0.533277i \(0.820960\pi\)
\(948\) 0 0
\(949\) −16.9093 + 63.1062i −0.548898 + 2.04851i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.9031 0.547545 0.273772 0.961795i \(-0.411729\pi\)
0.273772 + 0.961795i \(0.411729\pi\)
\(954\) 0 0
\(955\) 8.97930 8.97930i 0.290563 0.290563i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.45774 + 11.1851i 0.208531 + 0.361187i
\(960\) 0 0
\(961\) 3.09688 5.36395i 0.0998993 0.173031i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.931682 3.47708i −0.0299919 0.111931i
\(966\) 0 0
\(967\) −1.50617 2.60876i −0.0484351 0.0838921i 0.840791 0.541359i \(-0.182090\pi\)
−0.889227 + 0.457467i \(0.848757\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 35.4934 + 35.4934i 1.13904 + 1.13904i 0.988623 + 0.150413i \(0.0480604\pi\)
0.150413 + 0.988623i \(0.451940\pi\)
\(972\) 0 0
\(973\) 1.30066 1.30066i 0.0416972 0.0416972i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.03784 + 4.64065i −0.257153 + 0.148467i −0.623035 0.782194i \(-0.714101\pi\)
0.365882 + 0.930661i \(0.380767\pi\)
\(978\) 0 0
\(979\) −40.8920 + 10.9570i −1.30691 + 0.350186i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11.0480 + 6.37856i 0.352376 + 0.203444i 0.665731 0.746192i \(-0.268120\pi\)
−0.313355 + 0.949636i \(0.601453\pi\)
\(984\) 0 0
\(985\) −12.0963 + 6.98379i −0.385420 + 0.222522i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.89932 + 1.89932i 0.0603949 + 0.0603949i
\(990\) 0 0
\(991\) 6.60967i 0.209963i −0.994474 0.104982i \(-0.966522\pi\)
0.994474 0.104982i \(-0.0334784\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −9.19352 2.46340i −0.291454 0.0780949i
\(996\) 0 0
\(997\) 36.5814 9.80194i 1.15854 0.310431i 0.372159 0.928169i \(-0.378618\pi\)
0.786384 + 0.617738i \(0.211951\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1728.2.z.a.143.10 88
3.2 odd 2 576.2.y.a.335.7 88
4.3 odd 2 432.2.v.a.251.8 88
9.4 even 3 576.2.y.a.527.5 88
9.5 odd 6 inner 1728.2.z.a.719.10 88
12.11 even 2 144.2.u.a.11.15 88
16.3 odd 4 inner 1728.2.z.a.1007.10 88
16.13 even 4 432.2.v.a.35.15 88
36.23 even 6 432.2.v.a.395.15 88
36.31 odd 6 144.2.u.a.59.8 yes 88
48.29 odd 4 144.2.u.a.83.8 yes 88
48.35 even 4 576.2.y.a.47.5 88
144.13 even 12 144.2.u.a.131.15 yes 88
144.67 odd 12 576.2.y.a.239.7 88
144.77 odd 12 432.2.v.a.179.8 88
144.131 even 12 inner 1728.2.z.a.1583.10 88
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.u.a.11.15 88 12.11 even 2
144.2.u.a.59.8 yes 88 36.31 odd 6
144.2.u.a.83.8 yes 88 48.29 odd 4
144.2.u.a.131.15 yes 88 144.13 even 12
432.2.v.a.35.15 88 16.13 even 4
432.2.v.a.179.8 88 144.77 odd 12
432.2.v.a.251.8 88 4.3 odd 2
432.2.v.a.395.15 88 36.23 even 6
576.2.y.a.47.5 88 48.35 even 4
576.2.y.a.239.7 88 144.67 odd 12
576.2.y.a.335.7 88 3.2 odd 2
576.2.y.a.527.5 88 9.4 even 3
1728.2.z.a.143.10 88 1.1 even 1 trivial
1728.2.z.a.719.10 88 9.5 odd 6 inner
1728.2.z.a.1007.10 88 16.3 odd 4 inner
1728.2.z.a.1583.10 88 144.131 even 12 inner