Properties

Label 1728.2
Level 1728
Weight 2
Dimension 36512
Nonzero newspaces 24
Sturm bound 331776
Trace bound 52

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1728 = 2^{6} \cdot 3^{3} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(331776\)
Trace bound: \(52\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1728))\).

Total New Old
Modular forms 85104 37216 47888
Cusp forms 80785 36512 44273
Eisenstein series 4319 704 3615

Trace form

\( 36512 q - 64 q^{2} - 72 q^{3} - 112 q^{4} - 64 q^{5} - 96 q^{6} - 84 q^{7} - 64 q^{8} - 120 q^{9} - 112 q^{10} - 48 q^{11} - 96 q^{12} - 112 q^{13} - 64 q^{14} - 72 q^{15} - 112 q^{16} - 112 q^{17} - 96 q^{18}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1728))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1728.2.a \(\chi_{1728}(1, \cdot)\) 1728.2.a.a 1 1
1728.2.a.b 1
1728.2.a.c 1
1728.2.a.d 1
1728.2.a.e 1
1728.2.a.f 1
1728.2.a.g 1
1728.2.a.h 1
1728.2.a.i 1
1728.2.a.j 1
1728.2.a.k 1
1728.2.a.l 1
1728.2.a.m 1
1728.2.a.n 1
1728.2.a.o 1
1728.2.a.p 1
1728.2.a.q 1
1728.2.a.r 1
1728.2.a.s 1
1728.2.a.t 1
1728.2.a.u 1
1728.2.a.v 1
1728.2.a.w 1
1728.2.a.x 1
1728.2.a.y 1
1728.2.a.z 1
1728.2.a.ba 1
1728.2.a.bb 1
1728.2.a.bc 2
1728.2.a.bd 2
1728.2.c \(\chi_{1728}(1727, \cdot)\) 1728.2.c.a 2 1
1728.2.c.b 2
1728.2.c.c 4
1728.2.c.d 4
1728.2.c.e 4
1728.2.c.f 8
1728.2.c.g 8
1728.2.d \(\chi_{1728}(865, \cdot)\) 1728.2.d.a 2 1
1728.2.d.b 2
1728.2.d.c 2
1728.2.d.d 2
1728.2.d.e 4
1728.2.d.f 4
1728.2.d.g 4
1728.2.d.h 4
1728.2.d.i 4
1728.2.d.j 4
1728.2.f \(\chi_{1728}(863, \cdot)\) 1728.2.f.a 4 1
1728.2.f.b 4
1728.2.f.c 4
1728.2.f.d 4
1728.2.f.e 4
1728.2.f.f 4
1728.2.f.g 8
1728.2.i \(\chi_{1728}(577, \cdot)\) 1728.2.i.a 2 2
1728.2.i.b 2
1728.2.i.c 2
1728.2.i.d 2
1728.2.i.e 2
1728.2.i.f 2
1728.2.i.g 2
1728.2.i.h 2
1728.2.i.i 4
1728.2.i.j 4
1728.2.i.k 4
1728.2.i.l 4
1728.2.i.m 4
1728.2.i.n 8
1728.2.k \(\chi_{1728}(433, \cdot)\) 1728.2.k.a 4 2
1728.2.k.b 4
1728.2.k.c 24
1728.2.k.d 32
1728.2.l \(\chi_{1728}(431, \cdot)\) 1728.2.l.a 32 2
1728.2.l.b 32
1728.2.p \(\chi_{1728}(287, \cdot)\) 1728.2.p.a 16 2
1728.2.p.b 16
1728.2.p.c 16
1728.2.r \(\chi_{1728}(289, \cdot)\) 1728.2.r.a 4 2
1728.2.r.b 4
1728.2.r.c 8
1728.2.r.d 8
1728.2.r.e 12
1728.2.r.f 12
1728.2.s \(\chi_{1728}(575, \cdot)\) 1728.2.s.a 2 2
1728.2.s.b 2
1728.2.s.c 2
1728.2.s.d 2
1728.2.s.e 4
1728.2.s.f 8
1728.2.s.g 24
1728.2.v \(\chi_{1728}(217, \cdot)\) None 0 4
1728.2.w \(\chi_{1728}(215, \cdot)\) None 0 4
1728.2.y \(\chi_{1728}(193, \cdot)\) n/a 420 6
1728.2.z \(\chi_{1728}(143, \cdot)\) 1728.2.z.a 88 4
1728.2.bc \(\chi_{1728}(145, \cdot)\) 1728.2.bc.a 4 4
1728.2.bc.b 4
1728.2.bc.c 4
1728.2.bc.d 4
1728.2.bc.e 72
1728.2.be \(\chi_{1728}(109, \cdot)\) n/a 1024 8
1728.2.bf \(\chi_{1728}(107, \cdot)\) n/a 1024 8
1728.2.bj \(\chi_{1728}(97, \cdot)\) n/a 432 6
1728.2.bl \(\chi_{1728}(95, \cdot)\) n/a 432 6
1728.2.bm \(\chi_{1728}(191, \cdot)\) n/a 420 6
1728.2.bo \(\chi_{1728}(73, \cdot)\) None 0 8
1728.2.br \(\chi_{1728}(71, \cdot)\) None 0 8
1728.2.bs \(\chi_{1728}(49, \cdot)\) n/a 840 12
1728.2.bv \(\chi_{1728}(47, \cdot)\) n/a 840 12
1728.2.bx \(\chi_{1728}(35, \cdot)\) n/a 1504 16
1728.2.by \(\chi_{1728}(37, \cdot)\) n/a 1504 16
1728.2.cb \(\chi_{1728}(23, \cdot)\) None 0 24
1728.2.cc \(\chi_{1728}(25, \cdot)\) None 0 24
1728.2.ce \(\chi_{1728}(13, \cdot)\) n/a 13728 48
1728.2.ch \(\chi_{1728}(11, \cdot)\) n/a 13728 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1728))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1728)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 28}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 21}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 15}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(144))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(192))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(216))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(288))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(432))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(576))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(864))\)\(^{\oplus 2}\)