Properties

Label 575.2.p.b.524.1
Level $575$
Weight $2$
Character 575.524
Analytic conductor $4.591$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [575,2,Mod(49,575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("575.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(575, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 16])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.p (of order \(22\), degree \(10\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.59139811622\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(2\) over \(\Q(\zeta_{22})\)
Coefficient field: \(\Q(\zeta_{44})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 524.1
Root \(0.540641 - 0.841254i\) of defining polynomial
Character \(\chi\) \(=\) 575.524
Dual form 575.2.p.b.124.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0666238 + 0.226900i) q^{2} +(-0.361922 - 0.313607i) q^{3} +(1.63546 + 1.05105i) q^{4} +(0.0952700 - 0.0612263i) q^{6} +(-2.31611 + 1.05773i) q^{7} +(-0.704881 + 0.610783i) q^{8} +(-0.394306 - 2.74246i) q^{9} +(3.23616 - 0.950224i) q^{11} +(-0.262294 - 0.893290i) q^{12} +(2.99430 + 1.36745i) q^{13} +(-0.0856910 - 0.595994i) q^{14} +(1.52357 + 3.33616i) q^{16} +(3.39353 + 5.28043i) q^{17} +(0.648534 + 0.0932451i) q^{18} +(3.55928 + 2.28741i) q^{19} +(1.16996 + 0.343532i) q^{21} +0.797593i q^{22} +(0.847210 - 4.72041i) q^{23} +0.446658 q^{24} +(-0.509766 + 0.588302i) q^{26} +(-1.49407 + 2.32482i) q^{27} +(-4.89963 - 0.704460i) q^{28} +(-5.28830 + 3.39858i) q^{29} +(3.10538 + 3.58380i) q^{31} +(-2.70488 + 0.388902i) q^{32} +(-1.46924 - 0.670978i) q^{33} +(-1.42422 + 0.418188i) q^{34} +(2.23758 - 4.89963i) q^{36} +(-0.0375858 + 0.00540403i) q^{37} +(-0.756145 + 0.655203i) q^{38} +(-0.654861 - 1.43394i) q^{39} +(-0.462048 + 3.21361i) q^{41} +(-0.155895 + 0.242577i) q^{42} +(-0.974066 - 0.844033i) q^{43} +(6.29135 + 1.84731i) q^{44} +(1.01462 + 0.506723i) q^{46} -3.41741i q^{47} +(0.494829 - 1.68523i) q^{48} +(-0.338474 + 0.390620i) q^{49} +(0.427789 - 2.97534i) q^{51} +(3.45981 + 5.38357i) q^{52} +(6.11799 - 2.79399i) q^{53} +(-0.427961 - 0.493893i) q^{54} +(0.986535 - 2.16021i) q^{56} +(-0.570833 - 1.94408i) q^{57} +(-0.418811 - 1.42634i) q^{58} +(4.32805 - 9.47711i) q^{59} +(-2.35737 - 2.72055i) q^{61} +(-1.02006 + 0.465844i) q^{62} +(3.81404 + 5.93476i) q^{63} +(-0.951939 + 6.62088i) q^{64} +(0.250131 - 0.288666i) q^{66} +(1.92124 - 6.54316i) q^{67} +12.2027i q^{68} +(-1.78698 + 1.44273i) q^{69} +(-3.92408 - 1.15221i) q^{71} +(1.95299 + 1.69227i) q^{72} +(-2.35800 + 3.66912i) q^{73} +(0.00127794 - 0.00888826i) q^{74} +(3.41689 + 7.48194i) q^{76} +(-6.49022 + 5.62381i) q^{77} +(0.368991 - 0.0530529i) q^{78} +(-0.997820 + 2.18492i) q^{79} +(-6.70548 + 1.96891i) q^{81} +(-0.698384 - 0.318941i) q^{82} +(2.92705 - 0.420847i) q^{83} +(1.55236 + 1.79152i) q^{84} +(0.256407 - 0.164783i) q^{86} +(2.97977 + 0.428426i) q^{87} +(-1.70073 + 2.64639i) q^{88} +(8.09455 - 9.34161i) q^{89} -8.38151 q^{91} +(6.34695 - 6.82959i) q^{92} -2.27092i q^{93} +(0.775410 + 0.227681i) q^{94} +(1.10092 + 0.707516i) q^{96} +(-10.5084 - 1.51088i) q^{97} +(-0.0660811 - 0.102824i) q^{98} +(-3.88199 - 8.50038i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{4} + 12 q^{6} + 4 q^{9} + 14 q^{11} - 18 q^{14} + 2 q^{16} - 4 q^{19} - 4 q^{21} + 76 q^{24} + 24 q^{26} - 28 q^{29} + 20 q^{31} - 58 q^{34} + 54 q^{36} - 2 q^{39} + 14 q^{41} + 68 q^{44} - 58 q^{46}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/575\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(e\left(\frac{6}{11}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0666238 + 0.226900i −0.0471101 + 0.160442i −0.979689 0.200525i \(-0.935735\pi\)
0.932578 + 0.360967i \(0.117553\pi\)
\(3\) −0.361922 0.313607i −0.208956 0.181061i 0.544095 0.839024i \(-0.316873\pi\)
−0.753051 + 0.657962i \(0.771419\pi\)
\(4\) 1.63546 + 1.05105i 0.817731 + 0.525524i
\(5\) 0 0
\(6\) 0.0952700 0.0612263i 0.0388938 0.0249955i
\(7\) −2.31611 + 1.05773i −0.875406 + 0.399784i −0.801863 0.597508i \(-0.796158\pi\)
−0.0735424 + 0.997292i \(0.523430\pi\)
\(8\) −0.704881 + 0.610783i −0.249213 + 0.215944i
\(9\) −0.394306 2.74246i −0.131435 0.914154i
\(10\) 0 0
\(11\) 3.23616 0.950224i 0.975740 0.286503i 0.245275 0.969453i \(-0.421122\pi\)
0.730465 + 0.682950i \(0.239303\pi\)
\(12\) −0.262294 0.893290i −0.0757176 0.257871i
\(13\) 2.99430 + 1.36745i 0.830470 + 0.379263i 0.784842 0.619696i \(-0.212744\pi\)
0.0456275 + 0.998959i \(0.485471\pi\)
\(14\) −0.0856910 0.595994i −0.0229019 0.159286i
\(15\) 0 0
\(16\) 1.52357 + 3.33616i 0.380893 + 0.834040i
\(17\) 3.39353 + 5.28043i 0.823051 + 1.28069i 0.957112 + 0.289719i \(0.0935619\pi\)
−0.134061 + 0.990973i \(0.542802\pi\)
\(18\) 0.648534 + 0.0932451i 0.152861 + 0.0219781i
\(19\) 3.55928 + 2.28741i 0.816554 + 0.524767i 0.880979 0.473155i \(-0.156885\pi\)
−0.0644252 + 0.997923i \(0.520521\pi\)
\(20\) 0 0
\(21\) 1.16996 + 0.343532i 0.255306 + 0.0749647i
\(22\) 0.797593i 0.170047i
\(23\) 0.847210 4.72041i 0.176655 0.984273i
\(24\) 0.446658 0.0911736
\(25\) 0 0
\(26\) −0.509766 + 0.588302i −0.0999734 + 0.115375i
\(27\) −1.49407 + 2.32482i −0.287534 + 0.447412i
\(28\) −4.89963 0.704460i −0.925943 0.133130i
\(29\) −5.28830 + 3.39858i −0.982012 + 0.631101i −0.930005 0.367546i \(-0.880198\pi\)
−0.0520069 + 0.998647i \(0.516562\pi\)
\(30\) 0 0
\(31\) 3.10538 + 3.58380i 0.557742 + 0.643669i 0.962669 0.270680i \(-0.0872485\pi\)
−0.404927 + 0.914349i \(0.632703\pi\)
\(32\) −2.70488 + 0.388902i −0.478159 + 0.0687489i
\(33\) −1.46924 0.670978i −0.255761 0.116802i
\(34\) −1.42422 + 0.418188i −0.244251 + 0.0717187i
\(35\) 0 0
\(36\) 2.23758 4.89963i 0.372931 0.816605i
\(37\) −0.0375858 + 0.00540403i −0.00617907 + 0.000888417i −0.145404 0.989372i \(-0.546448\pi\)
0.139225 + 0.990261i \(0.455539\pi\)
\(38\) −0.756145 + 0.655203i −0.122663 + 0.106288i
\(39\) −0.654861 1.43394i −0.104862 0.229615i
\(40\) 0 0
\(41\) −0.462048 + 3.21361i −0.0721597 + 0.501882i 0.921404 + 0.388606i \(0.127043\pi\)
−0.993564 + 0.113275i \(0.963866\pi\)
\(42\) −0.155895 + 0.242577i −0.0240550 + 0.0374304i
\(43\) −0.974066 0.844033i −0.148544 0.128714i 0.577419 0.816448i \(-0.304060\pi\)
−0.725963 + 0.687734i \(0.758605\pi\)
\(44\) 6.29135 + 1.84731i 0.948457 + 0.278492i
\(45\) 0 0
\(46\) 1.01462 + 0.506723i 0.149597 + 0.0747123i
\(47\) 3.41741i 0.498480i −0.968442 0.249240i \(-0.919819\pi\)
0.968442 0.249240i \(-0.0801809\pi\)
\(48\) 0.494829 1.68523i 0.0714224 0.243243i
\(49\) −0.338474 + 0.390620i −0.0483534 + 0.0558028i
\(50\) 0 0
\(51\) 0.427789 2.97534i 0.0599024 0.416631i
\(52\) 3.45981 + 5.38357i 0.479789 + 0.746567i
\(53\) 6.11799 2.79399i 0.840370 0.383784i 0.0517465 0.998660i \(-0.483521\pi\)
0.788624 + 0.614876i \(0.210794\pi\)
\(54\) −0.427961 0.493893i −0.0582381 0.0672104i
\(55\) 0 0
\(56\) 0.986535 2.16021i 0.131831 0.288670i
\(57\) −0.570833 1.94408i −0.0756086 0.257499i
\(58\) −0.418811 1.42634i −0.0549926 0.187288i
\(59\) 4.32805 9.47711i 0.563464 1.23381i −0.386741 0.922188i \(-0.626399\pi\)
0.950205 0.311626i \(-0.100874\pi\)
\(60\) 0 0
\(61\) −2.35737 2.72055i −0.301830 0.348331i 0.584492 0.811399i \(-0.301294\pi\)
−0.886322 + 0.463069i \(0.846748\pi\)
\(62\) −1.02006 + 0.465844i −0.129547 + 0.0591622i
\(63\) 3.81404 + 5.93476i 0.480524 + 0.747710i
\(64\) −0.951939 + 6.62088i −0.118992 + 0.827610i
\(65\) 0 0
\(66\) 0.250131 0.288666i 0.0307890 0.0355324i
\(67\) 1.92124 6.54316i 0.234717 0.799374i −0.754924 0.655812i \(-0.772326\pi\)
0.989641 0.143562i \(-0.0458556\pi\)
\(68\) 12.2027i 1.47979i
\(69\) −1.78698 + 1.44273i −0.215127 + 0.173684i
\(70\) 0 0
\(71\) −3.92408 1.15221i −0.465702 0.136742i 0.0404594 0.999181i \(-0.487118\pi\)
−0.506161 + 0.862439i \(0.668936\pi\)
\(72\) 1.95299 + 1.69227i 0.230162 + 0.199436i
\(73\) −2.35800 + 3.66912i −0.275983 + 0.429438i −0.951381 0.308015i \(-0.900335\pi\)
0.675399 + 0.737453i \(0.263972\pi\)
\(74\) 0.00127794 0.00888826i 0.000148557 0.00103324i
\(75\) 0 0
\(76\) 3.41689 + 7.48194i 0.391944 + 0.858237i
\(77\) −6.49022 + 5.62381i −0.739629 + 0.640892i
\(78\) 0.368991 0.0530529i 0.0417800 0.00600706i
\(79\) −0.997820 + 2.18492i −0.112263 + 0.245823i −0.957421 0.288694i \(-0.906779\pi\)
0.845158 + 0.534517i \(0.179506\pi\)
\(80\) 0 0
\(81\) −6.70548 + 1.96891i −0.745053 + 0.218767i
\(82\) −0.698384 0.318941i −0.0771237 0.0352212i
\(83\) 2.92705 0.420847i 0.321286 0.0461939i 0.0202149 0.999796i \(-0.493565\pi\)
0.301071 + 0.953602i \(0.402656\pi\)
\(84\) 1.55236 + 1.79152i 0.169376 + 0.195471i
\(85\) 0 0
\(86\) 0.256407 0.164783i 0.0276491 0.0177690i
\(87\) 2.97977 + 0.428426i 0.319465 + 0.0459321i
\(88\) −1.70073 + 2.64639i −0.181298 + 0.282106i
\(89\) 8.09455 9.34161i 0.858020 0.990208i −0.141979 0.989870i \(-0.545347\pi\)
1.00000 0.000338824i \(-0.000107851\pi\)
\(90\) 0 0
\(91\) −8.38151 −0.878621
\(92\) 6.34695 6.82959i 0.661716 0.712034i
\(93\) 2.27092i 0.235484i
\(94\) 0.775410 + 0.227681i 0.0799774 + 0.0234835i
\(95\) 0 0
\(96\) 1.10092 + 0.707516i 0.112362 + 0.0722106i
\(97\) −10.5084 1.51088i −1.06697 0.153407i −0.413610 0.910454i \(-0.635732\pi\)
−0.653360 + 0.757047i \(0.726641\pi\)
\(98\) −0.0660811 0.102824i −0.00667520 0.0103868i
\(99\) −3.88199 8.50038i −0.390155 0.854320i
\(100\) 0 0
\(101\) −1.30916 9.10538i −0.130266 0.906019i −0.945206 0.326474i \(-0.894139\pi\)
0.814940 0.579545i \(-0.196770\pi\)
\(102\) 0.646603 + 0.295294i 0.0640232 + 0.0292384i
\(103\) −4.16088 14.1707i −0.409984 1.39628i −0.863193 0.504873i \(-0.831539\pi\)
0.453209 0.891404i \(-0.350279\pi\)
\(104\) −2.94584 + 0.864977i −0.288863 + 0.0848180i
\(105\) 0 0
\(106\) 0.226353 + 1.57432i 0.0219853 + 0.152911i
\(107\) 12.2481 10.6131i 1.18407 1.02600i 0.185008 0.982737i \(-0.440769\pi\)
0.999064 0.0432669i \(-0.0137766\pi\)
\(108\) −4.88700 + 2.23182i −0.470252 + 0.214757i
\(109\) −12.6437 + 8.12562i −1.21105 + 0.778293i −0.980834 0.194847i \(-0.937579\pi\)
−0.230214 + 0.973140i \(0.573943\pi\)
\(110\) 0 0
\(111\) 0.0152979 + 0.00983135i 0.00145201 + 0.000933151i
\(112\) −7.05751 6.11537i −0.666872 0.577848i
\(113\) −0.325532 + 1.10866i −0.0306235 + 0.104294i −0.973387 0.229169i \(-0.926399\pi\)
0.942763 + 0.333463i \(0.108217\pi\)
\(114\) 0.479142 0.0448758
\(115\) 0 0
\(116\) −12.2209 −1.13468
\(117\) 2.56951 8.75095i 0.237551 0.809026i
\(118\) 1.86200 + 1.61343i 0.171411 + 0.148529i
\(119\) −13.4450 8.64060i −1.23250 0.792082i
\(120\) 0 0
\(121\) 0.316044 0.203109i 0.0287313 0.0184645i
\(122\) 0.774349 0.353634i 0.0701063 0.0320165i
\(123\) 1.17504 1.01818i 0.105949 0.0918058i
\(124\) 1.31199 + 9.12507i 0.117820 + 0.819455i
\(125\) 0 0
\(126\) −1.60070 + 0.470008i −0.142602 + 0.0418717i
\(127\) 2.94228 + 10.0205i 0.261085 + 0.889173i 0.980819 + 0.194923i \(0.0624456\pi\)
−0.719734 + 0.694250i \(0.755736\pi\)
\(128\) −6.41034 2.92750i −0.566599 0.258757i
\(129\) 0.0878411 + 0.610948i 0.00773398 + 0.0537910i
\(130\) 0 0
\(131\) −6.31204 13.8214i −0.551485 1.20758i −0.956085 0.293090i \(-0.905316\pi\)
0.404600 0.914494i \(-0.367411\pi\)
\(132\) −1.69765 2.64160i −0.147762 0.229921i
\(133\) −10.6631 1.53312i −0.924610 0.132939i
\(134\) 1.35664 + 0.871860i 0.117196 + 0.0753173i
\(135\) 0 0
\(136\) −5.61723 1.64937i −0.481673 0.141432i
\(137\) 1.22243i 0.104439i −0.998636 0.0522196i \(-0.983370\pi\)
0.998636 0.0522196i \(-0.0166296\pi\)
\(138\) −0.208299 0.501585i −0.0177316 0.0426977i
\(139\) −2.18447 −0.185284 −0.0926420 0.995699i \(-0.529531\pi\)
−0.0926420 + 0.995699i \(0.529531\pi\)
\(140\) 0 0
\(141\) −1.07172 + 1.23684i −0.0902555 + 0.104160i
\(142\) 0.522874 0.813607i 0.0438786 0.0682764i
\(143\) 10.9894 + 1.58004i 0.918983 + 0.132130i
\(144\) 8.54854 5.49381i 0.712378 0.457818i
\(145\) 0 0
\(146\) −0.675423 0.779480i −0.0558984 0.0645102i
\(147\) 0.245002 0.0352260i 0.0202074 0.00290539i
\(148\) −0.0671501 0.0306664i −0.00551970 0.00252076i
\(149\) −3.97217 + 1.16634i −0.325413 + 0.0955499i −0.440359 0.897822i \(-0.645149\pi\)
0.114946 + 0.993372i \(0.463331\pi\)
\(150\) 0 0
\(151\) −2.82316 + 6.18185i −0.229745 + 0.503072i −0.989035 0.147681i \(-0.952819\pi\)
0.759290 + 0.650753i \(0.225546\pi\)
\(152\) −3.90597 + 0.561594i −0.316816 + 0.0455513i
\(153\) 13.1433 11.3887i 1.06257 0.920724i
\(154\) −0.843637 1.84731i −0.0679822 0.148860i
\(155\) 0 0
\(156\) 0.436145 3.03345i 0.0349195 0.242871i
\(157\) 5.26441 8.19158i 0.420146 0.653759i −0.565077 0.825038i \(-0.691154\pi\)
0.985223 + 0.171279i \(0.0547899\pi\)
\(158\) −0.429279 0.371973i −0.0341516 0.0295926i
\(159\) −3.09045 0.907438i −0.245089 0.0719645i
\(160\) 0 0
\(161\) 3.03069 + 11.8291i 0.238852 + 0.932262i
\(162\) 1.65265i 0.129844i
\(163\) −1.69850 + 5.78457i −0.133037 + 0.453083i −0.998884 0.0472260i \(-0.984962\pi\)
0.865847 + 0.500309i \(0.166780\pi\)
\(164\) −4.13332 + 4.77011i −0.322758 + 0.372483i
\(165\) 0 0
\(166\) −0.0995214 + 0.692186i −0.00772436 + 0.0537241i
\(167\) −0.951323 1.48029i −0.0736155 0.114548i 0.802494 0.596660i \(-0.203506\pi\)
−0.876109 + 0.482112i \(0.839870\pi\)
\(168\) −1.03451 + 0.472443i −0.0798139 + 0.0364498i
\(169\) −1.41728 1.63562i −0.109021 0.125817i
\(170\) 0 0
\(171\) 4.86968 10.6631i 0.372394 0.815429i
\(172\) −0.705929 2.40417i −0.0538266 0.183317i
\(173\) 2.87696 + 9.79801i 0.218731 + 0.744929i 0.993615 + 0.112825i \(0.0359901\pi\)
−0.774884 + 0.632104i \(0.782192\pi\)
\(174\) −0.295734 + 0.647566i −0.0224195 + 0.0490919i
\(175\) 0 0
\(176\) 8.10063 + 9.34863i 0.610608 + 0.704679i
\(177\) −4.53851 + 2.07267i −0.341135 + 0.155791i
\(178\) 1.58032 + 2.45903i 0.118450 + 0.184312i
\(179\) −1.46662 + 10.2006i −0.109620 + 0.762426i 0.858658 + 0.512550i \(0.171299\pi\)
−0.968278 + 0.249876i \(0.919610\pi\)
\(180\) 0 0
\(181\) −6.08462 + 7.02203i −0.452266 + 0.521943i −0.935394 0.353607i \(-0.884955\pi\)
0.483128 + 0.875550i \(0.339501\pi\)
\(182\) 0.558408 1.90176i 0.0413920 0.140968i
\(183\) 1.72392i 0.127435i
\(184\) 2.28596 + 3.84479i 0.168523 + 0.283441i
\(185\) 0 0
\(186\) 0.515272 + 0.151298i 0.0377816 + 0.0110937i
\(187\) 15.9996 + 13.8637i 1.17001 + 1.01382i
\(188\) 3.59186 5.58904i 0.261963 0.407623i
\(189\) 1.00140 6.96486i 0.0728408 0.506619i
\(190\) 0 0
\(191\) −8.52854 18.6749i −0.617104 1.35127i −0.917607 0.397488i \(-0.869882\pi\)
0.300504 0.953781i \(-0.402845\pi\)
\(192\) 2.42088 2.09771i 0.174712 0.151389i
\(193\) −13.5967 + 1.95491i −0.978713 + 0.140718i −0.613063 0.790034i \(-0.710063\pi\)
−0.365651 + 0.930752i \(0.619154\pi\)
\(194\) 1.04293 2.28370i 0.0748781 0.163960i
\(195\) 0 0
\(196\) −0.964121 + 0.283091i −0.0688658 + 0.0202208i
\(197\) −2.09164 0.955220i −0.149023 0.0680566i 0.339507 0.940603i \(-0.389740\pi\)
−0.488531 + 0.872547i \(0.662467\pi\)
\(198\) 2.18737 0.314496i 0.155449 0.0223503i
\(199\) 1.12023 + 1.29281i 0.0794109 + 0.0916450i 0.794065 0.607833i \(-0.207961\pi\)
−0.714654 + 0.699478i \(0.753416\pi\)
\(200\) 0 0
\(201\) −2.74732 + 1.76560i −0.193781 + 0.124536i
\(202\) 2.15323 + 0.309588i 0.151501 + 0.0217825i
\(203\) 8.65347 13.4651i 0.607355 0.945062i
\(204\) 3.82685 4.41643i 0.267933 0.309212i
\(205\) 0 0
\(206\) 3.49254 0.243337
\(207\) −13.2796 0.462154i −0.922996 0.0321219i
\(208\) 12.0729i 0.837104i
\(209\) 13.6919 + 4.02032i 0.947092 + 0.278091i
\(210\) 0 0
\(211\) −6.73249 4.32671i −0.463484 0.297863i 0.287981 0.957636i \(-0.407016\pi\)
−0.751465 + 0.659773i \(0.770652\pi\)
\(212\) 12.9424 + 1.86083i 0.888885 + 0.127802i
\(213\) 1.05887 + 1.64763i 0.0725524 + 0.112894i
\(214\) 1.59209 + 3.48618i 0.108833 + 0.238310i
\(215\) 0 0
\(216\) −0.366818 2.55128i −0.0249588 0.173592i
\(217\) −10.9831 5.01580i −0.745580 0.340495i
\(218\) −1.00133 3.41021i −0.0678186 0.230969i
\(219\) 2.00407 0.588449i 0.135423 0.0397637i
\(220\) 0 0
\(221\) 2.94051 + 20.4517i 0.197800 + 1.37573i
\(222\) −0.00324994 + 0.00281608i −0.000218121 + 0.000189003i
\(223\) −25.9455 + 11.8489i −1.73744 + 0.793463i −0.745538 + 0.666463i \(0.767808\pi\)
−0.991903 + 0.127000i \(0.959465\pi\)
\(224\) 5.85342 3.76177i 0.391098 0.251344i
\(225\) 0 0
\(226\) −0.229867 0.147726i −0.0152905 0.00982661i
\(227\) −7.09127 6.14462i −0.470664 0.407833i 0.386971 0.922092i \(-0.373521\pi\)
−0.857635 + 0.514259i \(0.828067\pi\)
\(228\) 1.10974 3.77944i 0.0734945 0.250299i
\(229\) 6.65292 0.439637 0.219819 0.975541i \(-0.429453\pi\)
0.219819 + 0.975541i \(0.429453\pi\)
\(230\) 0 0
\(231\) 4.11262 0.270590
\(232\) 1.65182 5.62560i 0.108448 0.369339i
\(233\) 19.3768 + 16.7901i 1.26942 + 1.09996i 0.990189 + 0.139733i \(0.0446244\pi\)
0.279229 + 0.960224i \(0.409921\pi\)
\(234\) 1.81440 + 1.16604i 0.118611 + 0.0762266i
\(235\) 0 0
\(236\) 17.0393 10.9505i 1.10916 0.712815i
\(237\) 1.04634 0.477847i 0.0679671 0.0310395i
\(238\) 2.85631 2.47501i 0.185147 0.160431i
\(239\) −0.218040 1.51650i −0.0141038 0.0980943i 0.981554 0.191187i \(-0.0612337\pi\)
−0.995657 + 0.0930929i \(0.970325\pi\)
\(240\) 0 0
\(241\) 26.7753 7.86194i 1.72475 0.506432i 0.738864 0.673854i \(-0.235362\pi\)
0.985885 + 0.167422i \(0.0535442\pi\)
\(242\) 0.0250294 + 0.0852423i 0.00160895 + 0.00547958i
\(243\) 10.5857 + 4.83432i 0.679072 + 0.310122i
\(244\) −0.995962 6.92707i −0.0637599 0.443460i
\(245\) 0 0
\(246\) 0.152738 + 0.334450i 0.00973824 + 0.0213238i
\(247\) 7.52962 + 11.7163i 0.479098 + 0.745492i
\(248\) −4.37784 0.629439i −0.277993 0.0399694i
\(249\) −1.19135 0.765631i −0.0754985 0.0485199i
\(250\) 0 0
\(251\) 10.8108 + 3.17435i 0.682374 + 0.200363i 0.604506 0.796601i \(-0.293371\pi\)
0.0778679 + 0.996964i \(0.475189\pi\)
\(252\) 13.7148i 0.863952i
\(253\) −1.74373 16.0810i −0.109627 1.01101i
\(254\) −2.46967 −0.154961
\(255\) 0 0
\(256\) −7.66935 + 8.85090i −0.479334 + 0.553181i
\(257\) −8.88867 + 13.8310i −0.554460 + 0.862756i −0.999463 0.0327727i \(-0.989566\pi\)
0.445003 + 0.895529i \(0.353203\pi\)
\(258\) −0.144476 0.0207726i −0.00899471 0.00129324i
\(259\) 0.0813368 0.0522720i 0.00505402 0.00324802i
\(260\) 0 0
\(261\) 11.4057 + 13.1629i 0.705995 + 0.814761i
\(262\) 3.55661 0.511364i 0.219728 0.0315921i
\(263\) −21.3747 9.76148i −1.31802 0.601919i −0.372665 0.927966i \(-0.621556\pi\)
−0.945353 + 0.326048i \(0.894283\pi\)
\(264\) 1.44546 0.424425i 0.0889618 0.0261215i
\(265\) 0 0
\(266\) 1.05828 2.31732i 0.0648875 0.142084i
\(267\) −5.85919 + 0.842424i −0.358577 + 0.0515555i
\(268\) 10.0193 8.68177i 0.612026 0.530323i
\(269\) −1.84523 4.04049i −0.112506 0.246353i 0.845001 0.534765i \(-0.179600\pi\)
−0.957506 + 0.288412i \(0.906873\pi\)
\(270\) 0 0
\(271\) 2.80373 19.5004i 0.170315 1.18456i −0.707905 0.706308i \(-0.750360\pi\)
0.878220 0.478257i \(-0.158731\pi\)
\(272\) −12.4461 + 19.3665i −0.754654 + 1.17426i
\(273\) 3.03345 + 2.62850i 0.183593 + 0.159084i
\(274\) 0.277369 + 0.0814429i 0.0167565 + 0.00492015i
\(275\) 0 0
\(276\) −4.43891 + 0.481328i −0.267191 + 0.0289726i
\(277\) 18.8580i 1.13307i 0.824038 + 0.566535i \(0.191716\pi\)
−0.824038 + 0.566535i \(0.808284\pi\)
\(278\) 0.145537 0.495655i 0.00872876 0.0297274i
\(279\) 8.60396 9.92950i 0.515105 0.594463i
\(280\) 0 0
\(281\) −2.73137 + 18.9971i −0.162940 + 1.13327i 0.730114 + 0.683325i \(0.239467\pi\)
−0.893055 + 0.449948i \(0.851442\pi\)
\(282\) −0.209235 0.325577i −0.0124598 0.0193878i
\(283\) −0.991551 + 0.452826i −0.0589416 + 0.0269177i −0.444668 0.895696i \(-0.646678\pi\)
0.385726 + 0.922613i \(0.373951\pi\)
\(284\) −5.20665 6.00879i −0.308958 0.356556i
\(285\) 0 0
\(286\) −1.09067 + 2.38823i −0.0644926 + 0.141219i
\(287\) −2.32898 7.93178i −0.137475 0.468198i
\(288\) 2.13310 + 7.26467i 0.125694 + 0.428075i
\(289\) −9.30486 + 20.3748i −0.547345 + 1.19852i
\(290\) 0 0
\(291\) 3.32941 + 3.84234i 0.195173 + 0.225242i
\(292\) −7.71283 + 3.52233i −0.451359 + 0.206129i
\(293\) −7.53613 11.7264i −0.440265 0.685066i 0.548228 0.836329i \(-0.315302\pi\)
−0.988494 + 0.151262i \(0.951666\pi\)
\(294\) −0.00833021 + 0.0579379i −0.000485827 + 0.00337900i
\(295\) 0 0
\(296\) 0.0231929 0.0267660i 0.00134806 0.00155574i
\(297\) −2.62596 + 8.94321i −0.152374 + 0.518938i
\(298\) 0.978991i 0.0567114i
\(299\) 8.99173 12.9758i 0.520005 0.750410i
\(300\) 0 0
\(301\) 3.14880 + 0.924571i 0.181494 + 0.0532914i
\(302\) −1.21457 1.05243i −0.0698907 0.0605607i
\(303\) −2.38170 + 3.70600i −0.136825 + 0.212904i
\(304\) −2.20834 + 15.3593i −0.126657 + 0.880919i
\(305\) 0 0
\(306\) 1.70844 + 3.74097i 0.0976652 + 0.213857i
\(307\) 19.3701 16.7842i 1.10551 0.957928i 0.106171 0.994348i \(-0.466141\pi\)
0.999337 + 0.0364203i \(0.0115955\pi\)
\(308\) −16.5254 + 2.37599i −0.941622 + 0.135385i
\(309\) −2.93811 + 6.43356i −0.167143 + 0.365992i
\(310\) 0 0
\(311\) 3.56322 1.04626i 0.202052 0.0593277i −0.179141 0.983823i \(-0.557332\pi\)
0.381192 + 0.924496i \(0.375514\pi\)
\(312\) 1.33743 + 0.610783i 0.0757169 + 0.0345788i
\(313\) 15.5687 2.23843i 0.879992 0.126524i 0.312515 0.949913i \(-0.398829\pi\)
0.567477 + 0.823389i \(0.307919\pi\)
\(314\) 1.50793 + 1.74025i 0.0850976 + 0.0982078i
\(315\) 0 0
\(316\) −3.92835 + 2.52460i −0.220987 + 0.142020i
\(317\) −3.27128 0.470339i −0.183733 0.0264169i 0.0498339 0.998758i \(-0.484131\pi\)
−0.233567 + 0.972341i \(0.575040\pi\)
\(318\) 0.411795 0.640766i 0.0230923 0.0359324i
\(319\) −13.8844 + 16.0234i −0.777376 + 0.897140i
\(320\) 0 0
\(321\) −7.76120 −0.433188
\(322\) −2.88593 0.100436i −0.160827 0.00559706i
\(323\) 26.5569i 1.47766i
\(324\) −13.0360 3.82771i −0.724220 0.212650i
\(325\) 0 0
\(326\) −1.19936 0.770780i −0.0664263 0.0426896i
\(327\) 7.12429 + 1.02432i 0.393974 + 0.0566449i
\(328\) −1.63713 2.54742i −0.0903954 0.140658i
\(329\) 3.61470 + 7.91508i 0.199285 + 0.436373i
\(330\) 0 0
\(331\) −1.13861 7.91923i −0.0625838 0.435280i −0.996890 0.0788080i \(-0.974889\pi\)
0.934306 0.356472i \(-0.116021\pi\)
\(332\) 5.22942 + 2.38819i 0.287001 + 0.131069i
\(333\) 0.0296407 + 0.100947i 0.00162430 + 0.00553185i
\(334\) 0.399258 0.117233i 0.0218464 0.00641468i
\(335\) 0 0
\(336\) 0.636445 + 4.42657i 0.0347209 + 0.241489i
\(337\) −1.05220 + 0.911733i −0.0573168 + 0.0496653i −0.683048 0.730373i \(-0.739346\pi\)
0.625731 + 0.780039i \(0.284801\pi\)
\(338\) 0.465547 0.212608i 0.0253224 0.0115644i
\(339\) 0.465501 0.299159i 0.0252825 0.0162481i
\(340\) 0 0
\(341\) 13.4549 + 8.64695i 0.728625 + 0.468259i
\(342\) 2.09502 + 1.81535i 0.113286 + 0.0981627i
\(343\) 5.39220 18.3642i 0.291152 0.991571i
\(344\) 1.20212 0.0648141
\(345\) 0 0
\(346\) −2.41484 −0.129823
\(347\) −4.74116 + 16.1469i −0.254519 + 0.866811i 0.728770 + 0.684758i \(0.240092\pi\)
−0.983289 + 0.182052i \(0.941726\pi\)
\(348\) 4.42301 + 3.83256i 0.237098 + 0.205447i
\(349\) 16.0913 + 10.3412i 0.861347 + 0.553554i 0.895095 0.445876i \(-0.147108\pi\)
−0.0337478 + 0.999430i \(0.510744\pi\)
\(350\) 0 0
\(351\) −7.65278 + 4.91814i −0.408475 + 0.262511i
\(352\) −8.38388 + 3.82879i −0.446862 + 0.204075i
\(353\) 25.4309 22.0360i 1.35355 1.17286i 0.385324 0.922781i \(-0.374090\pi\)
0.968226 0.250076i \(-0.0804557\pi\)
\(354\) −0.167915 1.16788i −0.00892459 0.0620719i
\(355\) 0 0
\(356\) 23.0568 6.77009i 1.22201 0.358814i
\(357\) 2.15630 + 7.34368i 0.114123 + 0.388669i
\(358\) −2.21679 1.01238i −0.117161 0.0535057i
\(359\) −2.79386 19.4317i −0.147454 1.02557i −0.920368 0.391054i \(-0.872110\pi\)
0.772914 0.634511i \(-0.218799\pi\)
\(360\) 0 0
\(361\) −0.456674 0.999978i −0.0240355 0.0526304i
\(362\) −1.18792 1.84843i −0.0624355 0.0971515i
\(363\) −0.178080 0.0256040i −0.00934678 0.00134386i
\(364\) −13.7076 8.80937i −0.718476 0.461736i
\(365\) 0 0
\(366\) −0.391156 0.114854i −0.0204461 0.00600350i
\(367\) 6.73062i 0.351336i −0.984449 0.175668i \(-0.943792\pi\)
0.984449 0.175668i \(-0.0562085\pi\)
\(368\) 17.0388 4.36546i 0.888210 0.227565i
\(369\) 8.99539 0.468281
\(370\) 0 0
\(371\) −11.2146 + 12.9424i −0.582234 + 0.671934i
\(372\) 2.38685 3.71401i 0.123752 0.192563i
\(373\) −25.0702 3.60455i −1.29809 0.186637i −0.541595 0.840640i \(-0.682179\pi\)
−0.756492 + 0.654003i \(0.773088\pi\)
\(374\) −4.21163 + 2.70665i −0.217778 + 0.139958i
\(375\) 0 0
\(376\) 2.08729 + 2.40887i 0.107644 + 0.124228i
\(377\) −20.4822 + 2.94489i −1.05488 + 0.151669i
\(378\) 1.51361 + 0.691242i 0.0778516 + 0.0355536i
\(379\) 27.6884 8.13003i 1.42226 0.417612i 0.521989 0.852952i \(-0.325190\pi\)
0.900266 + 0.435340i \(0.143372\pi\)
\(380\) 0 0
\(381\) 2.07762 4.54935i 0.106440 0.233070i
\(382\) 4.80554 0.690932i 0.245873 0.0353512i
\(383\) −9.74573 + 8.44472i −0.497983 + 0.431505i −0.867290 0.497802i \(-0.834140\pi\)
0.369307 + 0.929307i \(0.379595\pi\)
\(384\) 1.40196 + 3.06986i 0.0715433 + 0.156658i
\(385\) 0 0
\(386\) 0.462296 3.21534i 0.0235302 0.163656i
\(387\) −1.93065 + 3.00415i −0.0981404 + 0.152709i
\(388\) −15.5981 13.5159i −0.791875 0.686164i
\(389\) 2.01154 + 0.590642i 0.101989 + 0.0299467i 0.332329 0.943164i \(-0.392166\pi\)
−0.230340 + 0.973110i \(0.573984\pi\)
\(390\) 0 0
\(391\) 27.8008 11.5452i 1.40595 0.583865i
\(392\) 0.482074i 0.0243484i
\(393\) −2.05004 + 6.98178i −0.103411 + 0.352184i
\(394\) 0.356092 0.410953i 0.0179397 0.0207035i
\(395\) 0 0
\(396\) 2.58545 17.9822i 0.129924 0.903640i
\(397\) −1.01587 1.58072i −0.0509849 0.0793341i 0.814825 0.579707i \(-0.196833\pi\)
−0.865810 + 0.500372i \(0.833196\pi\)
\(398\) −0.367973 + 0.168047i −0.0184448 + 0.00842346i
\(399\) 3.37842 + 3.89890i 0.169132 + 0.195189i
\(400\) 0 0
\(401\) 7.00168 15.3315i 0.349647 0.765620i −0.650335 0.759647i \(-0.725372\pi\)
0.999982 0.00597275i \(-0.00190120\pi\)
\(402\) −0.217577 0.740998i −0.0108517 0.0369576i
\(403\) 4.39777 + 14.9774i 0.219068 + 0.746079i
\(404\) 7.42911 16.2675i 0.369612 0.809338i
\(405\) 0 0
\(406\) 2.47869 + 2.86057i 0.123016 + 0.141967i
\(407\) −0.116499 + 0.0532033i −0.00577464 + 0.00263719i
\(408\) 1.51574 + 2.35854i 0.0750405 + 0.116765i
\(409\) 1.85146 12.8772i 0.0915489 0.636736i −0.891449 0.453121i \(-0.850311\pi\)
0.982998 0.183616i \(-0.0587802\pi\)
\(410\) 0 0
\(411\) −0.383363 + 0.442424i −0.0189099 + 0.0218232i
\(412\) 8.08908 27.5489i 0.398520 1.35724i
\(413\) 26.5279i 1.30535i
\(414\) 0.989600 2.98235i 0.0486362 0.146574i
\(415\) 0 0
\(416\) −8.63102 2.53430i −0.423170 0.124254i
\(417\) 0.790607 + 0.685065i 0.0387162 + 0.0335478i
\(418\) −1.82442 + 2.83885i −0.0892353 + 0.138853i
\(419\) −4.18557 + 29.1113i −0.204479 + 1.42218i 0.586308 + 0.810088i \(0.300581\pi\)
−0.790787 + 0.612092i \(0.790328\pi\)
\(420\) 0 0
\(421\) 9.26262 + 20.2823i 0.451432 + 0.988499i 0.989357 + 0.145506i \(0.0464811\pi\)
−0.537925 + 0.842993i \(0.680792\pi\)
\(422\) 1.43027 1.23934i 0.0696247 0.0603301i
\(423\) −9.37211 + 1.34751i −0.455688 + 0.0655180i
\(424\) −2.60593 + 5.70619i −0.126555 + 0.277117i
\(425\) 0 0
\(426\) −0.444393 + 0.130485i −0.0215309 + 0.00632204i
\(427\) 8.33753 + 3.80762i 0.403481 + 0.184264i
\(428\) 31.1862 4.48390i 1.50744 0.216737i
\(429\) −3.48181 4.01822i −0.168103 0.194001i
\(430\) 0 0
\(431\) −1.48190 + 0.952360i −0.0713807 + 0.0458736i −0.575844 0.817559i \(-0.695327\pi\)
0.504464 + 0.863433i \(0.331690\pi\)
\(432\) −10.0323 1.44243i −0.482680 0.0693989i
\(433\) −7.46017 + 11.6083i −0.358513 + 0.557857i −0.972923 0.231130i \(-0.925758\pi\)
0.614410 + 0.788987i \(0.289394\pi\)
\(434\) 1.86982 2.15789i 0.0897542 0.103582i
\(435\) 0 0
\(436\) −29.2187 −1.39932
\(437\) 13.8129 14.8633i 0.660763 0.711009i
\(438\) 0.493928i 0.0236008i
\(439\) 6.89730 + 2.02523i 0.329190 + 0.0966590i 0.442151 0.896940i \(-0.354215\pi\)
−0.112961 + 0.993599i \(0.536034\pi\)
\(440\) 0 0
\(441\) 1.20472 + 0.774228i 0.0573677 + 0.0368680i
\(442\) −4.83639 0.695368i −0.230044 0.0330753i
\(443\) −12.6464 19.6782i −0.600849 0.934939i −0.999838 0.0179838i \(-0.994275\pi\)
0.398989 0.916956i \(-0.369361\pi\)
\(444\) 0.0146859 + 0.0321576i 0.000696961 + 0.00152613i
\(445\) 0 0
\(446\) −0.959929 6.67646i −0.0454540 0.316139i
\(447\) 1.80339 + 0.823580i 0.0852973 + 0.0389540i
\(448\) −4.79831 16.3415i −0.226699 0.772066i
\(449\) 6.47903 1.90241i 0.305764 0.0897804i −0.125251 0.992125i \(-0.539974\pi\)
0.431015 + 0.902345i \(0.358155\pi\)
\(450\) 0 0
\(451\) 1.55839 + 10.8388i 0.0733816 + 0.510380i
\(452\) −1.69765 + 1.47102i −0.0798508 + 0.0691911i
\(453\) 2.96043 1.35199i 0.139093 0.0635218i
\(454\) 1.86666 1.19963i 0.0876067 0.0563014i
\(455\) 0 0
\(456\) 1.58978 + 1.02169i 0.0744482 + 0.0478449i
\(457\) 5.46019 + 4.73128i 0.255417 + 0.221320i 0.773152 0.634221i \(-0.218679\pi\)
−0.517735 + 0.855541i \(0.673225\pi\)
\(458\) −0.443242 + 1.50955i −0.0207114 + 0.0705364i
\(459\) −17.3462 −0.809653
\(460\) 0 0
\(461\) −32.1800 −1.49877 −0.749385 0.662134i \(-0.769651\pi\)
−0.749385 + 0.662134i \(0.769651\pi\)
\(462\) −0.273998 + 0.933152i −0.0127476 + 0.0434142i
\(463\) 14.1886 + 12.2945i 0.659399 + 0.571373i 0.918958 0.394355i \(-0.129032\pi\)
−0.259559 + 0.965727i \(0.583577\pi\)
\(464\) −19.3953 12.4646i −0.900406 0.578656i
\(465\) 0 0
\(466\) −5.10063 + 3.27798i −0.236282 + 0.151849i
\(467\) 25.9018 11.8290i 1.19859 0.547379i 0.286784 0.957995i \(-0.407414\pi\)
0.911808 + 0.410617i \(0.134687\pi\)
\(468\) 13.4000 11.6112i 0.619415 0.536727i
\(469\) 2.47109 + 17.1868i 0.114104 + 0.793613i
\(470\) 0 0
\(471\) −4.47424 + 1.31376i −0.206162 + 0.0605347i
\(472\) 2.73769 + 9.32373i 0.126013 + 0.429160i
\(473\) −3.95426 1.80585i −0.181817 0.0830330i
\(474\) 0.0387123 + 0.269250i 0.00177812 + 0.0123671i
\(475\) 0 0
\(476\) −12.9072 28.2627i −0.591599 1.29542i
\(477\) −10.0748 15.6767i −0.461292 0.717785i
\(478\) 0.358621 + 0.0515618i 0.0164029 + 0.00235838i
\(479\) −3.97699 2.55585i −0.181713 0.116780i 0.446622 0.894723i \(-0.352627\pi\)
−0.628335 + 0.777943i \(0.716263\pi\)
\(480\) 0 0
\(481\) −0.119933 0.0352155i −0.00546848 0.00160569i
\(482\) 6.59911i 0.300581i
\(483\) 2.61281 5.23165i 0.118887 0.238048i
\(484\) 0.730356 0.0331980
\(485\) 0 0
\(486\) −1.80216 + 2.07981i −0.0817479 + 0.0943421i
\(487\) 17.1256 26.6479i 0.776034 1.20753i −0.197794 0.980244i \(-0.563378\pi\)
0.973827 0.227288i \(-0.0729860\pi\)
\(488\) 3.32333 + 0.477823i 0.150440 + 0.0216300i
\(489\) 2.42881 1.56090i 0.109835 0.0705864i
\(490\) 0 0
\(491\) 4.71421 + 5.44049i 0.212749 + 0.245526i 0.852087 0.523400i \(-0.175337\pi\)
−0.639338 + 0.768926i \(0.720791\pi\)
\(492\) 2.99188 0.430167i 0.134884 0.0193934i
\(493\) −35.8920 16.3913i −1.61649 0.738227i
\(494\) −3.16008 + 0.927884i −0.142179 + 0.0417475i
\(495\) 0 0
\(496\) −7.22485 + 15.8202i −0.324405 + 0.710349i
\(497\) 10.3073 1.48197i 0.462346 0.0664753i
\(498\) 0.253094 0.219307i 0.0113414 0.00982738i
\(499\) 9.46867 + 20.7335i 0.423876 + 0.928159i 0.994281 + 0.106795i \(0.0340590\pi\)
−0.570405 + 0.821364i \(0.693214\pi\)
\(500\) 0 0
\(501\) −0.119924 + 0.834090i −0.00535781 + 0.0372644i
\(502\) −1.44052 + 2.24149i −0.0642935 + 0.100043i
\(503\) 18.4625 + 15.9978i 0.823201 + 0.713308i 0.960819 0.277177i \(-0.0893990\pi\)
−0.137617 + 0.990485i \(0.543944\pi\)
\(504\) −6.31329 1.85375i −0.281216 0.0825726i
\(505\) 0 0
\(506\) 3.76496 + 0.675728i 0.167373 + 0.0300398i
\(507\) 1.03644i 0.0460297i
\(508\) −5.72001 + 19.4806i −0.253785 + 0.864311i
\(509\) −5.12772 + 5.91771i −0.227282 + 0.262298i −0.857924 0.513776i \(-0.828246\pi\)
0.630642 + 0.776074i \(0.282792\pi\)
\(510\) 0 0
\(511\) 1.58044 10.9922i 0.0699144 0.486266i
\(512\) −9.11729 14.1868i −0.402931 0.626973i
\(513\) −10.6356 + 4.85713i −0.469575 + 0.214448i
\(514\) −2.54606 2.93831i −0.112302 0.129603i
\(515\) 0 0
\(516\) −0.498475 + 1.09151i −0.0219441 + 0.0480510i
\(517\) −3.24730 11.0593i −0.142816 0.486387i
\(518\) 0.00644153 + 0.0219379i 0.000283025 + 0.000963894i
\(519\) 2.03149 4.44835i 0.0891727 0.195261i
\(520\) 0 0
\(521\) −1.98664 2.29270i −0.0870361 0.100445i 0.710561 0.703636i \(-0.248441\pi\)
−0.797597 + 0.603191i \(0.793896\pi\)
\(522\) −3.74654 + 1.71099i −0.163982 + 0.0748880i
\(523\) 16.0293 + 24.9421i 0.700913 + 1.09064i 0.991029 + 0.133650i \(0.0426699\pi\)
−0.290115 + 0.956992i \(0.593694\pi\)
\(524\) 4.20389 29.2387i 0.183648 1.27730i
\(525\) 0 0
\(526\) 3.63894 4.19956i 0.158665 0.183109i
\(527\) −8.38581 + 28.5594i −0.365292 + 1.24407i
\(528\) 5.92389i 0.257804i
\(529\) −21.5645 7.99835i −0.937586 0.347754i
\(530\) 0 0
\(531\) −27.6972 8.13263i −1.20196 0.352926i
\(532\) −15.8277 13.7148i −0.686219 0.594613i
\(533\) −5.77797 + 8.99069i −0.250271 + 0.389430i
\(534\) 0.199216 1.38557i 0.00862090 0.0599597i
\(535\) 0 0
\(536\) 2.64220 + 5.78561i 0.114126 + 0.249900i
\(537\) 3.72977 3.23187i 0.160952 0.139465i
\(538\) 1.03972 0.149489i 0.0448256 0.00644494i
\(539\) −0.724181 + 1.58573i −0.0311927 + 0.0683024i
\(540\) 0 0
\(541\) −22.8021 + 6.69531i −0.980341 + 0.287854i −0.732365 0.680912i \(-0.761584\pi\)
−0.247976 + 0.968766i \(0.579765\pi\)
\(542\) 4.23784 + 1.93536i 0.182031 + 0.0831307i
\(543\) 4.40432 0.633245i 0.189007 0.0271752i
\(544\) −11.2326 12.9632i −0.481595 0.555791i
\(545\) 0 0
\(546\) −0.798507 + 0.513169i −0.0341729 + 0.0219616i
\(547\) −18.9185 2.72007i −0.808896 0.116302i −0.274556 0.961571i \(-0.588531\pi\)
−0.534340 + 0.845269i \(0.679440\pi\)
\(548\) 1.28483 1.99924i 0.0548853 0.0854032i
\(549\) −6.53148 + 7.53773i −0.278757 + 0.321702i
\(550\) 0 0
\(551\) −26.5965 −1.13305
\(552\) 0.378413 2.10841i 0.0161063 0.0897397i
\(553\) 6.11593i 0.260076i
\(554\) −4.27888 1.25639i −0.181792 0.0533790i
\(555\) 0 0
\(556\) −3.57261 2.29598i −0.151513 0.0973712i
\(557\) −19.4260 2.79304i −0.823106 0.118345i −0.282123 0.959378i \(-0.591039\pi\)
−0.540983 + 0.841033i \(0.681948\pi\)
\(558\) 1.67977 + 2.61378i 0.0711104 + 0.110650i
\(559\) −1.76247 3.85928i −0.0745447 0.163230i
\(560\) 0 0
\(561\) −1.44284 10.0352i −0.0609168 0.423685i
\(562\) −4.12847 1.88541i −0.174149 0.0795312i
\(563\) −12.5877 42.8697i −0.530507 1.80674i −0.588592 0.808430i \(-0.700318\pi\)
0.0580848 0.998312i \(-0.481501\pi\)
\(564\) −3.05274 + 0.896365i −0.128543 + 0.0377438i
\(565\) 0 0
\(566\) −0.0366853 0.255152i −0.00154200 0.0107248i
\(567\) 13.4480 11.6528i 0.564764 0.489371i
\(568\) 3.46976 1.58458i 0.145588 0.0664877i
\(569\) −3.48719 + 2.24108i −0.146191 + 0.0939510i −0.611691 0.791096i \(-0.709511\pi\)
0.465501 + 0.885047i \(0.345874\pi\)
\(570\) 0 0
\(571\) −11.2629 7.23824i −0.471339 0.302911i 0.283324 0.959024i \(-0.408563\pi\)
−0.754662 + 0.656113i \(0.772199\pi\)
\(572\) 16.3121 + 14.1345i 0.682043 + 0.590994i
\(573\) −2.76992 + 9.43347i −0.115715 + 0.394089i
\(574\) 1.95489 0.0815954
\(575\) 0 0
\(576\) 18.5329 0.772203
\(577\) −6.60044 + 22.4790i −0.274780 + 0.935814i 0.700279 + 0.713869i \(0.253059\pi\)
−0.975059 + 0.221945i \(0.928759\pi\)
\(578\) −4.00311 3.46872i −0.166508 0.144280i
\(579\) 5.53403 + 3.55650i 0.229986 + 0.147803i
\(580\) 0 0
\(581\) −6.33422 + 4.07076i −0.262788 + 0.168883i
\(582\) −1.09364 + 0.499451i −0.0453330 + 0.0207029i
\(583\) 17.1439 14.8553i 0.710028 0.615242i
\(584\) −0.578925 4.02651i −0.0239561 0.166618i
\(585\) 0 0
\(586\) 3.16281 0.928686i 0.130655 0.0383637i
\(587\) −11.2879 38.4429i −0.465899 1.58671i −0.772594 0.634900i \(-0.781041\pi\)
0.306695 0.951808i \(-0.400777\pi\)
\(588\) 0.437716 + 0.199898i 0.0180511 + 0.00824366i
\(589\) 2.85529 + 19.8590i 0.117650 + 0.818276i
\(590\) 0 0
\(591\) 0.457447 + 1.00167i 0.0188169 + 0.0412032i
\(592\) −0.0752935 0.117159i −0.00309454 0.00481520i
\(593\) −5.78174 0.831288i −0.237427 0.0341369i 0.0225738 0.999745i \(-0.492814\pi\)
−0.260001 + 0.965608i \(0.583723\pi\)
\(594\) −1.85426 1.19166i −0.0760812 0.0488944i
\(595\) 0 0
\(596\) −7.72221 2.26745i −0.316314 0.0928782i
\(597\) 0.819209i 0.0335280i
\(598\) 2.34514 + 2.90472i 0.0959000 + 0.118783i
\(599\) 5.01179 0.204776 0.102388 0.994745i \(-0.467352\pi\)
0.102388 + 0.994745i \(0.467352\pi\)
\(600\) 0 0
\(601\) −8.34466 + 9.63025i −0.340386 + 0.392826i −0.899973 0.435945i \(-0.856414\pi\)
0.559587 + 0.828771i \(0.310960\pi\)
\(602\) −0.419570 + 0.652864i −0.0171004 + 0.0266087i
\(603\) −18.7019 2.68893i −0.761601 0.109502i
\(604\) −11.1146 + 7.14291i −0.452246 + 0.290641i
\(605\) 0 0
\(606\) −0.682212 0.787315i −0.0277130 0.0319825i
\(607\) 0.611774 0.0879598i 0.0248311 0.00357018i −0.129888 0.991529i \(-0.541462\pi\)
0.154719 + 0.987958i \(0.450553\pi\)
\(608\) −10.5170 4.80294i −0.426520 0.194785i
\(609\) −7.35462 + 2.15951i −0.298024 + 0.0875079i
\(610\) 0 0
\(611\) 4.67314 10.2328i 0.189055 0.413973i
\(612\) 33.4654 4.81160i 1.35276 0.194498i
\(613\) 24.0381 20.8291i 0.970890 0.841281i −0.0164557 0.999865i \(-0.505238\pi\)
0.987346 + 0.158584i \(0.0506928\pi\)
\(614\) 2.51784 + 5.51329i 0.101612 + 0.222498i
\(615\) 0 0
\(616\) 1.13991 7.92823i 0.0459282 0.319437i
\(617\) 21.6123 33.6295i 0.870080 1.35387i −0.0644251 0.997923i \(-0.520521\pi\)
0.934505 0.355949i \(-0.115842\pi\)
\(618\) −1.26403 1.09528i −0.0508466 0.0440588i
\(619\) −33.7104 9.89827i −1.35494 0.397845i −0.477961 0.878381i \(-0.658624\pi\)
−0.876975 + 0.480536i \(0.840442\pi\)
\(620\) 0 0
\(621\) 9.70831 + 9.02224i 0.389581 + 0.362050i
\(622\) 0.878199i 0.0352126i
\(623\) −8.86693 + 30.1980i −0.355246 + 1.20986i
\(624\) 3.78614 4.36944i 0.151567 0.174918i
\(625\) 0 0
\(626\) −0.529342 + 3.68166i −0.0211568 + 0.147149i
\(627\) −3.69462 5.74894i −0.147549 0.229590i
\(628\) 17.2195 7.86387i 0.687132 0.313803i
\(629\) −0.156084 0.180131i −0.00622348 0.00718228i
\(630\) 0 0
\(631\) 19.6170 42.9552i 0.780941 1.71002i 0.0800078 0.996794i \(-0.474505\pi\)
0.700933 0.713227i \(-0.252767\pi\)
\(632\) −0.631168 2.14956i −0.0251065 0.0855049i
\(633\) 1.07975 + 3.67729i 0.0429162 + 0.146159i
\(634\) 0.324665 0.710917i 0.0128941 0.0282341i
\(635\) 0 0
\(636\) −4.10055 4.73229i −0.162598 0.187648i
\(637\) −1.54765 + 0.706786i −0.0613200 + 0.0280039i
\(638\) −2.71068 4.21791i −0.107317 0.166989i
\(639\) −1.61261 + 11.2160i −0.0637939 + 0.443696i
\(640\) 0 0
\(641\) −4.52524 + 5.22241i −0.178736 + 0.206273i −0.838047 0.545598i \(-0.816303\pi\)
0.659311 + 0.751870i \(0.270848\pi\)
\(642\) 0.517081 1.76102i 0.0204076 0.0695017i
\(643\) 38.9219i 1.53493i 0.641091 + 0.767465i \(0.278482\pi\)
−0.641091 + 0.767465i \(0.721518\pi\)
\(644\) −7.47635 + 22.5314i −0.294609 + 0.887862i
\(645\) 0 0
\(646\) −6.02575 1.76932i −0.237080 0.0696130i
\(647\) 8.80704 + 7.63135i 0.346241 + 0.300019i 0.810568 0.585644i \(-0.199158\pi\)
−0.464328 + 0.885664i \(0.653704\pi\)
\(648\) 3.52399 5.48343i 0.138435 0.215410i
\(649\) 5.00091 34.7821i 0.196303 1.36532i
\(650\) 0 0
\(651\) 2.40202 + 5.25970i 0.0941428 + 0.206144i
\(652\) −8.85770 + 7.67524i −0.346894 + 0.300586i
\(653\) −39.0509 + 5.61467i −1.52818 + 0.219719i −0.854557 0.519357i \(-0.826171\pi\)
−0.673622 + 0.739076i \(0.735262\pi\)
\(654\) −0.707065 + 1.54826i −0.0276484 + 0.0605416i
\(655\) 0 0
\(656\) −11.4251 + 3.35471i −0.446075 + 0.130979i
\(657\) 10.9922 + 5.01996i 0.428846 + 0.195847i
\(658\) −2.03676 + 0.292841i −0.0794010 + 0.0114161i
\(659\) −0.488601 0.563876i −0.0190332 0.0219655i 0.746153 0.665774i \(-0.231899\pi\)
−0.765186 + 0.643809i \(0.777353\pi\)
\(660\) 0 0
\(661\) −24.5667 + 15.7881i −0.955534 + 0.614085i −0.922759 0.385378i \(-0.874071\pi\)
−0.0327757 + 0.999463i \(0.510435\pi\)
\(662\) 1.87273 + 0.269258i 0.0727857 + 0.0104650i
\(663\) 5.34956 8.32407i 0.207760 0.323280i
\(664\) −1.80618 + 2.08444i −0.0700933 + 0.0808920i
\(665\) 0 0
\(666\) −0.0248796 −0.000964065
\(667\) 11.5624 + 27.8422i 0.447698 + 1.07806i
\(668\) 3.42084i 0.132356i
\(669\) 13.1062 + 3.84832i 0.506714 + 0.148785i
\(670\) 0 0
\(671\) −10.2140 6.56412i −0.394306 0.253405i
\(672\) −3.29820 0.474210i −0.127231 0.0182930i
\(673\) 9.04766 + 14.0784i 0.348762 + 0.542683i 0.970673 0.240404i \(-0.0772800\pi\)
−0.621911 + 0.783088i \(0.713644\pi\)
\(674\) −0.136771 0.299486i −0.00526821 0.0115358i
\(675\) 0 0
\(676\) −0.598783 4.16463i −0.0230301 0.160178i
\(677\) −41.1418 18.7888i −1.58121 0.722113i −0.585159 0.810919i \(-0.698968\pi\)
−0.996049 + 0.0888053i \(0.971695\pi\)
\(678\) 0.0368658 + 0.125553i 0.00141582 + 0.00482184i
\(679\) 25.9367 7.61572i 0.995361 0.292264i
\(680\) 0 0
\(681\) 0.639489 + 4.44775i 0.0245053 + 0.170438i
\(682\) −2.85841 + 2.47683i −0.109454 + 0.0948426i
\(683\) −31.6589 + 14.4581i −1.21139 + 0.553225i −0.915625 0.402034i \(-0.868303\pi\)
−0.295769 + 0.955259i \(0.595576\pi\)
\(684\) 19.1716 12.3209i 0.733046 0.471100i
\(685\) 0 0
\(686\) 3.80758 + 2.44698i 0.145374 + 0.0934261i
\(687\) −2.40784 2.08640i −0.0918647 0.0796012i
\(688\) 1.33177 4.53559i 0.0507732 0.172918i
\(689\) 22.1397 0.843457
\(690\) 0 0
\(691\) 10.7550 0.409140 0.204570 0.978852i \(-0.434420\pi\)
0.204570 + 0.978852i \(0.434420\pi\)
\(692\) −5.59303 + 19.0481i −0.212615 + 0.724100i
\(693\) 17.9822 + 15.5817i 0.683087 + 0.591899i
\(694\) −3.34785 2.15153i −0.127083 0.0816711i
\(695\) 0 0
\(696\) −2.36206 + 1.51800i −0.0895336 + 0.0575398i
\(697\) −18.5372 + 8.46566i −0.702147 + 0.320660i
\(698\) −3.41849 + 2.96214i −0.129392 + 0.112119i
\(699\) −1.74740 12.1534i −0.0660927 0.459685i
\(700\) 0 0
\(701\) 19.4393 5.70790i 0.734214 0.215585i 0.106811 0.994279i \(-0.465936\pi\)
0.627403 + 0.778695i \(0.284118\pi\)
\(702\) −0.606069 2.06408i −0.0228746 0.0779037i
\(703\) −0.146140 0.0667397i −0.00551176 0.00251714i
\(704\) 3.21069 + 22.3308i 0.121007 + 0.841624i
\(705\) 0 0
\(706\) 3.30566 + 7.23839i 0.124410 + 0.272420i
\(707\) 12.6632 + 19.7043i 0.476248 + 0.741056i
\(708\) −9.60103 1.38042i −0.360829 0.0518793i
\(709\) 11.0641 + 7.11045i 0.415520 + 0.267038i 0.731654 0.681676i \(-0.238749\pi\)
−0.316134 + 0.948714i \(0.602385\pi\)
\(710\) 0 0
\(711\) 6.38551 + 1.87495i 0.239475 + 0.0703163i
\(712\) 11.5287i 0.432057i
\(713\) 19.5479 11.6224i 0.732074 0.435263i
\(714\) −1.80994 −0.0677353
\(715\) 0 0
\(716\) −13.1199 + 15.1412i −0.490313 + 0.565851i
\(717\) −0.396672 + 0.617234i −0.0148140 + 0.0230510i
\(718\) 4.59519 + 0.660688i 0.171491 + 0.0246567i
\(719\) 24.1781 15.5383i 0.901692 0.579482i −0.00559955 0.999984i \(-0.501782\pi\)
0.907292 + 0.420502i \(0.138146\pi\)
\(720\) 0 0
\(721\) 24.6258 + 28.4197i 0.917112 + 1.05840i
\(722\) 0.257320 0.0369970i 0.00957646 0.00137689i
\(723\) −12.1561 5.55152i −0.452092 0.206463i
\(724\) −17.3317 + 5.08903i −0.644126 + 0.189132i
\(725\) 0 0
\(726\) 0.0176739 0.0387005i 0.000655941 0.00143631i
\(727\) 27.5653 3.96330i 1.02234 0.146991i 0.389302 0.921110i \(-0.372716\pi\)
0.633039 + 0.774120i \(0.281807\pi\)
\(728\) 5.90797 5.11928i 0.218964 0.189733i
\(729\) 6.39435 + 14.0017i 0.236828 + 0.518580i
\(730\) 0 0
\(731\) 1.15134 8.00774i 0.0425838 0.296177i
\(732\) −1.81192 + 2.81940i −0.0669704 + 0.104208i
\(733\) 18.9049 + 16.3812i 0.698267 + 0.605052i 0.929927 0.367745i \(-0.119870\pi\)
−0.231660 + 0.972797i \(0.574416\pi\)
\(734\) 1.52718 + 0.448420i 0.0563691 + 0.0165515i
\(735\) 0 0
\(736\) −0.455820 + 13.0976i −0.0168017 + 0.482784i
\(737\) 23.0003i 0.847229i
\(738\) −0.599307 + 2.04105i −0.0220608 + 0.0751322i
\(739\) 4.18350 4.82801i 0.153892 0.177601i −0.673568 0.739125i \(-0.735239\pi\)
0.827461 + 0.561524i \(0.189785\pi\)
\(740\) 0 0
\(741\) 0.949187 6.60174i 0.0348692 0.242521i
\(742\) −2.18946 3.40686i −0.0803775 0.125070i
\(743\) 26.3062 12.0136i 0.965081 0.440738i 0.130394 0.991462i \(-0.458376\pi\)
0.834687 + 0.550725i \(0.185649\pi\)
\(744\) 1.38704 + 1.60073i 0.0508514 + 0.0586857i
\(745\) 0 0
\(746\) 2.48815 5.44828i 0.0910975 0.199476i
\(747\) −2.30831 7.86139i −0.0844567 0.287633i
\(748\) 11.5953 + 39.4899i 0.423966 + 1.44390i
\(749\) −17.1422 + 37.5362i −0.626363 + 1.37154i
\(750\) 0 0
\(751\) 32.9193 + 37.9909i 1.20124 + 1.38631i 0.901778 + 0.432200i \(0.142263\pi\)
0.299465 + 0.954107i \(0.403192\pi\)
\(752\) 11.4010 5.20667i 0.415753 0.189868i
\(753\) −2.91718 4.53922i −0.106308 0.165418i
\(754\) 0.696404 4.84360i 0.0253615 0.176393i
\(755\) 0 0
\(756\) 8.95814 10.3382i 0.325804 0.375998i
\(757\) −9.90983 + 33.7498i −0.360179 + 1.22666i 0.557782 + 0.829987i \(0.311652\pi\)
−0.917961 + 0.396670i \(0.870166\pi\)
\(758\) 6.82414i 0.247864i
\(759\) −4.41204 + 6.36693i −0.160147 + 0.231105i
\(760\) 0 0
\(761\) 33.8907 + 9.95120i 1.22854 + 0.360731i 0.830697 0.556725i \(-0.187942\pi\)
0.397839 + 0.917455i \(0.369760\pi\)
\(762\) 0.893827 + 0.774506i 0.0323799 + 0.0280574i
\(763\) 20.6895 32.1934i 0.749008 1.16548i
\(764\) 5.68011 39.5060i 0.205499 1.42928i
\(765\) 0 0
\(766\) −1.26681 2.77392i −0.0457716 0.100226i
\(767\) 25.9190 22.4589i 0.935880 0.810944i
\(768\) 5.55141 0.798172i 0.200319 0.0288016i
\(769\) 20.4810 44.8471i 0.738563 1.61723i −0.0473404 0.998879i \(-0.515075\pi\)
0.785904 0.618349i \(-0.212198\pi\)
\(770\) 0 0
\(771\) 7.55452 2.21821i 0.272069 0.0798868i
\(772\) −24.2916 11.0936i −0.874275 0.399268i
\(773\) 3.70661 0.532931i 0.133318 0.0191682i −0.0753329 0.997158i \(-0.524002\pi\)
0.208651 + 0.977990i \(0.433093\pi\)
\(774\) −0.553013 0.638211i −0.0198777 0.0229400i
\(775\) 0 0
\(776\) 8.33002 5.35338i 0.299030 0.192175i
\(777\) −0.0458304 0.00658942i −0.00164416 0.000236394i
\(778\) −0.268033 + 0.417068i −0.00960945 + 0.0149526i
\(779\) −8.99539 + 10.3812i −0.322293 + 0.371946i
\(780\) 0 0
\(781\) −13.7938 −0.493581
\(782\) 0.767407 + 7.07718i 0.0274424 + 0.253079i
\(783\) 17.3721i 0.620827i
\(784\) −1.81886 0.534065i −0.0649593 0.0190738i
\(785\) 0 0
\(786\) −1.44758 0.930305i −0.0516336 0.0331829i
\(787\) 11.5183 + 1.65608i 0.410584 + 0.0590330i 0.344512 0.938782i \(-0.388044\pi\)
0.0660715 + 0.997815i \(0.478953\pi\)
\(788\) −2.41682 3.76064i −0.0860956 0.133967i
\(789\) 4.67469 + 10.2361i 0.166423 + 0.364416i
\(790\) 0 0
\(791\) −0.418697 2.91210i −0.0148871 0.103542i
\(792\) 7.92823 + 3.62070i 0.281717 + 0.128656i
\(793\) −3.33846 11.3697i −0.118552 0.403751i
\(794\) 0.426346 0.125187i 0.0151305 0.00444270i
\(795\) 0 0
\(796\) 0.473283 + 3.29176i 0.0167751 + 0.116673i
\(797\) −37.8299 + 32.7798i −1.34000 + 1.16112i −0.367029 + 0.930210i \(0.619625\pi\)
−0.972975 + 0.230910i \(0.925830\pi\)
\(798\) −1.10974 + 0.506803i −0.0392845 + 0.0179406i
\(799\) 18.0454 11.5971i 0.638400 0.410275i
\(800\) 0 0
\(801\) −28.8107 18.5155i −1.01798 0.654214i
\(802\) 3.01224 + 2.61012i 0.106366 + 0.0921667i
\(803\) −4.14439 + 14.1145i −0.146252 + 0.498090i
\(804\) −6.34887 −0.223907
\(805\) 0 0
\(806\) −3.69137 −0.130023
\(807\) −0.599297 + 2.04102i −0.0210962 + 0.0718472i
\(808\) 6.48421 + 5.61860i 0.228114 + 0.197662i
\(809\) 26.9667 + 17.3305i 0.948100 + 0.609307i 0.920681 0.390317i \(-0.127635\pi\)
0.0274196 + 0.999624i \(0.491271\pi\)
\(810\) 0 0
\(811\) 40.6899 26.1498i 1.42882 0.918244i 0.428926 0.903339i \(-0.358892\pi\)
0.999889 0.0149043i \(-0.00474437\pi\)
\(812\) 28.3049 12.9264i 0.993306 0.453628i
\(813\) −7.13020 + 6.17835i −0.250067 + 0.216684i
\(814\) −0.00431021 0.0299782i −0.000151073 0.00105073i
\(815\) 0 0
\(816\) 10.5780 3.10597i 0.370303 0.108731i
\(817\) −1.53632 5.23223i −0.0537491 0.183053i
\(818\) 2.79848 + 1.27802i 0.0978466 + 0.0446851i
\(819\) 3.30488 + 22.9860i 0.115482 + 0.803195i
\(820\) 0 0
\(821\) −4.37202 9.57340i −0.152585 0.334114i 0.817868 0.575406i \(-0.195156\pi\)
−0.970452 + 0.241292i \(0.922429\pi\)
\(822\) −0.0748449 0.116461i −0.00261052 0.00406204i
\(823\) −47.0790 6.76894i −1.64107 0.235950i −0.740940 0.671571i \(-0.765620\pi\)
−0.900131 + 0.435620i \(0.856529\pi\)
\(824\) 11.5881 + 7.44724i 0.403692 + 0.259437i
\(825\) 0 0
\(826\) −6.01917 1.76739i −0.209434 0.0614953i
\(827\) 52.9294i 1.84053i 0.391291 + 0.920267i \(0.372029\pi\)
−0.391291 + 0.920267i \(0.627971\pi\)
\(828\) −21.2325 14.7133i −0.737881 0.511323i
\(829\) −12.4245 −0.431522 −0.215761 0.976446i \(-0.569223\pi\)
−0.215761 + 0.976446i \(0.569223\pi\)
\(830\) 0 0
\(831\) 5.91401 6.82514i 0.205155 0.236761i
\(832\) −11.9041 + 18.5232i −0.412701 + 0.642176i
\(833\) −3.21126 0.461709i −0.111264 0.0159973i
\(834\) −0.208114 + 0.133747i −0.00720641 + 0.00463128i
\(835\) 0 0
\(836\) 18.1671 + 20.9660i 0.628323 + 0.725123i
\(837\) −12.9714 + 1.86500i −0.448356 + 0.0644638i
\(838\) −6.32649 2.88921i −0.218545 0.0998061i
\(839\) −41.9145 + 12.3072i −1.44705 + 0.424892i −0.908565 0.417744i \(-0.862821\pi\)
−0.538484 + 0.842636i \(0.681003\pi\)
\(840\) 0 0
\(841\) 4.36870 9.56611i 0.150645 0.329866i
\(842\) −5.21916 + 0.750402i −0.179864 + 0.0258606i
\(843\) 6.94618 6.01890i 0.239239 0.207302i
\(844\) −6.46316 14.1523i −0.222471 0.487144i
\(845\) 0 0
\(846\) 0.318657 2.21631i 0.0109556 0.0761982i
\(847\) −0.517157 + 0.804712i −0.0177697 + 0.0276502i
\(848\) 18.6424 + 16.1537i 0.640183 + 0.554722i
\(849\) 0.500874 + 0.147070i 0.0171899 + 0.00504742i
\(850\) 0 0
\(851\) −0.00633388 + 0.181999i −0.000217123 + 0.00623884i
\(852\) 3.80756i 0.130445i
\(853\) 8.40397 28.6213i 0.287746 0.979975i −0.681075 0.732214i \(-0.738487\pi\)
0.968821 0.247761i \(-0.0796947\pi\)
\(854\) −1.41943 + 1.63810i −0.0485718 + 0.0560548i
\(855\) 0 0
\(856\) −2.15120 + 14.9619i −0.0735264 + 0.511387i
\(857\) 3.55559 + 5.53260i 0.121457 + 0.188990i 0.896658 0.442724i \(-0.145988\pi\)
−0.775201 + 0.631714i \(0.782352\pi\)
\(858\) 1.14370 0.522312i 0.0390454 0.0178314i
\(859\) 12.0994 + 13.9634i 0.412825 + 0.476425i 0.923638 0.383267i \(-0.125201\pi\)
−0.510813 + 0.859692i \(0.670656\pi\)
\(860\) 0 0
\(861\) −1.64455 + 3.60107i −0.0560463 + 0.122724i
\(862\) −0.117360 0.399693i −0.00399731 0.0136136i
\(863\) −8.32088 28.3383i −0.283246 0.964648i −0.971075 0.238775i \(-0.923254\pi\)
0.687829 0.725873i \(-0.258564\pi\)
\(864\) 3.13715 6.86940i 0.106728 0.233702i
\(865\) 0 0
\(866\) −2.13689 2.46610i −0.0726144 0.0838014i
\(867\) 9.75732 4.45602i 0.331376 0.151334i
\(868\) −12.6906 19.7469i −0.430746 0.670253i
\(869\) −1.15295 + 8.01891i −0.0391110 + 0.272023i
\(870\) 0 0
\(871\) 14.7002 16.9650i 0.498099 0.574836i
\(872\) 3.94932 13.4502i 0.133741 0.455480i
\(873\) 29.4147i 0.995538i
\(874\) 2.45221 + 4.12441i 0.0829473 + 0.139510i
\(875\) 0 0
\(876\) 3.89607 + 1.14399i 0.131636 + 0.0386519i
\(877\) 6.50563 + 5.63716i 0.219680 + 0.190353i 0.757747 0.652548i \(-0.226300\pi\)
−0.538068 + 0.842902i \(0.680845\pi\)
\(878\) −0.919049 + 1.43007i −0.0310164 + 0.0482625i
\(879\) −0.950007 + 6.60744i −0.0320429 + 0.222864i
\(880\) 0 0
\(881\) −2.08959 4.57555i −0.0703999 0.154154i 0.871161 0.490998i \(-0.163368\pi\)
−0.941561 + 0.336844i \(0.890641\pi\)
\(882\) −0.255935 + 0.221769i −0.00861779 + 0.00746736i
\(883\) −21.4157 + 3.07912i −0.720696 + 0.103621i −0.492897 0.870088i \(-0.664062\pi\)
−0.227799 + 0.973708i \(0.573153\pi\)
\(884\) −16.6866 + 36.5386i −0.561231 + 1.22892i
\(885\) 0 0
\(886\) 5.30753 1.55843i 0.178310 0.0523565i
\(887\) −25.0277 11.4298i −0.840349 0.383774i −0.0517330 0.998661i \(-0.516474\pi\)
−0.788616 + 0.614887i \(0.789202\pi\)
\(888\) −0.0167880 + 0.00241375i −0.000563369 + 8.10002e-5i
\(889\) −17.4136 20.0963i −0.584032 0.674009i
\(890\) 0 0
\(891\) −19.8291 + 12.7434i −0.664301 + 0.426920i
\(892\) −54.8867 7.89152i −1.83774 0.264228i
\(893\) 7.81701 12.1635i 0.261586 0.407036i
\(894\) −0.307019 + 0.354318i −0.0102682 + 0.0118502i
\(895\) 0 0
\(896\) 17.9435 0.599451
\(897\) −7.32361 + 1.87636i −0.244528 + 0.0626497i
\(898\) 1.59684i 0.0532871i
\(899\) −28.6020 8.39831i −0.953930 0.280099i
\(900\) 0 0
\(901\) 35.5150 + 22.8241i 1.18318 + 0.760382i
\(902\) −2.56315 0.368526i −0.0853436 0.0122706i
\(903\) −0.849668 1.32211i −0.0282752 0.0439970i
\(904\) −0.447689 0.980303i −0.0148899 0.0326044i
\(905\) 0 0
\(906\) 0.109530 + 0.761797i 0.00363888 + 0.0253090i
\(907\) −1.73410 0.791937i −0.0575799 0.0262959i 0.386417 0.922324i \(-0.373713\pi\)
−0.443997 + 0.896028i \(0.646440\pi\)
\(908\) −5.13922 17.5026i −0.170551 0.580843i
\(909\) −24.4549 + 7.18062i −0.811119 + 0.238166i
\(910\) 0 0
\(911\) 5.36602 + 37.3215i 0.177784 + 1.23652i 0.861875 + 0.507120i \(0.169290\pi\)
−0.684091 + 0.729397i \(0.739801\pi\)
\(912\) 5.61605 4.86633i 0.185966 0.161140i
\(913\) 9.07253 4.14328i 0.300257 0.137123i
\(914\) −1.43731 + 0.923700i −0.0475418 + 0.0305533i
\(915\) 0 0
\(916\) 10.8806 + 6.99253i 0.359505 + 0.231040i
\(917\) 29.2387 + 25.3355i 0.965546 + 0.836651i
\(918\) 1.15567 3.93586i 0.0381429 0.129903i
\(919\) 1.89744 0.0625909 0.0312955 0.999510i \(-0.490037\pi\)
0.0312955 + 0.999510i \(0.490037\pi\)
\(920\) 0 0
\(921\) −12.2741 −0.404446
\(922\) 2.14395 7.30163i 0.0706073 0.240466i
\(923\) −10.1743 8.81605i −0.334890 0.290184i
\(924\) 6.72603 + 4.32256i 0.221270 + 0.142202i
\(925\) 0 0
\(926\) −3.73491 + 2.40028i −0.122737 + 0.0788781i
\(927\) −37.2219 + 16.9987i −1.22253 + 0.558309i
\(928\) 12.9825 11.2494i 0.426171 0.369279i
\(929\) −3.96319 27.5646i −0.130028 0.904366i −0.945512 0.325586i \(-0.894438\pi\)
0.815484 0.578779i \(-0.196471\pi\)
\(930\) 0 0
\(931\) −2.09823 + 0.616095i −0.0687666 + 0.0201917i
\(932\) 14.0429 + 47.8256i 0.459989 + 1.56658i
\(933\) −1.61772 0.738788i −0.0529618 0.0241868i
\(934\) 0.958311 + 6.66520i 0.0313569 + 0.218092i
\(935\) 0 0
\(936\) 3.53373 + 7.73779i 0.115504 + 0.252918i
\(937\) −7.74624 12.0534i −0.253059 0.393767i 0.691361 0.722510i \(-0.257011\pi\)
−0.944420 + 0.328743i \(0.893375\pi\)
\(938\) −4.06432 0.584360i −0.132705 0.0190800i
\(939\) −6.33663 4.07230i −0.206788 0.132895i
\(940\) 0 0
\(941\) 33.6359 + 9.87638i 1.09650 + 0.321961i 0.779460 0.626452i \(-0.215494\pi\)
0.317038 + 0.948413i \(0.397312\pi\)
\(942\) 1.10273i 0.0359290i
\(943\) 14.7781 + 4.90365i 0.481241 + 0.159685i
\(944\) 38.2113 1.24367
\(945\) 0 0
\(946\) 0.673195 0.776908i 0.0218874 0.0252595i
\(947\) −4.27924 + 6.65862i −0.139057 + 0.216376i −0.903796 0.427963i \(-0.859231\pi\)
0.764740 + 0.644339i \(0.222868\pi\)
\(948\) 2.21349 + 0.318252i 0.0718908 + 0.0103363i
\(949\) −12.0779 + 7.76199i −0.392065 + 0.251965i
\(950\) 0 0
\(951\) 1.03645 + 1.19612i 0.0336091 + 0.0387870i
\(952\) 14.7547 2.12140i 0.478202 0.0687550i
\(953\) 16.0497 + 7.32967i 0.519902 + 0.237431i 0.658042 0.752982i \(-0.271385\pi\)
−0.138140 + 0.990413i \(0.544112\pi\)
\(954\) 4.22825 1.24153i 0.136895 0.0401959i
\(955\) 0 0
\(956\) 1.23732 2.70935i 0.0400178 0.0876267i
\(957\) 10.0501 1.44499i 0.324875 0.0467099i
\(958\) 0.844885 0.732097i 0.0272970 0.0236530i
\(959\) 1.29300 + 2.83128i 0.0417532 + 0.0914267i
\(960\) 0 0
\(961\) 1.21153 8.42636i 0.0390816 0.271818i
\(962\) 0.0159808 0.0248666i 0.000515241 0.000801731i
\(963\) −33.9354 29.4052i −1.09355 0.947570i
\(964\) 52.0533 + 15.2842i 1.67652 + 0.492272i
\(965\) 0 0
\(966\) 1.01298 + 0.941399i 0.0325923 + 0.0302890i
\(967\) 18.1226i 0.582785i 0.956604 + 0.291392i \(0.0941185\pi\)
−0.956604 + 0.291392i \(0.905881\pi\)
\(968\) −0.0987179 + 0.336202i −0.00317291 + 0.0108060i
\(969\) 8.32843 9.61152i 0.267548 0.308766i
\(970\) 0 0
\(971\) 1.50925 10.4971i 0.0484342 0.336867i −0.951168 0.308673i \(-0.900115\pi\)
0.999602 0.0281944i \(-0.00897575\pi\)
\(972\) 12.2314 + 19.0324i 0.392322 + 0.610465i
\(973\) 5.05946 2.31058i 0.162199 0.0740737i
\(974\) 4.90544 + 5.66117i 0.157180 + 0.181396i
\(975\) 0 0
\(976\) 5.48457 12.0095i 0.175557 0.384416i
\(977\) 1.85240 + 6.30869i 0.0592635 + 0.201833i 0.983803 0.179253i \(-0.0573682\pi\)
−0.924539 + 0.381086i \(0.875550\pi\)
\(978\) 0.192352 + 0.655090i 0.00615073 + 0.0209475i
\(979\) 17.3187 37.9226i 0.553507 1.21201i
\(980\) 0 0
\(981\) 27.2697 + 31.4709i 0.870654 + 1.00479i
\(982\) −1.54852 + 0.707187i −0.0494154 + 0.0225672i
\(983\) 23.6323 + 36.7725i 0.753752 + 1.17286i 0.980040 + 0.198800i \(0.0637045\pi\)
−0.226288 + 0.974060i \(0.572659\pi\)
\(984\) −0.206377 + 1.43538i −0.00657906 + 0.0457584i
\(985\) 0 0
\(986\) 6.11044 7.05183i 0.194596 0.224576i
\(987\) 1.17399 3.99824i 0.0373685 0.127265i
\(988\) 27.0756i 0.861390i
\(989\) −4.80942 + 3.88292i −0.152931 + 0.123470i
\(990\) 0 0
\(991\) −52.0340 15.2786i −1.65291 0.485339i −0.683333 0.730107i \(-0.739470\pi\)
−0.969582 + 0.244768i \(0.921288\pi\)
\(992\) −9.79341 8.48604i −0.310941 0.269432i
\(993\) −2.07144 + 3.22322i −0.0657351 + 0.102286i
\(994\) −0.350454 + 2.43746i −0.0111157 + 0.0773115i
\(995\) 0 0
\(996\) −1.14369 2.50432i −0.0362391 0.0793525i
\(997\) −0.519758 + 0.450373i −0.0164609 + 0.0142635i −0.663052 0.748573i \(-0.730739\pi\)
0.646591 + 0.762836i \(0.276194\pi\)
\(998\) −5.33527 + 0.767096i −0.168885 + 0.0242820i
\(999\) 0.0435926 0.0954544i 0.00137921 0.00302004i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 575.2.p.b.524.1 20
5.2 odd 4 23.2.c.a.18.1 yes 10
5.3 odd 4 575.2.k.b.501.1 10
5.4 even 2 inner 575.2.p.b.524.2 20
15.2 even 4 207.2.i.c.64.1 10
20.7 even 4 368.2.m.c.225.1 10
23.9 even 11 inner 575.2.p.b.124.2 20
115.2 odd 44 529.2.c.d.118.1 10
115.7 even 44 529.2.c.e.399.1 10
115.9 even 22 inner 575.2.p.b.124.1 20
115.12 odd 44 529.2.c.g.177.1 10
115.17 even 44 529.2.c.h.487.1 10
115.22 even 4 529.2.c.a.501.1 10
115.27 odd 44 529.2.c.b.334.1 10
115.32 odd 44 23.2.c.a.9.1 10
115.37 even 44 529.2.c.a.170.1 10
115.42 even 44 529.2.c.c.334.1 10
115.52 odd 44 529.2.c.i.487.1 10
115.57 even 44 529.2.c.f.177.1 10
115.62 odd 44 529.2.c.d.399.1 10
115.67 even 44 529.2.c.e.118.1 10
115.72 odd 44 529.2.a.i.1.2 5
115.77 odd 44 529.2.c.b.255.1 10
115.78 odd 44 575.2.k.b.101.1 10
115.82 odd 44 529.2.c.i.466.1 10
115.87 odd 44 529.2.c.g.266.1 10
115.97 even 44 529.2.c.f.266.1 10
115.102 even 44 529.2.c.h.466.1 10
115.107 even 44 529.2.c.c.255.1 10
115.112 even 44 529.2.a.j.1.2 5
345.32 even 44 207.2.i.c.55.1 10
345.227 odd 44 4761.2.a.bn.1.4 5
345.302 even 44 4761.2.a.bo.1.4 5
460.147 even 44 368.2.m.c.193.1 10
460.187 even 44 8464.2.a.bs.1.3 5
460.227 odd 44 8464.2.a.bt.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.c.a.9.1 10 115.32 odd 44
23.2.c.a.18.1 yes 10 5.2 odd 4
207.2.i.c.55.1 10 345.32 even 44
207.2.i.c.64.1 10 15.2 even 4
368.2.m.c.193.1 10 460.147 even 44
368.2.m.c.225.1 10 20.7 even 4
529.2.a.i.1.2 5 115.72 odd 44
529.2.a.j.1.2 5 115.112 even 44
529.2.c.a.170.1 10 115.37 even 44
529.2.c.a.501.1 10 115.22 even 4
529.2.c.b.255.1 10 115.77 odd 44
529.2.c.b.334.1 10 115.27 odd 44
529.2.c.c.255.1 10 115.107 even 44
529.2.c.c.334.1 10 115.42 even 44
529.2.c.d.118.1 10 115.2 odd 44
529.2.c.d.399.1 10 115.62 odd 44
529.2.c.e.118.1 10 115.67 even 44
529.2.c.e.399.1 10 115.7 even 44
529.2.c.f.177.1 10 115.57 even 44
529.2.c.f.266.1 10 115.97 even 44
529.2.c.g.177.1 10 115.12 odd 44
529.2.c.g.266.1 10 115.87 odd 44
529.2.c.h.466.1 10 115.102 even 44
529.2.c.h.487.1 10 115.17 even 44
529.2.c.i.466.1 10 115.82 odd 44
529.2.c.i.487.1 10 115.52 odd 44
575.2.k.b.101.1 10 115.78 odd 44
575.2.k.b.501.1 10 5.3 odd 4
575.2.p.b.124.1 20 115.9 even 22 inner
575.2.p.b.124.2 20 23.9 even 11 inner
575.2.p.b.524.1 20 1.1 even 1 trivial
575.2.p.b.524.2 20 5.4 even 2 inner
4761.2.a.bn.1.4 5 345.227 odd 44
4761.2.a.bo.1.4 5 345.302 even 44
8464.2.a.bs.1.3 5 460.187 even 44
8464.2.a.bt.1.3 5 460.227 odd 44