Properties

Label 529.2.c.b.255.1
Level $529$
Weight $2$
Character 529.255
Analytic conductor $4.224$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,2,Mod(118,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([16])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 529.c (of order \(11\), degree \(10\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-7,4,-3,-3,-5,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.22408626693\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 255.1
Root \(0.142315 - 0.989821i\) of defining polynomial
Character \(\chi\) \(=\) 529.255
Dual form 529.2.c.b.334.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.198939 + 0.127850i) q^{2} +(-0.0681534 - 0.474017i) q^{3} +(-0.807599 - 1.76840i) q^{4} +(-1.45204 - 0.426356i) q^{5} +(0.0470448 - 0.103014i) q^{6} +(1.66741 - 1.92429i) q^{7} +(0.132736 - 0.923198i) q^{8} +(2.65843 - 0.780586i) q^{9} +(-0.234356 - 0.270462i) q^{10} +(-2.83737 + 1.82347i) q^{11} +(-0.783209 + 0.503338i) q^{12} +(-2.15565 - 2.48775i) q^{13} +(0.577732 - 0.169638i) q^{14} +(-0.103139 + 0.717348i) q^{15} +(-2.40176 + 2.77178i) q^{16} +(-2.60750 + 5.70963i) q^{17} +(0.628663 + 0.184592i) q^{18} +(-1.75759 - 3.84858i) q^{19} +(0.418697 + 2.91210i) q^{20} +(-1.02579 - 0.659232i) q^{21} -0.797593 q^{22} -0.446658 q^{24} +(-2.27964 - 1.46503i) q^{25} +(-0.110783 - 0.770511i) q^{26} +(-1.14801 - 2.51379i) q^{27} +(-4.74950 - 1.39458i) q^{28} +(2.61139 - 5.71814i) q^{29} +(-0.112231 + 0.129522i) q^{30} +(0.674863 - 4.69378i) q^{31} +(-2.62200 + 0.769888i) q^{32} +(1.05773 + 1.22069i) q^{33} +(-1.24871 + 0.802497i) q^{34} +(-3.24157 + 2.08323i) q^{35} +(-3.52733 - 4.07076i) q^{36} +(-0.0364342 + 0.0106980i) q^{37} +(0.142389 - 0.990339i) q^{38} +(-1.03232 + 1.19136i) q^{39} +(-0.586348 + 1.28392i) q^{40} +(-3.11514 - 0.914689i) q^{41} +(-0.119785 - 0.262294i) q^{42} +(-0.183426 - 1.27576i) q^{43} +(5.51606 + 3.54496i) q^{44} -4.19295 q^{45} +3.41741 q^{47} +(1.47756 + 0.949570i) q^{48} +(0.0735574 + 0.511603i) q^{49} +(-0.266203 - 0.582904i) q^{50} +(2.88417 + 0.846869i) q^{51} +(-2.65843 + 5.82115i) q^{52} +(4.40445 - 5.08301i) q^{53} +(0.0930048 - 0.646863i) q^{54} +(4.89741 - 1.43801i) q^{55} +(-1.55518 - 1.79477i) q^{56} +(-1.70451 + 1.09542i) q^{57} +(1.25057 - 0.803693i) q^{58} +(6.82274 + 7.87387i) q^{59} +(1.35185 - 0.396939i) q^{60} +(-0.512306 + 3.56316i) q^{61} +(0.734356 - 0.847493i) q^{62} +(2.93061 - 6.41715i) q^{63} +(6.41801 + 1.88450i) q^{64} +(2.06941 + 4.53139i) q^{65} +(0.0543586 + 0.378072i) q^{66} +(-5.73684 - 3.68684i) q^{67} +12.2027 q^{68} -0.911214 q^{70} +(3.44051 + 2.21108i) q^{71} +(-0.367766 - 2.55787i) q^{72} +(1.81183 + 3.96735i) q^{73} +(-0.00861592 - 0.00252986i) q^{74} +(-0.539086 + 1.18043i) q^{75} +(-5.38638 + 6.21622i) q^{76} +(-1.22217 + 8.50038i) q^{77} +(-0.357685 + 0.105026i) q^{78} +(-1.57296 - 1.81530i) q^{79} +(4.66921 - 3.00072i) q^{80} +(5.87915 - 3.77830i) q^{81} +(-0.502780 - 0.580239i) q^{82} +(-2.83737 + 0.833126i) q^{83} +(-0.337360 + 2.34639i) q^{84} +(6.22052 - 7.17887i) q^{85} +(0.126615 - 0.277248i) q^{86} +(-2.88847 - 0.848131i) q^{87} +(1.30680 + 2.86149i) q^{88} +(-1.75911 - 12.2349i) q^{89} +(-0.834139 - 0.536069i) q^{90} -8.38151 q^{91} -2.27092 q^{93} +(0.679855 + 0.436916i) q^{94} +(0.911214 + 6.33764i) q^{95} +(0.543638 + 1.19040i) q^{96} +(10.1865 + 2.99101i) q^{97} +(-0.0507751 + 0.111182i) q^{98} +(-6.11958 + 7.06237i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 7 q^{2} + 4 q^{3} - 3 q^{4} - 3 q^{5} - 5 q^{6} + 6 q^{7} + 4 q^{8} + 9 q^{9} - 10 q^{10} - 4 q^{11} + 23 q^{12} + 8 q^{13} - 2 q^{14} - 10 q^{15} - 21 q^{16} + q^{17} + 8 q^{18} - 20 q^{19} + 24 q^{20}+ \cdots + 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/529\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(e\left(\frac{1}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.198939 + 0.127850i 0.140671 + 0.0904037i 0.609083 0.793106i \(-0.291537\pi\)
−0.468412 + 0.883510i \(0.655174\pi\)
\(3\) −0.0681534 0.474017i −0.0393484 0.273674i 0.960643 0.277785i \(-0.0896004\pi\)
−0.999992 + 0.00411143i \(0.998691\pi\)
\(4\) −0.807599 1.76840i −0.403800 0.884198i
\(5\) −1.45204 0.426356i −0.649370 0.190672i −0.0595734 0.998224i \(-0.518974\pi\)
−0.589797 + 0.807552i \(0.700792\pi\)
\(6\) 0.0470448 0.103014i 0.0192060 0.0420552i
\(7\) 1.66741 1.92429i 0.630220 0.727313i −0.347394 0.937719i \(-0.612933\pi\)
0.977614 + 0.210406i \(0.0674787\pi\)
\(8\) 0.132736 0.923198i 0.0469292 0.326400i
\(9\) 2.65843 0.780586i 0.886144 0.260195i
\(10\) −0.234356 0.270462i −0.0741100 0.0855275i
\(11\) −2.83737 + 1.82347i −0.855499 + 0.549796i −0.893285 0.449490i \(-0.851606\pi\)
0.0377866 + 0.999286i \(0.487969\pi\)
\(12\) −0.783209 + 0.503338i −0.226093 + 0.145301i
\(13\) −2.15565 2.48775i −0.597870 0.689979i 0.373478 0.927639i \(-0.378165\pi\)
−0.971348 + 0.237660i \(0.923620\pi\)
\(14\) 0.577732 0.169638i 0.154405 0.0453375i
\(15\) −0.103139 + 0.717348i −0.0266304 + 0.185218i
\(16\) −2.40176 + 2.77178i −0.600441 + 0.692946i
\(17\) −2.60750 + 5.70963i −0.632412 + 1.38479i 0.273726 + 0.961808i \(0.411744\pi\)
−0.906138 + 0.422981i \(0.860984\pi\)
\(18\) 0.628663 + 0.184592i 0.148177 + 0.0435088i
\(19\) −1.75759 3.84858i −0.403218 0.882925i −0.996934 0.0782498i \(-0.975067\pi\)
0.593716 0.804675i \(-0.297660\pi\)
\(20\) 0.418697 + 2.91210i 0.0936234 + 0.651165i
\(21\) −1.02579 0.659232i −0.223845 0.143856i
\(22\) −0.797593 −0.170047
\(23\) 0 0
\(24\) −0.446658 −0.0911736
\(25\) −2.27964 1.46503i −0.455928 0.293007i
\(26\) −0.110783 0.770511i −0.0217263 0.151110i
\(27\) −1.14801 2.51379i −0.220934 0.483779i
\(28\) −4.74950 1.39458i −0.897571 0.263551i
\(29\) 2.61139 5.71814i 0.484922 1.06183i −0.496158 0.868232i \(-0.665256\pi\)
0.981081 0.193600i \(-0.0620163\pi\)
\(30\) −0.112231 + 0.129522i −0.0204905 + 0.0236473i
\(31\) 0.674863 4.69378i 0.121209 0.843027i −0.834981 0.550279i \(-0.814521\pi\)
0.956190 0.292748i \(-0.0945697\pi\)
\(32\) −2.62200 + 0.769888i −0.463508 + 0.136098i
\(33\) 1.05773 + 1.22069i 0.184127 + 0.212494i
\(34\) −1.24871 + 0.802497i −0.214152 + 0.137627i
\(35\) −3.24157 + 2.08323i −0.547925 + 0.352130i
\(36\) −3.52733 4.07076i −0.587889 0.678460i
\(37\) −0.0364342 + 0.0106980i −0.00598974 + 0.00175875i −0.284726 0.958609i \(-0.591903\pi\)
0.278736 + 0.960368i \(0.410084\pi\)
\(38\) 0.142389 0.990339i 0.0230986 0.160654i
\(39\) −1.03232 + 1.19136i −0.165304 + 0.190771i
\(40\) −0.586348 + 1.28392i −0.0927098 + 0.203006i
\(41\) −3.11514 0.914689i −0.486504 0.142850i 0.0292763 0.999571i \(-0.490680\pi\)
−0.515780 + 0.856721i \(0.672498\pi\)
\(42\) −0.119785 0.262294i −0.0184833 0.0404728i
\(43\) −0.183426 1.27576i −0.0279722 0.194551i 0.971044 0.238901i \(-0.0767873\pi\)
−0.999016 + 0.0443505i \(0.985878\pi\)
\(44\) 5.51606 + 3.54496i 0.831578 + 0.534423i
\(45\) −4.19295 −0.625048
\(46\) 0 0
\(47\) 3.41741 0.498480 0.249240 0.968442i \(-0.419819\pi\)
0.249240 + 0.968442i \(0.419819\pi\)
\(48\) 1.47756 + 0.949570i 0.213267 + 0.137059i
\(49\) 0.0735574 + 0.511603i 0.0105082 + 0.0730861i
\(50\) −0.266203 0.582904i −0.0376468 0.0824351i
\(51\) 2.88417 + 0.846869i 0.403865 + 0.118585i
\(52\) −2.65843 + 5.82115i −0.368658 + 0.807249i
\(53\) 4.40445 5.08301i 0.604998 0.698205i −0.367788 0.929910i \(-0.619885\pi\)
0.972786 + 0.231705i \(0.0744303\pi\)
\(54\) 0.0930048 0.646863i 0.0126563 0.0880268i
\(55\) 4.89741 1.43801i 0.660366 0.193901i
\(56\) −1.55518 1.79477i −0.207819 0.239836i
\(57\) −1.70451 + 1.09542i −0.225767 + 0.145092i
\(58\) 1.25057 0.803693i 0.164208 0.105530i
\(59\) 6.82274 + 7.87387i 0.888246 + 1.02509i 0.999510 + 0.0312992i \(0.00996448\pi\)
−0.111264 + 0.993791i \(0.535490\pi\)
\(60\) 1.35185 0.396939i 0.174523 0.0512446i
\(61\) −0.512306 + 3.56316i −0.0655940 + 0.456216i 0.930382 + 0.366592i \(0.119476\pi\)
−0.995976 + 0.0896240i \(0.971433\pi\)
\(62\) 0.734356 0.847493i 0.0932634 0.107632i
\(63\) 2.93061 6.41715i 0.369223 0.808485i
\(64\) 6.41801 + 1.88450i 0.802252 + 0.235562i
\(65\) 2.06941 + 4.53139i 0.256679 + 0.562049i
\(66\) 0.0543586 + 0.378072i 0.00669108 + 0.0465375i
\(67\) −5.73684 3.68684i −0.700866 0.450419i 0.141068 0.990000i \(-0.454946\pi\)
−0.841934 + 0.539581i \(0.818583\pi\)
\(68\) 12.2027 1.47979
\(69\) 0 0
\(70\) −0.911214 −0.108911
\(71\) 3.44051 + 2.21108i 0.408313 + 0.262407i 0.728635 0.684902i \(-0.240155\pi\)
−0.320322 + 0.947309i \(0.603791\pi\)
\(72\) −0.367766 2.55787i −0.0433417 0.301448i
\(73\) 1.81183 + 3.96735i 0.212058 + 0.464343i 0.985533 0.169484i \(-0.0542102\pi\)
−0.773475 + 0.633827i \(0.781483\pi\)
\(74\) −0.00861592 0.00252986i −0.00100158 0.000294090i
\(75\) −0.539086 + 1.18043i −0.0622483 + 0.136305i
\(76\) −5.38638 + 6.21622i −0.617861 + 0.713049i
\(77\) −1.22217 + 8.50038i −0.139279 + 0.968708i
\(78\) −0.357685 + 0.105026i −0.0404999 + 0.0118918i
\(79\) −1.57296 1.81530i −0.176972 0.204237i 0.660332 0.750973i \(-0.270415\pi\)
−0.837305 + 0.546737i \(0.815870\pi\)
\(80\) 4.66921 3.00072i 0.522034 0.335491i
\(81\) 5.87915 3.77830i 0.653239 0.419811i
\(82\) −0.502780 0.580239i −0.0555227 0.0640767i
\(83\) −2.83737 + 0.833126i −0.311442 + 0.0914475i −0.433718 0.901049i \(-0.642799\pi\)
0.122277 + 0.992496i \(0.460980\pi\)
\(84\) −0.337360 + 2.34639i −0.0368090 + 0.256012i
\(85\) 6.22052 7.17887i 0.674711 0.778657i
\(86\) 0.126615 0.277248i 0.0136532 0.0298964i
\(87\) −2.88847 0.848131i −0.309677 0.0909292i
\(88\) 1.30680 + 2.86149i 0.139305 + 0.305036i
\(89\) −1.75911 12.2349i −0.186466 1.29690i −0.841070 0.540926i \(-0.818074\pi\)
0.654605 0.755971i \(-0.272835\pi\)
\(90\) −0.834139 0.536069i −0.0879260 0.0565066i
\(91\) −8.38151 −0.878621
\(92\) 0 0
\(93\) −2.27092 −0.235484
\(94\) 0.679855 + 0.436916i 0.0701217 + 0.0450645i
\(95\) 0.911214 + 6.33764i 0.0934886 + 0.650228i
\(96\) 0.543638 + 1.19040i 0.0554848 + 0.121495i
\(97\) 10.1865 + 2.99101i 1.03428 + 0.303691i 0.754449 0.656359i \(-0.227904\pi\)
0.279829 + 0.960050i \(0.409722\pi\)
\(98\) −0.0507751 + 0.111182i −0.00512906 + 0.0112311i
\(99\) −6.11958 + 7.06237i −0.615041 + 0.709795i
\(100\) −0.749726 + 5.21446i −0.0749726 + 0.521446i
\(101\) −8.82638 + 2.59166i −0.878258 + 0.257880i −0.689624 0.724168i \(-0.742224\pi\)
−0.188634 + 0.982047i \(0.560406\pi\)
\(102\) 0.465501 + 0.537217i 0.0460915 + 0.0531924i
\(103\) 12.4244 7.98468i 1.22421 0.786754i 0.241233 0.970467i \(-0.422448\pi\)
0.982980 + 0.183714i \(0.0588119\pi\)
\(104\) −2.58282 + 1.65988i −0.253266 + 0.162764i
\(105\) 1.20841 + 1.39458i 0.117929 + 0.136097i
\(106\) 1.52608 0.448097i 0.148226 0.0435231i
\(107\) 2.30644 16.0416i 0.222972 1.55080i −0.503736 0.863858i \(-0.668042\pi\)
0.726708 0.686946i \(-0.241049\pi\)
\(108\) −3.51824 + 4.06026i −0.338543 + 0.390699i
\(109\) 6.24352 13.6714i 0.598021 1.30948i −0.332451 0.943121i \(-0.607876\pi\)
0.930472 0.366363i \(-0.119397\pi\)
\(110\) 1.15813 + 0.340059i 0.110424 + 0.0324233i
\(111\) 0.00755417 + 0.0165413i 0.000717010 + 0.00157003i
\(112\) 1.32900 + 9.24338i 0.125578 + 0.873417i
\(113\) −0.972039 0.624691i −0.0914417 0.0587660i 0.494121 0.869393i \(-0.335490\pi\)
−0.585563 + 0.810627i \(0.699126\pi\)
\(114\) −0.479142 −0.0448758
\(115\) 0 0
\(116\) −12.2209 −1.13468
\(117\) −7.67256 4.93085i −0.709328 0.455858i
\(118\) 0.350633 + 2.43871i 0.0322784 + 0.224501i
\(119\) 6.63922 + 14.5379i 0.608616 + 1.33268i
\(120\) 0.648563 + 0.190435i 0.0592055 + 0.0173843i
\(121\) 0.156064 0.341733i 0.0141877 0.0310666i
\(122\) −0.557468 + 0.643353i −0.0504708 + 0.0582464i
\(123\) −0.221271 + 1.53897i −0.0199513 + 0.138764i
\(124\) −8.84547 + 2.59727i −0.794347 + 0.233241i
\(125\) 7.64062 + 8.81774i 0.683397 + 0.788683i
\(126\) 1.40345 0.901940i 0.125029 0.0803512i
\(127\) 8.78564 5.64619i 0.779599 0.501018i −0.0893014 0.996005i \(-0.528463\pi\)
0.868901 + 0.494987i \(0.164827\pi\)
\(128\) 4.61492 + 5.32590i 0.407905 + 0.470748i
\(129\) −0.592229 + 0.173894i −0.0521428 + 0.0153105i
\(130\) −0.167652 + 1.16604i −0.0147040 + 0.102269i
\(131\) 9.95030 11.4833i 0.869362 1.00330i −0.130568 0.991439i \(-0.541680\pi\)
0.999930 0.0118576i \(-0.00377449\pi\)
\(132\) 1.30443 2.85631i 0.113536 0.248610i
\(133\) −10.3364 3.03504i −0.896279 0.263171i
\(134\) −0.669916 1.46691i −0.0578719 0.126722i
\(135\) 0.595180 + 4.13957i 0.0512250 + 0.356278i
\(136\) 4.92501 + 3.16511i 0.422316 + 0.271406i
\(137\) 1.22243 0.104439 0.0522196 0.998636i \(-0.483370\pi\)
0.0522196 + 0.998636i \(0.483370\pi\)
\(138\) 0 0
\(139\) 2.18447 0.185284 0.0926420 0.995699i \(-0.470469\pi\)
0.0926420 + 0.995699i \(0.470469\pi\)
\(140\) 6.30186 + 4.04996i 0.532604 + 0.342284i
\(141\) −0.232908 1.61991i −0.0196144 0.136421i
\(142\) 0.401763 + 0.879739i 0.0337152 + 0.0738260i
\(143\) 10.6527 + 3.12792i 0.890825 + 0.261570i
\(144\) −4.22131 + 9.24338i −0.351776 + 0.770281i
\(145\) −6.22979 + 7.18957i −0.517356 + 0.597061i
\(146\) −0.146783 + 1.02090i −0.0121479 + 0.0844904i
\(147\) 0.237495 0.0697349i 0.0195883 0.00575164i
\(148\) 0.0483426 + 0.0557903i 0.00397374 + 0.00458594i
\(149\) −3.48268 + 2.23818i −0.285312 + 0.183359i −0.675467 0.737390i \(-0.736058\pi\)
0.390155 + 0.920749i \(0.372421\pi\)
\(150\) −0.258164 + 0.165912i −0.0210790 + 0.0135466i
\(151\) 4.45043 + 5.13607i 0.362171 + 0.417967i 0.907366 0.420342i \(-0.138090\pi\)
−0.545195 + 0.838309i \(0.683544\pi\)
\(152\) −3.78629 + 1.11176i −0.307109 + 0.0901753i
\(153\) −2.47501 + 17.2140i −0.200092 + 1.39167i
\(154\) −1.32991 + 1.53480i −0.107167 + 0.123678i
\(155\) −2.98115 + 6.52780i −0.239452 + 0.524326i
\(156\) 2.94051 + 0.863411i 0.235429 + 0.0691282i
\(157\) 4.04504 + 8.85740i 0.322829 + 0.706898i 0.999570 0.0293238i \(-0.00933538\pi\)
−0.676741 + 0.736222i \(0.736608\pi\)
\(158\) −0.0808374 0.562237i −0.00643108 0.0447291i
\(159\) −2.70961 1.74136i −0.214886 0.138099i
\(160\) 4.13548 0.326939
\(161\) 0 0
\(162\) 1.65265 0.129844
\(163\) −5.07173 3.25940i −0.397249 0.255296i 0.326731 0.945117i \(-0.394053\pi\)
−0.723980 + 0.689821i \(0.757689\pi\)
\(164\) 0.898256 + 6.24751i 0.0701420 + 0.487849i
\(165\) −1.01542 2.22345i −0.0790500 0.173095i
\(166\) −0.670978 0.197017i −0.0520780 0.0152915i
\(167\) 0.730973 1.60061i 0.0565644 0.123859i −0.879239 0.476380i \(-0.841948\pi\)
0.935804 + 0.352522i \(0.114676\pi\)
\(168\) −0.744760 + 0.859499i −0.0574595 + 0.0663118i
\(169\) 0.308003 2.14221i 0.0236926 0.164785i
\(170\) 2.15532 0.632860i 0.165306 0.0485381i
\(171\) −7.67657 8.85924i −0.587042 0.677483i
\(172\) −2.10791 + 1.35467i −0.160726 + 0.103293i
\(173\) −8.59059 + 5.52084i −0.653131 + 0.419741i −0.824809 0.565412i \(-0.808717\pi\)
0.171678 + 0.985153i \(0.445081\pi\)
\(174\) −0.466195 0.538017i −0.0353421 0.0407870i
\(175\) −6.62023 + 1.94388i −0.500443 + 0.146943i
\(176\) 1.76044 12.2441i 0.132698 0.922934i
\(177\) 3.26735 3.77073i 0.245589 0.283425i
\(178\) 1.21428 2.65890i 0.0910140 0.199293i
\(179\) 9.88802 + 2.90338i 0.739065 + 0.217009i 0.629532 0.776974i \(-0.283246\pi\)
0.109532 + 0.993983i \(0.465065\pi\)
\(180\) 3.38622 + 7.41479i 0.252394 + 0.552666i
\(181\) −1.32231 9.19690i −0.0982869 0.683600i −0.978078 0.208240i \(-0.933227\pi\)
0.879791 0.475361i \(-0.157682\pi\)
\(182\) −1.66741 1.07158i −0.123596 0.0794306i
\(183\) 1.72392 0.127435
\(184\) 0 0
\(185\) 0.0574649 0.00422491
\(186\) −0.451775 0.290338i −0.0331257 0.0212886i
\(187\) −3.01288 20.9550i −0.220323 1.53238i
\(188\) −2.75990 6.04333i −0.201286 0.440755i
\(189\) −6.75145 1.98241i −0.491096 0.144199i
\(190\) −0.628992 + 1.37730i −0.0456319 + 0.0999198i
\(191\) 13.4444 15.5157i 0.972803 1.12267i −0.0196200 0.999808i \(-0.506246\pi\)
0.992423 0.122867i \(-0.0392089\pi\)
\(192\) 0.455875 3.17068i 0.0329000 0.228824i
\(193\) 13.1801 3.87003i 0.948725 0.278571i 0.229469 0.973316i \(-0.426301\pi\)
0.719256 + 0.694745i \(0.244483\pi\)
\(194\) 1.64408 + 1.89737i 0.118038 + 0.136223i
\(195\) 2.00692 1.28977i 0.143718 0.0923621i
\(196\) 0.845311 0.543249i 0.0603794 0.0388035i
\(197\) −1.50581 1.73780i −0.107285 0.123813i 0.699568 0.714567i \(-0.253376\pi\)
−0.806852 + 0.590754i \(0.798831\pi\)
\(198\) −2.12035 + 0.622590i −0.150686 + 0.0442455i
\(199\) −0.243449 + 1.69322i −0.0172576 + 0.120029i −0.996629 0.0820383i \(-0.973857\pi\)
0.979372 + 0.202068i \(0.0647661\pi\)
\(200\) −1.65511 + 1.91009i −0.117034 + 0.135064i
\(201\) −1.35664 + 2.97063i −0.0956901 + 0.209532i
\(202\) −2.08725 0.612873i −0.146859 0.0431216i
\(203\) −6.64911 14.5595i −0.466676 1.02188i
\(204\) −0.831655 5.78429i −0.0582275 0.404981i
\(205\) 4.13332 + 2.65632i 0.288684 + 0.185526i
\(206\) 3.49254 0.243337
\(207\) 0 0
\(208\) 12.0729 0.837104
\(209\) 12.0047 + 7.71494i 0.830381 + 0.533653i
\(210\) 0.0621023 + 0.431931i 0.00428547 + 0.0298061i
\(211\) −3.32454 7.27972i −0.228871 0.501157i 0.760002 0.649921i \(-0.225198\pi\)
−0.988873 + 0.148764i \(0.952471\pi\)
\(212\) −12.5458 3.68378i −0.861649 0.253003i
\(213\) 0.813607 1.78155i 0.0557474 0.122070i
\(214\) 2.50977 2.89642i 0.171564 0.197996i
\(215\) −0.277585 + 1.93065i −0.0189312 + 0.131669i
\(216\) −2.47310 + 0.726169i −0.168273 + 0.0494095i
\(217\) −7.90692 9.12507i −0.536756 0.619450i
\(218\) 2.98997 1.92154i 0.202506 0.130143i
\(219\) 1.75711 1.12923i 0.118734 0.0763060i
\(220\) −6.49811 7.49922i −0.438102 0.505597i
\(221\) 19.8250 5.82115i 1.33358 0.391573i
\(222\) −0.000611994 0.00425651i −4.10743e−5 0.000285678i
\(223\) −18.6787 + 21.5563i −1.25082 + 1.44352i −0.401307 + 0.915944i \(0.631444\pi\)
−0.849509 + 0.527574i \(0.823102\pi\)
\(224\) −2.89045 + 6.32920i −0.193126 + 0.422887i
\(225\) −7.20385 2.11524i −0.480256 0.141016i
\(226\) −0.113509 0.248551i −0.00755052 0.0165333i
\(227\) 1.33535 + 9.28759i 0.0886305 + 0.616439i 0.984925 + 0.172980i \(0.0553397\pi\)
−0.896295 + 0.443459i \(0.853751\pi\)
\(228\) 3.31369 + 2.12958i 0.219455 + 0.141035i
\(229\) −6.65292 −0.439637 −0.219819 0.975541i \(-0.570547\pi\)
−0.219819 + 0.975541i \(0.570547\pi\)
\(230\) 0 0
\(231\) 4.11262 0.270590
\(232\) −4.93235 3.16983i −0.323825 0.208109i
\(233\) 3.64884 + 25.3783i 0.239044 + 1.66258i 0.656830 + 0.754039i \(0.271897\pi\)
−0.417786 + 0.908545i \(0.637194\pi\)
\(234\) −0.895959 1.96188i −0.0585706 0.128252i
\(235\) −4.96220 1.45703i −0.323698 0.0950464i
\(236\) 8.41407 18.4242i 0.547709 1.19932i
\(237\) −0.753279 + 0.869330i −0.0489307 + 0.0564691i
\(238\) −0.537870 + 3.74097i −0.0348649 + 0.242491i
\(239\) 1.47004 0.431641i 0.0950887 0.0279206i −0.233842 0.972275i \(-0.575130\pi\)
0.328931 + 0.944354i \(0.393312\pi\)
\(240\) −1.74062 2.00878i −0.112356 0.129666i
\(241\) −23.4758 + 15.0870i −1.51221 + 0.971836i −0.519089 + 0.854720i \(0.673729\pi\)
−0.993118 + 0.117116i \(0.962635\pi\)
\(242\) 0.0747378 0.0480311i 0.00480433 0.00308755i
\(243\) −7.62083 8.79490i −0.488876 0.564193i
\(244\) 6.71482 1.97165i 0.429872 0.126222i
\(245\) 0.111317 0.774228i 0.00711179 0.0494636i
\(246\) −0.240777 + 0.277871i −0.0153514 + 0.0177164i
\(247\) −5.78558 + 12.6686i −0.368127 + 0.806087i
\(248\) −4.24371 1.24606i −0.269476 0.0791252i
\(249\) 0.588292 + 1.28818i 0.0372815 + 0.0816351i
\(250\) 0.392665 + 2.73104i 0.0248343 + 0.172726i
\(251\) −9.47860 6.09153i −0.598284 0.384494i 0.206163 0.978518i \(-0.433902\pi\)
−0.804448 + 0.594024i \(0.797539\pi\)
\(252\) −13.7148 −0.863952
\(253\) 0 0
\(254\) 2.46967 0.154961
\(255\) −3.82685 2.45937i −0.239647 0.154012i
\(256\) −1.66671 11.5922i −0.104169 0.724513i
\(257\) −6.82983 14.9552i −0.426033 0.932883i −0.993954 0.109799i \(-0.964979\pi\)
0.567921 0.823083i \(-0.307748\pi\)
\(258\) −0.140050 0.0411223i −0.00871911 0.00256016i
\(259\) −0.0401645 + 0.0879479i −0.00249570 + 0.00546482i
\(260\) 6.34202 7.31909i 0.393316 0.453910i
\(261\) 2.47869 17.2397i 0.153427 1.06711i
\(262\) 3.44764 1.01232i 0.212996 0.0625412i
\(263\) 15.3880 + 17.7587i 0.948865 + 1.09505i 0.995369 + 0.0961307i \(0.0306467\pi\)
−0.0465035 + 0.998918i \(0.514808\pi\)
\(264\) 1.26733 0.814465i 0.0779989 0.0501269i
\(265\) −8.56260 + 5.50285i −0.525996 + 0.338037i
\(266\) −1.66828 1.92530i −0.102289 0.118047i
\(267\) −5.67966 + 1.66770i −0.347590 + 0.102062i
\(268\) −1.88673 + 13.1225i −0.115250 + 0.801583i
\(269\) −2.90882 + 3.35696i −0.177354 + 0.204677i −0.837465 0.546490i \(-0.815964\pi\)
0.660112 + 0.751168i \(0.270509\pi\)
\(270\) −0.410840 + 0.899615i −0.0250029 + 0.0547488i
\(271\) 18.9029 + 5.55039i 1.14827 + 0.337162i 0.799864 0.600182i \(-0.204905\pi\)
0.348406 + 0.937344i \(0.386723\pi\)
\(272\) −9.56325 20.9406i −0.579857 1.26971i
\(273\) 0.571228 + 3.97298i 0.0345723 + 0.240456i
\(274\) 0.243189 + 0.156288i 0.0146916 + 0.00944169i
\(275\) 9.13961 0.551139
\(276\) 0 0
\(277\) −18.8580 −1.13307 −0.566535 0.824038i \(-0.691716\pi\)
−0.566535 + 0.824038i \(0.691716\pi\)
\(278\) 0.434575 + 0.279284i 0.0260641 + 0.0167504i
\(279\) −1.86982 13.0049i −0.111943 0.778582i
\(280\) 1.49296 + 3.26913i 0.0892214 + 0.195368i
\(281\) −18.4150 5.40715i −1.09855 0.322563i −0.318274 0.947999i \(-0.603103\pi\)
−0.780276 + 0.625436i \(0.784921\pi\)
\(282\) 0.160771 0.352040i 0.00957379 0.0209637i
\(283\) −0.713836 + 0.823810i −0.0424331 + 0.0489704i −0.776569 0.630032i \(-0.783042\pi\)
0.734136 + 0.679002i \(0.237587\pi\)
\(284\) 1.13151 7.86984i 0.0671429 0.466989i
\(285\) 2.94204 0.863862i 0.174272 0.0511708i
\(286\) 1.71933 + 1.98421i 0.101666 + 0.117329i
\(287\) −6.95434 + 4.46928i −0.410502 + 0.263813i
\(288\) −6.36944 + 4.09339i −0.375323 + 0.241205i
\(289\) −14.6682 16.9280i −0.862835 0.995764i
\(290\) −2.15853 + 0.633803i −0.126753 + 0.0372182i
\(291\) 0.723550 5.03240i 0.0424152 0.295004i
\(292\) 5.55261 6.40805i 0.324942 0.375003i
\(293\) −5.79057 + 12.6796i −0.338289 + 0.740750i −0.999959 0.00904554i \(-0.997121\pi\)
0.661670 + 0.749795i \(0.269848\pi\)
\(294\) 0.0561626 + 0.0164908i 0.00327547 + 0.000961765i
\(295\) −6.54980 14.3421i −0.381344 0.835027i
\(296\) 0.00504029 + 0.0350560i 0.000292961 + 0.00203759i
\(297\) 7.84113 + 5.03919i 0.454988 + 0.292403i
\(298\) −0.978991 −0.0567114
\(299\) 0 0
\(300\) 2.52284 0.145656
\(301\) −2.76077 1.77424i −0.159128 0.102265i
\(302\) 0.228715 + 1.59075i 0.0131611 + 0.0915374i
\(303\) 1.83004 + 4.00723i 0.105133 + 0.230209i
\(304\) 14.8887 + 4.37173i 0.853927 + 0.250736i
\(305\) 2.26306 4.95542i 0.129583 0.283746i
\(306\) −2.69319 + 3.10811i −0.153960 + 0.177679i
\(307\) 3.64757 25.3694i 0.208178 1.44791i −0.570921 0.821005i \(-0.693414\pi\)
0.779098 0.626902i \(-0.215677\pi\)
\(308\) 16.0190 4.70362i 0.912770 0.268013i
\(309\) −4.63164 5.34519i −0.263485 0.304078i
\(310\) −1.42765 + 0.917492i −0.0810849 + 0.0521101i
\(311\) −3.12412 + 2.00775i −0.177153 + 0.113849i −0.626212 0.779653i \(-0.715396\pi\)
0.449059 + 0.893502i \(0.351759\pi\)
\(312\) 0.962839 + 1.11118i 0.0545100 + 0.0629079i
\(313\) −15.0916 + 4.43130i −0.853029 + 0.250472i −0.678882 0.734248i \(-0.737535\pi\)
−0.174147 + 0.984720i \(0.555717\pi\)
\(314\) −0.327705 + 2.27924i −0.0184935 + 0.128625i
\(315\) −6.99135 + 8.06845i −0.393918 + 0.454605i
\(316\) −1.93984 + 4.24765i −0.109124 + 0.238949i
\(317\) 3.17105 + 0.931104i 0.178104 + 0.0522960i 0.369568 0.929204i \(-0.379506\pi\)
−0.191465 + 0.981500i \(0.561324\pi\)
\(318\) −0.316413 0.692848i −0.0177436 0.0388530i
\(319\) 3.01737 + 20.9862i 0.168940 + 1.17500i
\(320\) −8.51572 5.47272i −0.476043 0.305934i
\(321\) −7.76120 −0.433188
\(322\) 0 0
\(323\) 26.5569 1.47766
\(324\) −11.4295 7.34531i −0.634974 0.408073i
\(325\) 1.26946 + 8.82928i 0.0704169 + 0.489761i
\(326\) −0.592248 1.29684i −0.0328016 0.0718255i
\(327\) −6.90600 2.02778i −0.381903 0.112137i
\(328\) −1.25793 + 2.75448i −0.0694576 + 0.152091i
\(329\) 5.69821 6.57609i 0.314153 0.362551i
\(330\) 0.0822629 0.572151i 0.00452842 0.0314959i
\(331\) −7.67658 + 2.25405i −0.421943 + 0.123894i −0.485809 0.874065i \(-0.661475\pi\)
0.0638663 + 0.997958i \(0.479657\pi\)
\(332\) 3.76475 + 4.34476i 0.206618 + 0.238449i
\(333\) −0.0885071 + 0.0568800i −0.00485016 + 0.00311701i
\(334\) 0.350057 0.224968i 0.0191542 0.0123097i
\(335\) 6.75819 + 7.79937i 0.369239 + 0.426125i
\(336\) 4.29094 1.25993i 0.234090 0.0687351i
\(337\) −0.198138 + 1.37808i −0.0107933 + 0.0750690i −0.994506 0.104678i \(-0.966619\pi\)
0.983713 + 0.179747i \(0.0575279\pi\)
\(338\) 0.335156 0.386790i 0.0182301 0.0210386i
\(339\) −0.229867 + 0.503338i −0.0124846 + 0.0273376i
\(340\) −17.7188 5.20270i −0.960935 0.282156i
\(341\) 6.64411 + 14.5486i 0.359799 + 0.787849i
\(342\) −0.394513 2.74390i −0.0213328 0.148373i
\(343\) 16.1011 + 10.3476i 0.869379 + 0.558716i
\(344\) −1.20212 −0.0648141
\(345\) 0 0
\(346\) −2.41484 −0.129823
\(347\) 14.1571 + 9.09821i 0.759992 + 0.488418i 0.862339 0.506331i \(-0.168999\pi\)
−0.102347 + 0.994749i \(0.532635\pi\)
\(348\) 0.832894 + 5.79291i 0.0446478 + 0.310532i
\(349\) −7.94595 17.3992i −0.425337 0.931358i −0.994060 0.108830i \(-0.965290\pi\)
0.568723 0.822529i \(-0.307438\pi\)
\(350\) −1.56555 0.459686i −0.0836819 0.0245712i
\(351\) −3.77898 + 8.27481i −0.201707 + 0.441677i
\(352\) 6.03571 6.96558i 0.321704 0.371267i
\(353\) −4.78888 + 33.3074i −0.254886 + 1.77277i 0.313085 + 0.949725i \(0.398637\pi\)
−0.567971 + 0.823048i \(0.692272\pi\)
\(354\) 1.13209 0.332412i 0.0601700 0.0176675i
\(355\) −4.05303 4.67745i −0.215113 0.248253i
\(356\) −20.2155 + 12.9917i −1.07142 + 0.688559i
\(357\) 6.43871 4.13791i 0.340773 0.219001i
\(358\) 1.59591 + 1.84178i 0.0843465 + 0.0973411i
\(359\) 18.8363 5.53084i 0.994142 0.291906i 0.256092 0.966652i \(-0.417565\pi\)
0.738050 + 0.674746i \(0.235747\pi\)
\(360\) −0.556554 + 3.87092i −0.0293330 + 0.204015i
\(361\) 0.719902 0.830811i 0.0378896 0.0437269i
\(362\) 0.912766 1.99868i 0.0479739 0.105048i
\(363\) −0.172624 0.0506868i −0.00906039 0.00266037i
\(364\) 6.76890 + 14.8218i 0.354787 + 0.776875i
\(365\) −0.939335 6.53322i −0.0491670 0.341964i
\(366\) 0.342953 + 0.220403i 0.0179265 + 0.0115206i
\(367\) 6.73062 0.351336 0.175668 0.984449i \(-0.443792\pi\)
0.175668 + 0.984449i \(0.443792\pi\)
\(368\) 0 0
\(369\) −8.99539 −0.468281
\(370\) 0.0114320 + 0.00734690i 0.000594321 + 0.000381947i
\(371\) −2.43717 16.9509i −0.126532 0.880046i
\(372\) 1.83400 + 4.01589i 0.0950883 + 0.208214i
\(373\) −24.3021 7.13573i −1.25831 0.369474i −0.416447 0.909160i \(-0.636725\pi\)
−0.841866 + 0.539686i \(0.818543\pi\)
\(374\) 2.07972 4.55396i 0.107540 0.235480i
\(375\) 3.65903 4.22274i 0.188951 0.218061i
\(376\) 0.453613 3.15494i 0.0233933 0.162704i
\(377\) −19.8546 + 5.82983i −1.02256 + 0.300251i
\(378\) −1.08967 1.25755i −0.0560468 0.0646814i
\(379\) 24.2763 15.6014i 1.24699 0.801391i 0.260541 0.965463i \(-0.416099\pi\)
0.986448 + 0.164072i \(0.0524629\pi\)
\(380\) 10.4715 6.72966i 0.537179 0.345224i
\(381\) −3.27516 3.77973i −0.167791 0.193642i
\(382\) 4.65829 1.36780i 0.238339 0.0699827i
\(383\) 1.83521 12.7642i 0.0937750 0.652219i −0.887671 0.460479i \(-0.847678\pi\)
0.981446 0.191741i \(-0.0614132\pi\)
\(384\) 2.21005 2.55053i 0.112781 0.130156i
\(385\) 5.39882 11.8218i 0.275150 0.602493i
\(386\) 3.11682 + 0.915181i 0.158642 + 0.0465815i
\(387\) −1.48346 3.24833i −0.0754086 0.165122i
\(388\) −2.93728 20.4292i −0.149118 1.03714i
\(389\) 1.76366 + 1.13343i 0.0894210 + 0.0574674i 0.584587 0.811331i \(-0.301256\pi\)
−0.495166 + 0.868798i \(0.664893\pi\)
\(390\) 0.564150 0.0285669
\(391\) 0 0
\(392\) 0.482074 0.0243484
\(393\) −6.12141 3.93399i −0.308784 0.198444i
\(394\) −0.0773863 0.538233i −0.00389866 0.0271158i
\(395\) 1.51004 + 3.30652i 0.0759782 + 0.166369i
\(396\) 17.4312 + 5.11827i 0.875952 + 0.257203i
\(397\) 0.780567 1.70920i 0.0391756 0.0857825i −0.889032 0.457844i \(-0.848622\pi\)
0.928208 + 0.372062i \(0.121349\pi\)
\(398\) −0.264910 + 0.305723i −0.0132788 + 0.0153245i
\(399\) −0.734200 + 5.10648i −0.0367560 + 0.255644i
\(400\) 9.53591 2.79999i 0.476795 0.140000i
\(401\) −11.0375 12.7379i −0.551184 0.636100i 0.409975 0.912097i \(-0.365538\pi\)
−0.961159 + 0.275997i \(0.910992\pi\)
\(402\) −0.649684 + 0.417526i −0.0324033 + 0.0208243i
\(403\) −13.1317 + 8.43926i −0.654138 + 0.420389i
\(404\) 11.7113 + 13.5155i 0.582657 + 0.672422i
\(405\) −10.1476 + 2.97962i −0.504241 + 0.148058i
\(406\) 0.538672 3.74654i 0.0267338 0.185938i
\(407\) 0.0838697 0.0967908i 0.00415727 0.00479774i
\(408\) 1.16466 2.55025i 0.0576593 0.126256i
\(409\) −12.4826 3.66523i −0.617226 0.181234i −0.0418516 0.999124i \(-0.513326\pi\)
−0.575375 + 0.817890i \(0.695144\pi\)
\(410\) 0.482666 + 1.05689i 0.0238372 + 0.0521961i
\(411\) −0.0833127 0.579453i −0.00410951 0.0285823i
\(412\) −24.1540 15.5228i −1.18998 0.764755i
\(413\) 26.5279 1.30535
\(414\) 0 0
\(415\) 4.47517 0.219677
\(416\) 7.56741 + 4.86328i 0.371023 + 0.238442i
\(417\) −0.148879 1.03547i −0.00729062 0.0507074i
\(418\) 1.40184 + 3.06960i 0.0685662 + 0.150139i
\(419\) 28.2193 + 8.28594i 1.37860 + 0.404795i 0.885283 0.465053i \(-0.153965\pi\)
0.493321 + 0.869847i \(0.335783\pi\)
\(420\) 1.49026 3.26321i 0.0727171 0.159228i
\(421\) −14.6016 + 16.8511i −0.711639 + 0.821275i −0.990275 0.139122i \(-0.955572\pi\)
0.278637 + 0.960397i \(0.410117\pi\)
\(422\) 0.269334 1.87326i 0.0131110 0.0911889i
\(423\) 9.08495 2.66758i 0.441725 0.129702i
\(424\) −4.10799 4.74088i −0.199502 0.230237i
\(425\) 14.3090 9.19581i 0.694087 0.446062i
\(426\) 0.389630 0.250400i 0.0188776 0.0121319i
\(427\) 6.00234 + 6.92707i 0.290473 + 0.335224i
\(428\) −30.2306 + 8.87652i −1.46125 + 0.429063i
\(429\) 0.756669 5.26275i 0.0365323 0.254088i
\(430\) −0.302056 + 0.348591i −0.0145664 + 0.0168106i
\(431\) −0.731770 + 1.60235i −0.0352481 + 0.0771826i −0.926437 0.376450i \(-0.877145\pi\)
0.891189 + 0.453632i \(0.149872\pi\)
\(432\) 9.72491 + 2.85549i 0.467890 + 0.137385i
\(433\) 5.73221 + 12.5518i 0.275473 + 0.603201i 0.995913 0.0903159i \(-0.0287877\pi\)
−0.720441 + 0.693517i \(0.756060\pi\)
\(434\) −0.406350 2.82623i −0.0195054 0.135663i
\(435\) 3.83256 + 2.46304i 0.183757 + 0.118093i
\(436\) −29.2187 −1.39932
\(437\) 0 0
\(438\) 0.493928 0.0236008
\(439\) 6.04734 + 3.88639i 0.288624 + 0.185487i 0.676939 0.736040i \(-0.263306\pi\)
−0.388315 + 0.921527i \(0.626943\pi\)
\(440\) −0.677505 4.71215i −0.0322988 0.224643i
\(441\) 0.594897 + 1.30264i 0.0283284 + 0.0620306i
\(442\) 4.68820 + 1.37658i 0.222995 + 0.0654772i
\(443\) −9.71719 + 21.2777i −0.461678 + 1.01093i 0.525424 + 0.850840i \(0.323907\pi\)
−0.987102 + 0.160093i \(0.948821\pi\)
\(444\) 0.0231509 0.0267175i 0.00109869 0.00126796i
\(445\) −2.66213 + 18.5155i −0.126197 + 0.877720i
\(446\) −6.47189 + 1.90032i −0.306453 + 0.0899826i
\(447\) 1.29829 + 1.49831i 0.0614071 + 0.0708676i
\(448\) 14.3278 9.20789i 0.676923 0.435032i
\(449\) 5.68061 3.65070i 0.268084 0.172287i −0.399692 0.916650i \(-0.630883\pi\)
0.667776 + 0.744362i \(0.267246\pi\)
\(450\) −1.16269 1.34182i −0.0548097 0.0632538i
\(451\) 10.5067 3.08505i 0.494742 0.145269i
\(452\) −0.319684 + 2.22345i −0.0150367 + 0.104582i
\(453\) 2.13127 2.45962i 0.100136 0.115563i
\(454\) −0.921766 + 2.01839i −0.0432606 + 0.0947276i
\(455\) 12.1703 + 3.57351i 0.570550 + 0.167529i
\(456\) 0.785040 + 1.71900i 0.0367629 + 0.0804995i
\(457\) −1.02821 7.15133i −0.0480974 0.334525i −0.999636 0.0269943i \(-0.991406\pi\)
0.951538 0.307531i \(-0.0995027\pi\)
\(458\) −1.32352 0.850576i −0.0618441 0.0397448i
\(459\) 17.3462 0.809653
\(460\) 0 0
\(461\) −32.1800 −1.49877 −0.749385 0.662134i \(-0.769651\pi\)
−0.749385 + 0.662134i \(0.769651\pi\)
\(462\) 0.818159 + 0.525799i 0.0380642 + 0.0244624i
\(463\) 2.67184 + 18.5831i 0.124171 + 0.863629i 0.952750 + 0.303756i \(0.0982409\pi\)
−0.828579 + 0.559873i \(0.810850\pi\)
\(464\) 9.57751 + 20.9718i 0.444625 + 0.973592i
\(465\) 3.29746 + 0.968223i 0.152916 + 0.0449003i
\(466\) −2.51872 + 5.51522i −0.116677 + 0.255488i
\(467\) −18.6472 + 21.5200i −0.862888 + 0.995826i 0.137098 + 0.990557i \(0.456222\pi\)
−0.999986 + 0.00526856i \(0.998323\pi\)
\(468\) −2.52335 + 17.5503i −0.116642 + 0.811262i
\(469\) −16.6602 + 4.89187i −0.769296 + 0.225886i
\(470\) −0.800892 0.924279i −0.0369424 0.0426338i
\(471\) 3.92288 2.52108i 0.180757 0.116165i
\(472\) 8.17476 5.25360i 0.376274 0.241816i
\(473\) 2.84674 + 3.28532i 0.130893 + 0.151059i
\(474\) −0.261000 + 0.0766366i −0.0119881 + 0.00352004i
\(475\) −1.63164 + 11.3483i −0.0748647 + 0.520695i
\(476\) 20.3469 23.4815i 0.932597 1.07627i
\(477\) 7.74121 16.9509i 0.354446 0.776128i
\(478\) 0.347632 + 0.102074i 0.0159003 + 0.00466876i
\(479\) 1.96386 + 4.30024i 0.0897308 + 0.196483i 0.949177 0.314744i \(-0.101919\pi\)
−0.859446 + 0.511227i \(0.829191\pi\)
\(480\) −0.281847 1.96029i −0.0128645 0.0894745i
\(481\) 0.105154 + 0.0675781i 0.00479459 + 0.00308130i
\(482\) −6.59911 −0.300581
\(483\) 0 0
\(484\) −0.730356 −0.0331980
\(485\) −13.5159 8.68612i −0.613724 0.394416i
\(486\) −0.391648 2.72397i −0.0177655 0.123562i
\(487\) 13.1589 + 28.8139i 0.596285 + 1.30568i 0.931569 + 0.363565i \(0.118441\pi\)
−0.335284 + 0.942117i \(0.608832\pi\)
\(488\) 3.22150 + 0.945919i 0.145831 + 0.0428197i
\(489\) −1.19936 + 2.62623i −0.0542368 + 0.118762i
\(490\) 0.121130 0.139792i 0.00547211 0.00631515i
\(491\) 1.02450 7.12552i 0.0462348 0.321570i −0.953558 0.301210i \(-0.902610\pi\)
0.999793 0.0203604i \(-0.00648138\pi\)
\(492\) 2.90021 0.851578i 0.130751 0.0383921i
\(493\) 25.8393 + 29.8201i 1.16374 + 1.34303i
\(494\) −2.77066 + 1.78060i −0.124658 + 0.0801128i
\(495\) 11.8969 7.64569i 0.534727 0.343648i
\(496\) 11.3893 + 13.1439i 0.511393 + 0.590179i
\(497\) 9.99148 2.93376i 0.448179 0.131597i
\(498\) −0.0476599 + 0.331482i −0.00213569 + 0.0148541i
\(499\) 14.9264 17.2260i 0.668199 0.771142i −0.315895 0.948794i \(-0.602305\pi\)
0.984093 + 0.177652i \(0.0568501\pi\)
\(500\) 9.42270 20.6328i 0.421396 0.922728i
\(501\) −0.808533 0.237407i −0.0361226 0.0106066i
\(502\) −1.10686 2.42368i −0.0494015 0.108174i
\(503\) 3.47666 + 24.1807i 0.155017 + 1.07816i 0.907651 + 0.419726i \(0.137874\pi\)
−0.752634 + 0.658439i \(0.771217\pi\)
\(504\) −5.53530 3.55732i −0.246562 0.158456i
\(505\) 13.9212 0.619485
\(506\) 0 0
\(507\) −1.03644 −0.0460297
\(508\) −17.0800 10.9766i −0.757801 0.487009i
\(509\) 1.11436 + 7.75055i 0.0493932 + 0.343537i 0.999500 + 0.0316129i \(0.0100644\pi\)
−0.950107 + 0.311924i \(0.899027\pi\)
\(510\) −0.446879 0.978528i −0.0197881 0.0433299i
\(511\) 10.6554 + 3.12870i 0.471366 + 0.138406i
\(512\) 7.00550 15.3399i 0.309602 0.677935i
\(513\) −7.65679 + 8.83640i −0.338055 + 0.390137i
\(514\) 0.553312 3.84837i 0.0244056 0.169744i
\(515\) −21.4450 + 6.29682i −0.944980 + 0.277471i
\(516\) 0.785797 + 0.906858i 0.0345928 + 0.0399222i
\(517\) −9.69645 + 6.23153i −0.426449 + 0.274062i
\(518\) −0.0192344 + 0.0123612i −0.000845112 + 0.000543121i
\(519\) 3.20245 + 3.69582i 0.140572 + 0.162229i
\(520\) 4.45805 1.30900i 0.195498 0.0574035i
\(521\) −0.431737 + 3.00280i −0.0189148 + 0.131555i −0.997091 0.0762227i \(-0.975714\pi\)
0.978176 + 0.207778i \(0.0666231\pi\)
\(522\) 2.69721 3.11274i 0.118053 0.136241i
\(523\) 12.3165 26.9694i 0.538564 1.17929i −0.423357 0.905963i \(-0.639148\pi\)
0.961921 0.273328i \(-0.0881245\pi\)
\(524\) −28.3428 8.32220i −1.23816 0.363557i
\(525\) 1.37262 + 3.00562i 0.0599061 + 0.131176i
\(526\) 0.790817 + 5.50025i 0.0344813 + 0.239822i
\(527\) 25.0400 + 16.0923i 1.09076 + 0.700989i
\(528\) −5.92389 −0.257804
\(529\) 0 0
\(530\) −2.40697 −0.104552
\(531\) 24.2840 + 15.6064i 1.05384 + 0.677260i
\(532\) 2.98051 + 20.7299i 0.129222 + 0.898756i
\(533\) 4.43965 + 9.72147i 0.192302 + 0.421084i
\(534\) −1.34312 0.394376i −0.0581225 0.0170663i
\(535\) −10.1885 + 22.3097i −0.440487 + 0.964532i
\(536\) −4.16517 + 4.80686i −0.179908 + 0.207625i
\(537\) 0.702352 4.88496i 0.0303087 0.210802i
\(538\) −1.00786 + 0.295936i −0.0434521 + 0.0127587i
\(539\) −1.14160 1.31748i −0.0491722 0.0567477i
\(540\) 6.83973 4.39563i 0.294335 0.189158i
\(541\) 19.9922 12.8482i 0.859532 0.552388i −0.0350020 0.999387i \(-0.511144\pi\)
0.894534 + 0.446999i \(0.147507\pi\)
\(542\) 3.05090 + 3.52093i 0.131047 + 0.151237i
\(543\) −4.26937 + 1.25360i −0.183216 + 0.0537971i
\(544\) 2.44109 16.9781i 0.104661 0.727931i
\(545\) −14.8947 + 17.1894i −0.638019 + 0.736314i
\(546\) −0.394306 + 0.863411i −0.0168748 + 0.0369506i
\(547\) 18.3388 + 5.38476i 0.784111 + 0.230236i 0.649196 0.760621i \(-0.275106\pi\)
0.134915 + 0.990857i \(0.456924\pi\)
\(548\) −0.987233 2.16174i −0.0421725 0.0923449i
\(549\) 1.41943 + 9.87232i 0.0605796 + 0.421341i
\(550\) 1.81822 + 1.16850i 0.0775293 + 0.0498250i
\(551\) −26.5965 −1.13305
\(552\) 0 0
\(553\) −6.11593 −0.260076
\(554\) −3.75159 2.41100i −0.159390 0.102434i
\(555\) −0.00391643 0.0272394i −0.000166243 0.00115625i
\(556\) −1.76417 3.86300i −0.0748176 0.163828i
\(557\) 18.8308 + 5.52922i 0.797886 + 0.234281i 0.655168 0.755483i \(-0.272598\pi\)
0.142718 + 0.989763i \(0.454416\pi\)
\(558\) 1.29070 2.82623i 0.0546395 0.119644i
\(559\) −2.77836 + 3.20640i −0.117512 + 0.135616i
\(560\) 2.01122 13.9883i 0.0849896 0.591115i
\(561\) −9.72769 + 2.85631i −0.410704 + 0.120593i
\(562\) −2.97216 3.43006i −0.125373 0.144688i
\(563\) 37.5868 24.1556i 1.58409 1.01804i 0.609858 0.792511i \(-0.291227\pi\)
0.974237 0.225525i \(-0.0724097\pi\)
\(564\) −2.67655 + 1.72011i −0.112703 + 0.0724298i
\(565\) 1.14509 + 1.32151i 0.0481745 + 0.0555963i
\(566\) −0.247334 + 0.0726237i −0.0103962 + 0.00305260i
\(567\) 2.53239 17.6132i 0.106350 0.739683i
\(568\) 2.49794 2.88278i 0.104811 0.120959i
\(569\) 1.72199 3.77063i 0.0721896 0.158073i −0.870097 0.492881i \(-0.835944\pi\)
0.942287 + 0.334807i \(0.108671\pi\)
\(570\) 0.695731 + 0.204285i 0.0291410 + 0.00855657i
\(571\) −5.56168 12.1784i −0.232749 0.509650i 0.756835 0.653606i \(-0.226745\pi\)
−0.989584 + 0.143957i \(0.954017\pi\)
\(572\) −3.07172 21.3643i −0.128435 0.893287i
\(573\) −8.27097 5.31543i −0.345525 0.222055i
\(574\) −1.95489 −0.0815954
\(575\) 0 0
\(576\) 18.5329 0.772203
\(577\) 19.7089 + 12.6662i 0.820493 + 0.527299i 0.882244 0.470793i \(-0.156032\pi\)
−0.0617509 + 0.998092i \(0.519668\pi\)
\(578\) −0.753824 5.24296i −0.0313550 0.218079i
\(579\) −2.73273 5.98384i −0.113568 0.248680i
\(580\) 17.7452 + 5.21045i 0.736828 + 0.216352i
\(581\) −3.12787 + 6.84908i −0.129766 + 0.284148i
\(582\) 0.787335 0.908633i 0.0326361 0.0376640i
\(583\) −3.22836 + 22.4537i −0.133705 + 0.929938i
\(584\) 3.90314 1.14607i 0.161513 0.0474245i
\(585\) 9.03853 + 10.4310i 0.373697 + 0.431270i
\(586\) −2.77306 + 1.78214i −0.114554 + 0.0736193i
\(587\) −33.7055 + 21.6612i −1.39118 + 0.894055i −0.999659 0.0261162i \(-0.991686\pi\)
−0.391517 + 0.920171i \(0.628050\pi\)
\(588\) −0.315120 0.363668i −0.0129953 0.0149974i
\(589\) −19.2505 + 5.65246i −0.793203 + 0.232906i
\(590\) 0.530626 3.69058i 0.0218455 0.151939i
\(591\) −0.721120 + 0.832217i −0.0296629 + 0.0342328i
\(592\) 0.0578536 0.126682i 0.00237777 0.00520659i
\(593\) −5.60458 1.64565i −0.230153 0.0675789i 0.164623 0.986357i \(-0.447359\pi\)
−0.394775 + 0.918778i \(0.629178\pi\)
\(594\) 0.915643 + 2.00498i 0.0375693 + 0.0822652i
\(595\) −3.44208 23.9402i −0.141111 0.981452i
\(596\) 6.77060 + 4.35120i 0.277334 + 0.178232i
\(597\) 0.819209 0.0335280
\(598\) 0 0
\(599\) −5.01179 −0.204776 −0.102388 0.994745i \(-0.532648\pi\)
−0.102388 + 0.994745i \(0.532648\pi\)
\(600\) 1.01822 + 0.654369i 0.0415686 + 0.0267145i
\(601\) −1.81347 12.6130i −0.0739729 0.514493i −0.992795 0.119822i \(-0.961768\pi\)
0.918822 0.394671i \(-0.129141\pi\)
\(602\) −0.322387 0.705929i −0.0131395 0.0287715i
\(603\) −18.1289 5.32312i −0.738265 0.216774i
\(604\) 5.48843 12.0180i 0.223321 0.489005i
\(605\) −0.372311 + 0.429670i −0.0151366 + 0.0174686i
\(606\) −0.148259 + 1.03116i −0.00602260 + 0.0418881i
\(607\) 0.593029 0.174129i 0.0240703 0.00706768i −0.269675 0.962951i \(-0.586916\pi\)
0.293746 + 0.955884i \(0.405098\pi\)
\(608\) 7.57136 + 8.73782i 0.307059 + 0.354365i
\(609\) −6.44831 + 4.14407i −0.261299 + 0.167926i
\(610\) 1.08376 0.696491i 0.0438802 0.0282001i
\(611\) −7.36675 8.50168i −0.298027 0.343941i
\(612\) 32.4400 9.52526i 1.31131 0.385036i
\(613\) −4.52660 + 31.4832i −0.182828 + 1.27160i 0.667208 + 0.744871i \(0.267489\pi\)
−0.850036 + 0.526724i \(0.823420\pi\)
\(614\) 3.96912 4.58061i 0.160181 0.184858i
\(615\) 0.977443 2.14030i 0.0394143 0.0863053i
\(616\) 7.68530 + 2.25661i 0.309650 + 0.0909213i
\(617\) 16.6064 + 36.3629i 0.668548 + 1.46392i 0.874337 + 0.485320i \(0.161297\pi\)
−0.205789 + 0.978596i \(0.565976\pi\)
\(618\) −0.238028 1.65552i −0.00957489 0.0665948i
\(619\) −29.5562 18.9946i −1.18797 0.763459i −0.211131 0.977458i \(-0.567715\pi\)
−0.976834 + 0.213999i \(0.931351\pi\)
\(620\) 13.9513 0.560298
\(621\) 0 0
\(622\) −0.878199 −0.0352126
\(623\) −26.4767 17.0155i −1.06076 0.681712i
\(624\) −0.822807 5.72275i −0.0329387 0.229093i
\(625\) −1.70647 3.73665i −0.0682589 0.149466i
\(626\) −3.56885 1.04791i −0.142640 0.0418829i
\(627\) 2.83885 6.21622i 0.113373 0.248252i
\(628\) 12.3966 14.3065i 0.494679 0.570890i
\(629\) 0.0339203 0.235921i 0.00135249 0.00940678i
\(630\) −2.42240 + 0.711281i −0.0965108 + 0.0283381i
\(631\) −30.9243 35.6885i −1.23108 1.42074i −0.873479 0.486861i \(-0.838142\pi\)
−0.357596 0.933876i \(-0.616404\pi\)
\(632\) −1.88467 + 1.21120i −0.0749680 + 0.0481790i
\(633\) −3.22413 + 2.07202i −0.128148 + 0.0823556i
\(634\) 0.511802 + 0.590651i 0.0203263 + 0.0234578i
\(635\) −15.1643 + 4.45265i −0.601779 + 0.176698i
\(636\) −0.891136 + 6.19798i −0.0353358 + 0.245766i
\(637\) 1.11418 1.28583i 0.0441454 0.0509465i
\(638\) −2.08282 + 4.56075i −0.0824597 + 0.180562i
\(639\) 10.8723 + 3.19239i 0.430101 + 0.126289i
\(640\) −4.43030 9.70101i −0.175123 0.383466i
\(641\) −0.983429 6.83990i −0.0388431 0.270160i 0.961139 0.276063i \(-0.0890299\pi\)
−0.999983 + 0.00590353i \(0.998121\pi\)
\(642\) −1.54400 0.992271i −0.0609370 0.0391618i
\(643\) 38.9219 1.53493 0.767465 0.641091i \(-0.221518\pi\)
0.767465 + 0.641091i \(0.221518\pi\)
\(644\) 0 0
\(645\) 0.934078 0.0367793
\(646\) 5.28319 + 3.39530i 0.207864 + 0.133586i
\(647\) −1.65845 11.5348i −0.0652004 0.453479i −0.996102 0.0882087i \(-0.971886\pi\)
0.930902 0.365270i \(-0.119023\pi\)
\(648\) −2.70775 5.92914i −0.106370 0.232918i
\(649\) −33.7164 9.90002i −1.32348 0.388610i
\(650\) −0.876281 + 1.91879i −0.0343706 + 0.0752610i
\(651\) −3.78655 + 4.36992i −0.148407 + 0.171271i
\(652\) −1.66799 + 11.6011i −0.0653235 + 0.454335i
\(653\) 37.8544 11.1150i 1.48136 0.434965i 0.561584 0.827420i \(-0.310192\pi\)
0.919771 + 0.392455i \(0.128374\pi\)
\(654\) −1.11462 1.28634i −0.0435850 0.0502998i
\(655\) −19.3442 + 12.4317i −0.755839 + 0.485748i
\(656\) 10.0172 6.43764i 0.391104 0.251348i
\(657\) 7.91348 + 9.13264i 0.308734 + 0.356298i
\(658\) 1.97435 0.579721i 0.0769681 0.0225999i
\(659\) 0.106183 0.738521i 0.00413631 0.0287687i −0.987649 0.156684i \(-0.949920\pi\)
0.991785 + 0.127915i \(0.0408286\pi\)
\(660\) −3.11189 + 3.59131i −0.121130 + 0.139792i
\(661\) −12.1312 + 26.5635i −0.471847 + 1.03320i 0.512778 + 0.858521i \(0.328617\pi\)
−0.984625 + 0.174680i \(0.944111\pi\)
\(662\) −1.81535 0.533035i −0.0705555 0.0207170i
\(663\) −4.11047 9.00067i −0.159637 0.349557i
\(664\) 0.392520 + 2.73004i 0.0152327 + 0.105946i
\(665\) 13.7148 + 8.81398i 0.531838 + 0.341791i
\(666\) −0.0248796 −0.000964065
\(667\) 0 0
\(668\) −3.42084 −0.132356
\(669\) 11.4911 + 7.38487i 0.444271 + 0.285515i
\(670\) 0.347315 + 2.41563i 0.0134180 + 0.0933240i
\(671\) −5.04371 11.0442i −0.194710 0.426356i
\(672\) 3.19714 + 0.938766i 0.123332 + 0.0362137i
\(673\) 6.95199 15.2227i 0.267980 0.586794i −0.727026 0.686610i \(-0.759098\pi\)
0.995006 + 0.0998160i \(0.0318254\pi\)
\(674\) −0.215606 + 0.248822i −0.00830482 + 0.00958427i
\(675\) −1.06574 + 7.41240i −0.0410204 + 0.285303i
\(676\) −4.03702 + 1.18538i −0.155270 + 0.0455914i
\(677\) −29.6187 34.1818i −1.13834 1.31371i −0.942929 0.332994i \(-0.891941\pi\)
−0.195411 0.980721i \(-0.562604\pi\)
\(678\) −0.110081 + 0.0707449i −0.00422764 + 0.00271694i
\(679\) 22.7405 14.6145i 0.872702 0.560851i
\(680\) −5.80183 6.69567i −0.222490 0.256767i
\(681\) 4.31147 1.26596i 0.165216 0.0485117i
\(682\) −0.538266 + 3.74372i −0.0206113 + 0.143355i
\(683\) −22.7918 + 26.3032i −0.872105 + 1.00646i 0.127788 + 0.991802i \(0.459212\pi\)
−0.999893 + 0.0146607i \(0.995333\pi\)
\(684\) −9.46704 + 20.7299i −0.361981 + 0.792629i
\(685\) −1.77501 0.521191i −0.0678197 0.0199137i
\(686\) 1.88020 + 4.11706i 0.0717863 + 0.157190i
\(687\) 0.453419 + 3.15359i 0.0172990 + 0.120317i
\(688\) 3.97666 + 2.55565i 0.151609 + 0.0974331i
\(689\) −22.1397 −0.843457
\(690\) 0 0
\(691\) 10.7550 0.409140 0.204570 0.978852i \(-0.434420\pi\)
0.204570 + 0.978852i \(0.434420\pi\)
\(692\) 16.7008 + 10.7329i 0.634868 + 0.408005i
\(693\) 3.38622 + 23.5517i 0.128632 + 0.894654i
\(694\) 1.65319 + 3.61997i 0.0627541 + 0.137412i
\(695\) −3.17193 0.931361i −0.120318 0.0353285i
\(696\) −1.16640 + 2.55405i −0.0442121 + 0.0968111i
\(697\) 13.3453 15.4013i 0.505489 0.583365i
\(698\) 0.643734 4.47727i 0.0243657 0.169467i
\(699\) 11.7810 3.45923i 0.445600 0.130840i
\(700\) 8.78404 + 10.1373i 0.332005 + 0.383155i
\(701\) −17.0438 + 10.9534i −0.643736 + 0.413704i −0.821372 0.570392i \(-0.806791\pi\)
0.177637 + 0.984096i \(0.443155\pi\)
\(702\) −1.80972 + 1.16304i −0.0683035 + 0.0438960i
\(703\) 0.105209 + 0.121417i 0.00396802 + 0.00457933i
\(704\) −21.6466 + 6.35601i −0.815836 + 0.239551i
\(705\) −0.352468 + 2.45147i −0.0132747 + 0.0923277i
\(706\) −5.21105 + 6.01387i −0.196120 + 0.226335i
\(707\) −9.73007 + 21.3059i −0.365937 + 0.801290i
\(708\) −9.30685 2.73274i −0.349773 0.102703i
\(709\) −5.46349 11.9634i −0.205186 0.449294i 0.778863 0.627194i \(-0.215797\pi\)
−0.984049 + 0.177900i \(0.943070\pi\)
\(710\) −0.208293 1.44871i −0.00781708 0.0543690i
\(711\) −5.59861 3.59801i −0.209964 0.134936i
\(712\) −11.5287 −0.432057
\(713\) 0 0
\(714\) 1.80994 0.0677353
\(715\) −14.1345 9.08370i −0.528601 0.339711i
\(716\) −2.85122 19.8307i −0.106555 0.741108i
\(717\) −0.304793 0.667404i −0.0113827 0.0249247i
\(718\) 4.45439 + 1.30793i 0.166236 + 0.0488114i
\(719\) −11.9393 + 26.1434i −0.445260 + 0.974983i 0.545343 + 0.838213i \(0.316399\pi\)
−0.990603 + 0.136770i \(0.956328\pi\)
\(720\) 10.0705 11.6219i 0.375304 0.433124i
\(721\) 5.35169 37.2219i 0.199308 1.38621i
\(722\) 0.249436 0.0732409i 0.00928304 0.00272575i
\(723\) 8.75143 + 10.0997i 0.325469 + 0.375611i
\(724\) −15.1959 + 9.76579i −0.564750 + 0.362943i
\(725\) −14.3303 + 9.20952i −0.532214 + 0.342033i
\(726\) −0.0278612 0.0321535i −0.00103403 0.00119333i
\(727\) 26.7207 7.84591i 0.991017 0.290989i 0.254252 0.967138i \(-0.418171\pi\)
0.736765 + 0.676149i \(0.236353\pi\)
\(728\) −1.11253 + 7.73779i −0.0412330 + 0.286782i
\(729\) 10.0801 11.6330i 0.373335 0.430852i
\(730\) 0.648403 1.41980i 0.0239985 0.0525493i
\(731\) 7.76238 + 2.27924i 0.287102 + 0.0843007i
\(732\) −1.39223 3.04856i −0.0514584 0.112678i
\(733\) 3.55996 + 24.7601i 0.131490 + 0.914535i 0.943614 + 0.331049i \(0.107403\pi\)
−0.812123 + 0.583486i \(0.801688\pi\)
\(734\) 1.33898 + 0.860511i 0.0494227 + 0.0317620i
\(735\) −0.374584 −0.0138167
\(736\) 0 0
\(737\) 23.0003 0.847229
\(738\) −1.78953 1.15006i −0.0658736 0.0423344i
\(739\) −0.909161 6.32335i −0.0334440 0.232608i 0.966243 0.257633i \(-0.0829426\pi\)
−0.999687 + 0.0250249i \(0.992034\pi\)
\(740\) −0.0464086 0.101621i −0.00170602 0.00373565i
\(741\) 6.39946 + 1.87905i 0.235090 + 0.0690287i
\(742\) 1.68233 3.68378i 0.0617601 0.135236i
\(743\) 18.9383 21.8560i 0.694779 0.801818i −0.293258 0.956033i \(-0.594740\pi\)
0.988037 + 0.154215i \(0.0492850\pi\)
\(744\) −0.301433 + 2.09651i −0.0110511 + 0.0768619i
\(745\) 6.01124 1.76506i 0.220235 0.0646667i
\(746\) −3.92232 4.52660i −0.143606 0.165730i
\(747\) −6.89262 + 4.42962i −0.252188 + 0.162071i
\(748\) −34.6235 + 22.2512i −1.26596 + 0.813585i
\(749\) −27.0230 31.1862i −0.987399 1.13952i
\(750\) 1.26780 0.372260i 0.0462935 0.0135930i
\(751\) 7.15405 49.7575i 0.261055 1.81568i −0.263903 0.964549i \(-0.585010\pi\)
0.524958 0.851128i \(-0.324081\pi\)
\(752\) −8.20781 + 9.47232i −0.299308 + 0.345420i
\(753\) −2.24149 + 4.90818i −0.0816844 + 0.178864i
\(754\) −4.69519 1.37863i −0.170989 0.0502068i
\(755\) −4.27239 9.35522i −0.155488 0.340471i
\(756\) 1.94679 + 13.5402i 0.0708041 + 0.492453i
\(757\) 29.5908 + 19.0168i 1.07549 + 0.691179i 0.953512 0.301354i \(-0.0974385\pi\)
0.121982 + 0.992532i \(0.461075\pi\)
\(758\) 6.82414 0.247864
\(759\) 0 0
\(760\) 5.97184 0.216621
\(761\) −29.7143 19.0962i −1.07714 0.692237i −0.123246 0.992376i \(-0.539331\pi\)
−0.953895 + 0.300139i \(0.902967\pi\)
\(762\) −0.168316 1.17066i −0.00609745 0.0424087i
\(763\) −15.8973 34.8101i −0.575519 1.26021i
\(764\) −38.2955 11.2446i −1.38548 0.406815i
\(765\) 10.9331 23.9402i 0.395288 0.865559i
\(766\) 1.99700 2.30466i 0.0721545 0.0832707i
\(767\) 4.88079 33.9466i 0.176235 1.22574i
\(768\) −5.38131 + 1.58010i −0.194181 + 0.0570168i
\(769\) 32.2862 + 37.2603i 1.16427 + 1.34364i 0.928278 + 0.371887i \(0.121289\pi\)
0.235994 + 0.971755i \(0.424165\pi\)
\(770\) 2.58545 1.66157i 0.0931732 0.0598788i
\(771\) −6.62357 + 4.25671i −0.238542 + 0.153302i
\(772\) −17.4880 20.1822i −0.629407 0.726374i
\(773\) −3.59304 + 1.05501i −0.129233 + 0.0379462i −0.345709 0.938342i \(-0.612362\pi\)
0.216477 + 0.976288i \(0.430543\pi\)
\(774\) 0.120181 0.835879i 0.00431983 0.0300451i
\(775\) −8.41499 + 9.71142i −0.302275 + 0.348844i
\(776\) 4.11340 9.00709i 0.147663 0.323336i
\(777\) 0.0444262 + 0.0130447i 0.00159378 + 0.000467976i
\(778\) 0.205950 + 0.450968i 0.00738367 + 0.0161680i
\(779\) 1.95489 + 13.5965i 0.0700411 + 0.487146i
\(780\) −3.90160 2.50741i −0.139700 0.0897796i
\(781\) −13.7938 −0.493581
\(782\) 0 0
\(783\) −17.3721 −0.620827
\(784\) −1.59472 1.02486i −0.0569543 0.0366023i
\(785\) −2.09714 14.5859i −0.0748500 0.520593i
\(786\) −0.714824 1.56525i −0.0254969 0.0558305i
\(787\) −11.1654 3.27845i −0.398003 0.116864i 0.0766049 0.997062i \(-0.475592\pi\)
−0.474608 + 0.880197i \(0.657410\pi\)
\(788\) −1.85702 + 4.06631i −0.0661537 + 0.144856i
\(789\) 7.36919 8.50449i 0.262350 0.302768i
\(790\) −0.122334 + 0.850853i −0.00435246 + 0.0302720i
\(791\) −2.82287 + 0.828870i −0.100370 + 0.0294712i
\(792\) 5.70767 + 6.58701i 0.202813 + 0.234059i
\(793\) 9.96863 6.40645i 0.353996 0.227500i
\(794\) 0.373807 0.240231i 0.0132659 0.00852549i
\(795\) 3.19201 + 3.68378i 0.113209 + 0.130650i
\(796\) 3.19090 0.936932i 0.113098 0.0332087i
\(797\) −7.12373 + 49.5466i −0.252335 + 1.75503i 0.331776 + 0.943358i \(0.392352\pi\)
−0.584111 + 0.811674i \(0.698557\pi\)
\(798\) −0.798924 + 0.922008i −0.0282816 + 0.0326387i
\(799\) −8.91090 + 19.5121i −0.315245 + 0.690290i
\(800\) 7.10512 + 2.08625i 0.251204 + 0.0737601i
\(801\) −14.2269 31.1525i −0.502682 1.10072i
\(802\) −0.567234 3.94520i −0.0200297 0.139310i
\(803\) −12.3751 7.95302i −0.436709 0.280656i
\(804\) 6.34887 0.223907
\(805\) 0 0
\(806\) −3.69137 −0.130023
\(807\) 1.78950 + 1.15004i 0.0629934 + 0.0404834i
\(808\) 1.22104 + 8.49250i 0.0429560 + 0.298765i
\(809\) −13.3163 29.1586i −0.468176 1.02516i −0.985547 0.169402i \(-0.945816\pi\)
0.517371 0.855761i \(-0.326911\pi\)
\(810\) −2.39970 0.704617i −0.0843170 0.0247577i
\(811\) 20.0929 43.9972i 0.705556 1.54495i −0.127546 0.991833i \(-0.540710\pi\)
0.833102 0.553119i \(-0.186563\pi\)
\(812\) −20.3772 + 23.5165i −0.715099 + 0.825268i
\(813\) 1.34268 9.33857i 0.0470900 0.327518i
\(814\) 0.0290596 0.00853268i 0.00101854 0.000299070i
\(815\) 5.97467 + 6.89514i 0.209284 + 0.241526i
\(816\) −9.27444 + 5.96032i −0.324670 + 0.208653i
\(817\) −4.58746 + 2.94818i −0.160495 + 0.103144i
\(818\) −2.01468 2.32506i −0.0704416 0.0812939i
\(819\) −22.2817 + 6.54249i −0.778585 + 0.228613i
\(820\) 1.35936 9.45459i 0.0474711 0.330169i
\(821\) 6.89207 7.95387i 0.240535 0.277592i −0.622628 0.782518i \(-0.713935\pi\)
0.863162 + 0.504926i \(0.168480\pi\)
\(822\) 0.0575090 0.125927i 0.00200586 0.00439221i
\(823\) −45.6365 13.4001i −1.59079 0.467097i −0.637824 0.770182i \(-0.720165\pi\)
−0.952964 + 0.303084i \(0.901984\pi\)
\(824\) −5.72227 12.5300i −0.199345 0.436504i
\(825\) −0.622895 4.33233i −0.0216864 0.150832i
\(826\) 5.27742 + 3.39159i 0.183625 + 0.118009i
\(827\) −52.9294 −1.84053 −0.920267 0.391291i \(-0.872029\pi\)
−0.920267 + 0.391291i \(0.872029\pi\)
\(828\) 0 0
\(829\) 12.4245 0.431522 0.215761 0.976446i \(-0.430777\pi\)
0.215761 + 0.976446i \(0.430777\pi\)
\(830\) 0.890284 + 0.572151i 0.0309022 + 0.0198597i
\(831\) 1.28524 + 8.93903i 0.0445844 + 0.310091i
\(832\) −9.14683 20.0288i −0.317109 0.694373i
\(833\) −3.11286 0.914019i −0.107854 0.0316689i
\(834\) 0.102768 0.225030i 0.00355856 0.00779216i
\(835\) −1.74383 + 2.01248i −0.0603476 + 0.0696449i
\(836\) 3.94809 27.4596i 0.136548 0.949710i
\(837\) −12.5739 + 3.69203i −0.434618 + 0.127615i
\(838\) 4.55456 + 5.25624i 0.157335 + 0.181574i
\(839\) −36.7493 + 23.6174i −1.26873 + 0.815362i −0.989454 0.144850i \(-0.953730\pi\)
−0.279274 + 0.960211i \(0.590094\pi\)
\(840\) 1.44787 0.930491i 0.0499563 0.0321050i
\(841\) −6.88682 7.94781i −0.237476 0.274062i
\(842\) −5.05925 + 1.48553i −0.174353 + 0.0511947i
\(843\) −1.30803 + 9.09756i −0.0450510 + 0.313337i
\(844\) −10.1885 + 11.7582i −0.350704 + 0.404734i
\(845\) −1.36058 + 2.97925i −0.0468053 + 0.102489i
\(846\) 2.14840 + 0.630827i 0.0738635 + 0.0216883i
\(847\) −0.397371 0.870121i −0.0136538 0.0298977i
\(848\) 3.51054 + 24.4164i 0.120553 + 0.838461i
\(849\) 0.439150 + 0.282225i 0.0150716 + 0.00968593i
\(850\) 4.02229 0.137963
\(851\) 0 0
\(852\) −3.80756 −0.130445
\(853\) 25.0943 + 16.1271i 0.859211 + 0.552181i 0.894435 0.447198i \(-0.147578\pi\)
−0.0352239 + 0.999379i \(0.511214\pi\)
\(854\) 0.308471 + 2.14546i 0.0105557 + 0.0734162i
\(855\) 7.36947 + 16.1369i 0.252031 + 0.551870i
\(856\) −14.5035 4.25860i −0.495718 0.145556i
\(857\) −2.73203 + 5.98230i −0.0933242 + 0.204351i −0.950537 0.310610i \(-0.899467\pi\)
0.857213 + 0.514962i \(0.172194\pi\)
\(858\) 0.823373 0.950224i 0.0281095 0.0324401i
\(859\) −2.62944 + 18.2882i −0.0897154 + 0.623984i 0.894508 + 0.447053i \(0.147526\pi\)
−0.984223 + 0.176932i \(0.943383\pi\)
\(860\) 3.63833 1.06831i 0.124066 0.0364290i
\(861\) 2.59248 + 2.99188i 0.0883514 + 0.101963i
\(862\) −0.350438 + 0.225213i −0.0119360 + 0.00767079i
\(863\) 24.8462 15.9677i 0.845773 0.543545i −0.0444807 0.999010i \(-0.514163\pi\)
0.890254 + 0.455465i \(0.150527\pi\)
\(864\) 4.94541 + 5.70731i 0.168246 + 0.194166i
\(865\) 14.8277 4.35380i 0.504157 0.148034i
\(866\) −0.464390 + 3.22990i −0.0157806 + 0.109757i
\(867\) −7.02447 + 8.10667i −0.238564 + 0.275317i
\(868\) −9.75111 + 21.3520i −0.330974 + 0.724732i
\(869\) 7.77321 + 2.28242i 0.263688 + 0.0774258i
\(870\) 0.447545 + 0.979986i 0.0151732 + 0.0332246i
\(871\) 3.19467 + 22.2194i 0.108247 + 0.752875i
\(872\) −11.7927 7.57869i −0.399350 0.256647i
\(873\) 29.4147 0.995538
\(874\) 0 0
\(875\) 29.7079 1.00431
\(876\) −3.41596 2.19530i −0.115414 0.0741724i
\(877\) −1.22507 8.52057i −0.0413678 0.287719i −0.999995 0.00305580i \(-0.999027\pi\)
0.958628 0.284663i \(-0.0918818\pi\)
\(878\) 0.706175 + 1.54631i 0.0238322 + 0.0521853i
\(879\) 6.40499 + 1.88067i 0.216035 + 0.0634336i
\(880\) −7.77657 + 17.0283i −0.262148 + 0.574024i
\(881\) 3.29402 3.80151i 0.110979 0.128076i −0.697542 0.716544i \(-0.745723\pi\)
0.808521 + 0.588468i \(0.200269\pi\)
\(882\) −0.0481950 + 0.335204i −0.00162281 + 0.0112869i
\(883\) 20.7595 6.09555i 0.698614 0.205132i 0.0869075 0.996216i \(-0.472302\pi\)
0.611707 + 0.791085i \(0.290483\pi\)
\(884\) −26.3048 30.3573i −0.884725 1.02103i
\(885\) −6.35199 + 4.08218i −0.213520 + 0.137221i
\(886\) −4.65348 + 2.99061i −0.156337 + 0.100471i
\(887\) −18.0179 20.7938i −0.604982 0.698187i 0.367801 0.929905i \(-0.380111\pi\)
−0.972783 + 0.231718i \(0.925565\pi\)
\(888\) 0.0162736 0.00477836i 0.000546107 0.000160351i
\(889\) 3.78433 26.3206i 0.126922 0.882764i
\(890\) −2.89681 + 3.34310i −0.0971014 + 0.112061i
\(891\) −9.79172 + 21.4409i −0.328035 + 0.718296i
\(892\) 53.2050 + 15.6224i 1.78143 + 0.523076i
\(893\) −6.00640 13.1522i −0.200996 0.440121i
\(894\) 0.0667215 + 0.464058i 0.00223150 + 0.0155204i
\(895\) −13.1199 8.43164i −0.438549 0.281838i
\(896\) 17.9435 0.599451
\(897\) 0 0
\(898\) 1.59684 0.0532871
\(899\) −25.0773 16.1162i −0.836376 0.537506i
\(900\) 2.07724 + 14.4475i 0.0692413 + 0.481584i
\(901\) 17.5375 + 38.4017i 0.584258 + 1.27935i
\(902\) 2.48462 + 0.729549i 0.0827287 + 0.0242913i
\(903\) −0.652864 + 1.42957i −0.0217259 + 0.0475732i
\(904\) −0.705738 + 0.814465i −0.0234725 + 0.0270887i
\(905\) −2.00111 + 13.9180i −0.0665191 + 0.462650i
\(906\) 0.738455 0.216830i 0.0245335 0.00720369i
\(907\) −1.24841 1.44074i −0.0414528 0.0478391i 0.734645 0.678452i \(-0.237349\pi\)
−0.776097 + 0.630613i \(0.782803\pi\)
\(908\) 15.3457 9.86208i 0.509265 0.327285i
\(909\) −21.4413 + 13.7795i −0.711164 + 0.457037i
\(910\) 1.96426 + 2.26688i 0.0651146 + 0.0751463i
\(911\) 36.1780 10.6228i 1.19863 0.351949i 0.379301 0.925273i \(-0.376165\pi\)
0.819329 + 0.573324i \(0.194346\pi\)
\(912\) 1.05756 7.35546i 0.0350192 0.243564i
\(913\) 6.53148 7.53773i 0.216160 0.249462i
\(914\) 0.709748 1.55413i 0.0234764 0.0514061i
\(915\) −2.50319 0.735002i −0.0827528 0.0242984i
\(916\) 5.37289 + 11.7650i 0.177525 + 0.388726i
\(917\) −5.50592 38.2945i −0.181822 1.26460i
\(918\) 3.45084 + 2.21772i 0.113895 + 0.0731956i
\(919\) −1.89744 −0.0625909 −0.0312955 0.999510i \(-0.509963\pi\)
−0.0312955 + 0.999510i \(0.509963\pi\)
\(920\) 0 0
\(921\) −12.2741 −0.404446
\(922\) −6.40184 4.11421i −0.210833 0.135494i
\(923\) −1.91591 13.3255i −0.0630630 0.438613i
\(924\) −3.32135 7.27273i −0.109264 0.239255i
\(925\) 0.0987298 + 0.0289897i 0.00324621 + 0.000953175i
\(926\) −1.84432 + 4.03849i −0.0606080 + 0.132713i
\(927\) 26.7967 30.9250i 0.880119 1.01571i
\(928\) −2.44472 + 17.0034i −0.0802520 + 0.558165i
\(929\) 26.7200 7.84571i 0.876656 0.257409i 0.187712 0.982224i \(-0.439893\pi\)
0.688944 + 0.724815i \(0.258075\pi\)
\(930\) 0.532206 + 0.614198i 0.0174517 + 0.0201404i
\(931\) 1.83966 1.18228i 0.0602924 0.0387476i
\(932\) 41.9320 26.9480i 1.37353 0.882713i
\(933\) 1.16463 + 1.34405i 0.0381282 + 0.0440023i
\(934\) −6.46098 + 1.89711i −0.211410 + 0.0620755i
\(935\) −4.55950 + 31.7120i −0.149111 + 1.03709i
\(936\) −5.57058 + 6.42879i −0.182080 + 0.210132i
\(937\) 5.95202 13.0331i 0.194444 0.425773i −0.787148 0.616765i \(-0.788443\pi\)
0.981592 + 0.190992i \(0.0611703\pi\)
\(938\) −3.93978 1.15682i −0.128639 0.0377717i
\(939\) 3.12906 + 6.85168i 0.102113 + 0.223596i
\(940\) 1.43086 + 9.95184i 0.0466694 + 0.324593i
\(941\) −29.4909 18.9526i −0.961375 0.617838i −0.0369970 0.999315i \(-0.511779\pi\)
−0.924378 + 0.381477i \(0.875416\pi\)
\(942\) 1.10273 0.0359290
\(943\) 0 0
\(944\) −38.2113 −1.24367
\(945\) 8.95814 + 5.75705i 0.291408 + 0.187277i
\(946\) 0.146299 + 1.01753i 0.00475660 + 0.0330829i
\(947\) −3.28806 7.19985i −0.106848 0.233964i 0.848655 0.528947i \(-0.177413\pi\)
−0.955502 + 0.294984i \(0.904686\pi\)
\(948\) 2.14567 + 0.630025i 0.0696880 + 0.0204623i
\(949\) 5.96412 13.0596i 0.193604 0.423933i
\(950\) −1.77548 + 2.04901i −0.0576041 + 0.0664787i
\(951\) 0.225241 1.56659i 0.00730395 0.0508001i
\(952\) 14.3026 4.19962i 0.463549 0.136110i
\(953\) −11.5545 13.3346i −0.374287 0.431950i 0.537089 0.843526i \(-0.319524\pi\)
−0.911376 + 0.411576i \(0.864979\pi\)
\(954\) 3.70720 2.38247i 0.120025 0.0771354i
\(955\) −26.1370 + 16.7972i −0.845773 + 0.543545i
\(956\) −1.95051 2.25101i −0.0630840 0.0728029i
\(957\) 9.74219 2.86057i 0.314920 0.0924689i
\(958\) −0.159100 + 1.10656i −0.00514028 + 0.0357515i
\(959\) 2.03829 2.35231i 0.0658197 0.0759600i
\(960\) −2.01379 + 4.40958i −0.0649947 + 0.142319i
\(961\) 8.16818 + 2.39839i 0.263490 + 0.0773675i
\(962\) 0.0122792 + 0.0268878i 0.000395899 + 0.000866897i
\(963\) −6.39037 44.4460i −0.205927 1.43225i
\(964\) 45.6387 + 29.3302i 1.46992 + 0.944663i
\(965\) −20.7880 −0.669190
\(966\) 0 0
\(967\) −18.1226 −0.582785 −0.291392 0.956604i \(-0.594119\pi\)
−0.291392 + 0.956604i \(0.594119\pi\)
\(968\) −0.294772 0.189438i −0.00947432 0.00608878i
\(969\) −1.80994 12.5884i −0.0581437 0.404398i
\(970\) −1.57831 3.45601i −0.0506764 0.110966i
\(971\) 10.1754 + 2.98778i 0.326546 + 0.0958824i 0.440896 0.897558i \(-0.354661\pi\)
−0.114351 + 0.993440i \(0.536479\pi\)
\(972\) −9.39829 + 20.5794i −0.301450 + 0.660084i
\(973\) 3.64239 4.20355i 0.116770 0.134760i
\(974\) −1.06605 + 7.41456i −0.0341585 + 0.237578i
\(975\) 4.09871 1.20349i 0.131264 0.0385426i
\(976\) −8.64588 9.97787i −0.276748 0.319384i
\(977\) 5.53126 3.55473i 0.176961 0.113726i −0.449162 0.893450i \(-0.648277\pi\)
0.626123 + 0.779725i \(0.284641\pi\)
\(978\) −0.574362 + 0.369120i −0.0183661 + 0.0118032i
\(979\) 27.3012 + 31.5072i 0.872549 + 1.00698i
\(980\) −1.45904 + 0.428413i −0.0466073 + 0.0136851i
\(981\) 5.92627 41.2181i 0.189211 1.31599i
\(982\) 1.11481 1.28656i 0.0355750 0.0410558i
\(983\) 18.1584 39.7614i 0.579164 1.26819i −0.362608 0.931942i \(-0.618114\pi\)
0.941772 0.336251i \(-0.109159\pi\)
\(984\) 1.39140 + 0.408553i 0.0443563 + 0.0130242i
\(985\) 1.44557 + 3.16536i 0.0460597 + 0.100857i
\(986\) 1.32793 + 9.23593i 0.0422898 + 0.294132i
\(987\) −3.50553 2.25287i −0.111582 0.0717095i
\(988\) 27.0756 0.861390
\(989\) 0 0
\(990\) 3.34426 0.106288
\(991\) 45.6218 + 29.3193i 1.44922 + 0.931360i 0.999266 + 0.0383098i \(0.0121974\pi\)
0.449958 + 0.893050i \(0.351439\pi\)
\(992\) 1.84419 + 12.8266i 0.0585532 + 0.407246i
\(993\) 1.59164 + 3.48521i 0.0505092 + 0.110600i
\(994\) 2.36277 + 0.693773i 0.0749427 + 0.0220051i
\(995\) 1.07541 2.35483i 0.0340929 0.0746530i
\(996\) 1.80291 2.08067i 0.0571273 0.0659284i
\(997\) −0.0978754 + 0.680738i −0.00309974 + 0.0215592i −0.991313 0.131527i \(-0.958012\pi\)
0.988213 + 0.153086i \(0.0489212\pi\)
\(998\) 5.17179 1.51858i 0.163710 0.0480697i
\(999\) 0.0687194 + 0.0793064i 0.00217418 + 0.00250914i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.2.c.b.255.1 10
23.2 even 11 529.2.c.d.399.1 10
23.3 even 11 23.2.c.a.18.1 yes 10
23.4 even 11 23.2.c.a.9.1 10
23.5 odd 22 529.2.c.h.487.1 10
23.6 even 11 529.2.c.d.118.1 10
23.7 odd 22 529.2.c.h.466.1 10
23.8 even 11 529.2.c.g.266.1 10
23.9 even 11 529.2.a.i.1.2 5
23.10 odd 22 529.2.c.f.177.1 10
23.11 odd 22 529.2.c.c.334.1 10
23.12 even 11 inner 529.2.c.b.334.1 10
23.13 even 11 529.2.c.g.177.1 10
23.14 odd 22 529.2.a.j.1.2 5
23.15 odd 22 529.2.c.f.266.1 10
23.16 even 11 529.2.c.i.466.1 10
23.17 odd 22 529.2.c.e.118.1 10
23.18 even 11 529.2.c.i.487.1 10
23.19 odd 22 529.2.c.a.170.1 10
23.20 odd 22 529.2.c.a.501.1 10
23.21 odd 22 529.2.c.e.399.1 10
23.22 odd 2 529.2.c.c.255.1 10
69.14 even 22 4761.2.a.bn.1.4 5
69.26 odd 22 207.2.i.c.64.1 10
69.32 odd 22 4761.2.a.bo.1.4 5
69.50 odd 22 207.2.i.c.55.1 10
92.3 odd 22 368.2.m.c.225.1 10
92.27 odd 22 368.2.m.c.193.1 10
92.55 odd 22 8464.2.a.bs.1.3 5
92.83 even 22 8464.2.a.bt.1.3 5
115.3 odd 44 575.2.p.b.524.1 20
115.4 even 22 575.2.k.b.101.1 10
115.27 odd 44 575.2.p.b.124.1 20
115.49 even 22 575.2.k.b.501.1 10
115.72 odd 44 575.2.p.b.524.2 20
115.73 odd 44 575.2.p.b.124.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.c.a.9.1 10 23.4 even 11
23.2.c.a.18.1 yes 10 23.3 even 11
207.2.i.c.55.1 10 69.50 odd 22
207.2.i.c.64.1 10 69.26 odd 22
368.2.m.c.193.1 10 92.27 odd 22
368.2.m.c.225.1 10 92.3 odd 22
529.2.a.i.1.2 5 23.9 even 11
529.2.a.j.1.2 5 23.14 odd 22
529.2.c.a.170.1 10 23.19 odd 22
529.2.c.a.501.1 10 23.20 odd 22
529.2.c.b.255.1 10 1.1 even 1 trivial
529.2.c.b.334.1 10 23.12 even 11 inner
529.2.c.c.255.1 10 23.22 odd 2
529.2.c.c.334.1 10 23.11 odd 22
529.2.c.d.118.1 10 23.6 even 11
529.2.c.d.399.1 10 23.2 even 11
529.2.c.e.118.1 10 23.17 odd 22
529.2.c.e.399.1 10 23.21 odd 22
529.2.c.f.177.1 10 23.10 odd 22
529.2.c.f.266.1 10 23.15 odd 22
529.2.c.g.177.1 10 23.13 even 11
529.2.c.g.266.1 10 23.8 even 11
529.2.c.h.466.1 10 23.7 odd 22
529.2.c.h.487.1 10 23.5 odd 22
529.2.c.i.466.1 10 23.16 even 11
529.2.c.i.487.1 10 23.18 even 11
575.2.k.b.101.1 10 115.4 even 22
575.2.k.b.501.1 10 115.49 even 22
575.2.p.b.124.1 20 115.27 odd 44
575.2.p.b.124.2 20 115.73 odd 44
575.2.p.b.524.1 20 115.3 odd 44
575.2.p.b.524.2 20 115.72 odd 44
4761.2.a.bn.1.4 5 69.14 even 22
4761.2.a.bo.1.4 5 69.32 odd 22
8464.2.a.bs.1.3 5 92.55 odd 22
8464.2.a.bt.1.3 5 92.83 even 22