Properties

Label 529.2.c.e.118.1
Level $529$
Weight $2$
Character 529.118
Analytic conductor $4.224$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [529,2,Mod(118,529)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("529.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(529, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([16])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 529 = 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 529.c (of order \(11\), degree \(10\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,4,-7,8,3,-5,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.22408626693\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\Q(\zeta_{22})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Sato-Tate group: $\mathrm{SU}(2)[C_{11}]$

Embedding invariants

Embedding label 118.1
Root \(-0.415415 - 0.909632i\) of defining polynomial
Character \(\chi\) \(=\) 529.118
Dual form 529.2.c.e.399.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0336545 - 0.234072i) q^{2} +(0.198939 - 0.435615i) q^{3} +(1.86533 - 0.547710i) q^{4} +(0.991025 - 1.14370i) q^{5} +(-0.108660 - 0.0319056i) q^{6} +(2.14200 - 1.37658i) q^{7} +(-0.387454 - 0.848406i) q^{8} +(1.81440 + 2.09393i) q^{9} +(-0.301061 - 0.193480i) q^{10} +(-0.479997 + 3.33846i) q^{11} +(0.132495 - 0.921526i) q^{12} +(2.76921 + 1.77967i) q^{13} +(-0.394306 - 0.455054i) q^{14} +(-0.301061 - 0.659232i) q^{15} +(3.08538 - 1.98285i) q^{16} +(-6.02260 - 1.76840i) q^{17} +(0.429067 - 0.495170i) q^{18} +(-4.05954 + 1.19199i) q^{19} +(1.22217 - 2.67618i) q^{20} +(-0.173532 - 1.20694i) q^{21} +0.797593 q^{22} -0.446658 q^{24} +(0.385646 + 2.68223i) q^{25} +(0.323373 - 0.708089i) q^{26} +(2.65158 - 0.778574i) q^{27} +(3.24157 - 3.74097i) q^{28} +(-6.03158 - 1.77103i) q^{29} +(-0.144176 + 0.0926561i) q^{30} +(-1.96992 - 4.31352i) q^{31} +(-1.78953 - 2.06523i) q^{32} +(1.35879 + 0.873242i) q^{33} +(-0.211244 + 1.46924i) q^{34} +(0.548376 - 3.81404i) q^{35} +(4.53131 + 2.91210i) q^{36} +(0.0248666 + 0.0286976i) q^{37} +(0.415632 + 0.910108i) q^{38} +(1.32615 - 0.852267i) q^{39} +(-1.35430 - 0.397659i) q^{40} +(-2.12611 + 2.45366i) q^{41} +(-0.276671 + 0.0812380i) q^{42} +(-0.535418 + 1.17240i) q^{43} +(0.933152 + 6.49022i) q^{44} +4.19295 q^{45} +3.41741 q^{47} +(-0.249959 - 1.73850i) q^{48} +(-0.214713 + 0.470156i) q^{49} +(0.614856 - 0.180538i) q^{50} +(-1.96847 + 2.27173i) q^{51} +(6.14024 + 1.80294i) q^{52} +(5.65809 - 3.63623i) q^{53} +(-0.271480 - 0.594458i) q^{54} +(3.34251 + 3.85747i) q^{55} +(-1.99782 - 1.28392i) q^{56} +(-0.288351 + 2.00553i) q^{57} +(-0.211559 + 1.47143i) q^{58} +(-8.76470 - 5.63273i) q^{59} +(-0.922646 - 1.06479i) q^{60} +(-1.49541 - 3.27450i) q^{61} +(-0.943376 + 0.606271i) q^{62} +(6.76890 + 1.98753i) q^{63} +(4.38034 - 5.05518i) q^{64} +(4.77977 - 1.40347i) q^{65} +(0.158672 - 0.347443i) q^{66} +(-0.970501 - 6.74998i) q^{67} -12.2027 q^{68} -0.911214 q^{70} +(-0.582030 - 4.04811i) q^{71} +(1.07350 - 2.35065i) q^{72} +(-4.18482 + 1.22877i) q^{73} +(0.00588042 - 0.00678637i) q^{74} +(1.24514 + 0.365606i) q^{75} +(-6.91951 + 4.44690i) q^{76} +(3.56750 + 7.81173i) q^{77} +(-0.244123 - 0.281733i) q^{78} +(-2.02068 - 1.29861i) q^{79} +(0.789891 - 5.49381i) q^{80} +(-0.994576 + 6.91743i) q^{81} +(0.645886 + 0.415086i) q^{82} +(1.93652 + 2.23487i) q^{83} +(-0.984749 - 2.15630i) q^{84} +(-7.99107 + 5.13555i) q^{85} +(0.292445 + 0.0858697i) q^{86} +(-1.97140 + 2.27512i) q^{87} +(3.01834 - 0.886265i) q^{88} +(-5.13483 + 11.2437i) q^{89} +(-0.141111 - 0.981451i) q^{90} +8.38151 q^{91} -2.27092 q^{93} +(-0.115011 - 0.799919i) q^{94} +(-2.65982 + 5.82420i) q^{95} +(-1.25565 + 0.368693i) q^{96} +(-6.95233 + 8.02341i) q^{97} +(0.117276 + 0.0344354i) q^{98} +(-7.86139 + 5.05221i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} - 7 q^{3} + 8 q^{4} + 3 q^{5} - 5 q^{6} - 6 q^{7} + 15 q^{8} - 2 q^{9} - 12 q^{10} - 7 q^{11} - 10 q^{12} + 8 q^{13} + 2 q^{14} - 12 q^{15} + 12 q^{16} - q^{17} - 3 q^{18} - 2 q^{19} - 2 q^{20}+ \cdots - 25 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/529\mathbb{Z}\right)^\times\).

\(n\) \(5\)
\(\chi(n)\) \(e\left(\frac{8}{11}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0336545 0.234072i −0.0237973 0.165514i 0.974457 0.224573i \(-0.0720989\pi\)
−0.998254 + 0.0590597i \(0.981190\pi\)
\(3\) 0.198939 0.435615i 0.114857 0.251502i −0.843469 0.537177i \(-0.819491\pi\)
0.958327 + 0.285675i \(0.0922178\pi\)
\(4\) 1.86533 0.547710i 0.932664 0.273855i
\(5\) 0.991025 1.14370i 0.443200 0.511480i −0.489564 0.871967i \(-0.662844\pi\)
0.932764 + 0.360487i \(0.117390\pi\)
\(6\) −0.108660 0.0319056i −0.0443604 0.0130254i
\(7\) 2.14200 1.37658i 0.809600 0.520298i −0.0691356 0.997607i \(-0.522024\pi\)
0.878736 + 0.477309i \(0.158388\pi\)
\(8\) −0.387454 0.848406i −0.136986 0.299957i
\(9\) 1.81440 + 2.09393i 0.604799 + 0.697976i
\(10\) −0.301061 0.193480i −0.0952039 0.0611839i
\(11\) −0.479997 + 3.33846i −0.144725 + 1.00658i 0.779955 + 0.625836i \(0.215242\pi\)
−0.924680 + 0.380746i \(0.875667\pi\)
\(12\) 0.132495 0.921526i 0.0382481 0.266022i
\(13\) 2.76921 + 1.77967i 0.768042 + 0.493591i 0.865045 0.501693i \(-0.167289\pi\)
−0.0970036 + 0.995284i \(0.530926\pi\)
\(14\) −0.394306 0.455054i −0.105383 0.121618i
\(15\) −0.301061 0.659232i −0.0777337 0.170213i
\(16\) 3.08538 1.98285i 0.771344 0.495713i
\(17\) −6.02260 1.76840i −1.46070 0.428899i −0.547633 0.836719i \(-0.684471\pi\)
−0.913062 + 0.407820i \(0.866289\pi\)
\(18\) 0.429067 0.495170i 0.101132 0.116713i
\(19\) −4.05954 + 1.19199i −0.931322 + 0.273461i −0.711990 0.702190i \(-0.752206\pi\)
−0.219332 + 0.975650i \(0.570388\pi\)
\(20\) 1.22217 2.67618i 0.273285 0.598412i
\(21\) −0.173532 1.20694i −0.0378678 0.263376i
\(22\) 0.797593 0.170047
\(23\) 0 0
\(24\) −0.446658 −0.0911736
\(25\) 0.385646 + 2.68223i 0.0771293 + 0.536446i
\(26\) 0.323373 0.708089i 0.0634187 0.138868i
\(27\) 2.65158 0.778574i 0.510297 0.149837i
\(28\) 3.24157 3.74097i 0.612599 0.706977i
\(29\) −6.03158 1.77103i −1.12004 0.328872i −0.331252 0.943542i \(-0.607471\pi\)
−0.788784 + 0.614670i \(0.789289\pi\)
\(30\) −0.144176 + 0.0926561i −0.0263228 + 0.0169166i
\(31\) −1.96992 4.31352i −0.353807 0.774730i −0.999934 0.0114998i \(-0.996339\pi\)
0.646126 0.763230i \(-0.276388\pi\)
\(32\) −1.78953 2.06523i −0.316348 0.365084i
\(33\) 1.35879 + 0.873242i 0.236535 + 0.152012i
\(34\) −0.211244 + 1.46924i −0.0362281 + 0.251972i
\(35\) 0.548376 3.81404i 0.0926925 0.644690i
\(36\) 4.53131 + 2.91210i 0.755219 + 0.485350i
\(37\) 0.0248666 + 0.0286976i 0.00408804 + 0.00471785i 0.757790 0.652499i \(-0.226279\pi\)
−0.753702 + 0.657216i \(0.771734\pi\)
\(38\) 0.415632 + 0.910108i 0.0674245 + 0.147639i
\(39\) 1.32615 0.852267i 0.212354 0.136472i
\(40\) −1.35430 0.397659i −0.214134 0.0628754i
\(41\) −2.12611 + 2.45366i −0.332042 + 0.383197i −0.897080 0.441868i \(-0.854316\pi\)
0.565038 + 0.825065i \(0.308862\pi\)
\(42\) −0.276671 + 0.0812380i −0.0426913 + 0.0125353i
\(43\) −0.535418 + 1.17240i −0.0816504 + 0.178790i −0.946054 0.324009i \(-0.894969\pi\)
0.864403 + 0.502799i \(0.167696\pi\)
\(44\) 0.933152 + 6.49022i 0.140678 + 0.978437i
\(45\) 4.19295 0.625048
\(46\) 0 0
\(47\) 3.41741 0.498480 0.249240 0.968442i \(-0.419819\pi\)
0.249240 + 0.968442i \(0.419819\pi\)
\(48\) −0.249959 1.73850i −0.0360784 0.250931i
\(49\) −0.214713 + 0.470156i −0.0306733 + 0.0671651i
\(50\) 0.614856 0.180538i 0.0869537 0.0255319i
\(51\) −1.96847 + 2.27173i −0.275641 + 0.318106i
\(52\) 6.14024 + 1.80294i 0.851498 + 0.250022i
\(53\) 5.65809 3.63623i 0.777198 0.499475i −0.0909044 0.995860i \(-0.528976\pi\)
0.868103 + 0.496385i \(0.165339\pi\)
\(54\) −0.271480 0.594458i −0.0369437 0.0808954i
\(55\) 3.34251 + 3.85747i 0.450705 + 0.520141i
\(56\) −1.99782 1.28392i −0.266971 0.171572i
\(57\) −0.288351 + 2.00553i −0.0381931 + 0.265639i
\(58\) −0.211559 + 1.47143i −0.0277791 + 0.193208i
\(59\) −8.76470 5.63273i −1.14107 0.733319i −0.173226 0.984882i \(-0.555419\pi\)
−0.967841 + 0.251563i \(0.919055\pi\)
\(60\) −0.922646 1.06479i −0.119113 0.137464i
\(61\) −1.49541 3.27450i −0.191468 0.419256i 0.789414 0.613862i \(-0.210385\pi\)
−0.980882 + 0.194605i \(0.937657\pi\)
\(62\) −0.943376 + 0.606271i −0.119809 + 0.0769965i
\(63\) 6.76890 + 1.98753i 0.852801 + 0.250405i
\(64\) 4.38034 5.05518i 0.547542 0.631898i
\(65\) 4.77977 1.40347i 0.592858 0.174079i
\(66\) 0.158672 0.347443i 0.0195312 0.0427673i
\(67\) −0.970501 6.74998i −0.118566 0.824641i −0.959137 0.282941i \(-0.908690\pi\)
0.840572 0.541700i \(-0.182219\pi\)
\(68\) −12.2027 −1.47979
\(69\) 0 0
\(70\) −0.911214 −0.108911
\(71\) −0.582030 4.04811i −0.0690743 0.480422i −0.994769 0.102151i \(-0.967428\pi\)
0.925695 0.378272i \(-0.123481\pi\)
\(72\) 1.07350 2.35065i 0.126514 0.277026i
\(73\) −4.18482 + 1.22877i −0.489796 + 0.143817i −0.517299 0.855805i \(-0.673063\pi\)
0.0275033 + 0.999622i \(0.491244\pi\)
\(74\) 0.00588042 0.00678637i 0.000683585 0.000788900i
\(75\) 1.24514 + 0.365606i 0.143776 + 0.0422165i
\(76\) −6.91951 + 4.44690i −0.793722 + 0.510094i
\(77\) 3.56750 + 7.81173i 0.406554 + 0.890229i
\(78\) −0.244123 0.281733i −0.0276414 0.0318999i
\(79\) −2.02068 1.29861i −0.227344 0.146105i 0.422011 0.906591i \(-0.361324\pi\)
−0.649355 + 0.760486i \(0.724961\pi\)
\(80\) 0.789891 5.49381i 0.0883125 0.614227i
\(81\) −0.994576 + 6.91743i −0.110508 + 0.768603i
\(82\) 0.645886 + 0.415086i 0.0713262 + 0.0458385i
\(83\) 1.93652 + 2.23487i 0.212561 + 0.245309i 0.852011 0.523525i \(-0.175383\pi\)
−0.639450 + 0.768833i \(0.720838\pi\)
\(84\) −0.984749 2.15630i −0.107445 0.235272i
\(85\) −7.99107 + 5.13555i −0.866753 + 0.557028i
\(86\) 0.292445 + 0.0858697i 0.0315352 + 0.00925957i
\(87\) −1.97140 + 2.27512i −0.211356 + 0.243918i
\(88\) 3.01834 0.886265i 0.321756 0.0944762i
\(89\) −5.13483 + 11.2437i −0.544291 + 1.19183i 0.415107 + 0.909773i \(0.363744\pi\)
−0.959397 + 0.282058i \(0.908983\pi\)
\(90\) −0.141111 0.981451i −0.0148744 0.103454i
\(91\) 8.38151 0.878621
\(92\) 0 0
\(93\) −2.27092 −0.235484
\(94\) −0.115011 0.799919i −0.0118625 0.0825054i
\(95\) −2.65982 + 5.82420i −0.272892 + 0.597550i
\(96\) −1.25565 + 0.368693i −0.128154 + 0.0376295i
\(97\) −6.95233 + 8.02341i −0.705902 + 0.814654i −0.989537 0.144278i \(-0.953914\pi\)
0.283635 + 0.958932i \(0.408459\pi\)
\(98\) 0.117276 + 0.0344354i 0.0118467 + 0.00347850i
\(99\) −7.86139 + 5.05221i −0.790099 + 0.507766i
\(100\) 2.18844 + 4.79202i 0.218844 + 0.479202i
\(101\) −6.02407 6.95215i −0.599417 0.691764i 0.372246 0.928134i \(-0.378588\pi\)
−0.971663 + 0.236370i \(0.924042\pi\)
\(102\) 0.597997 + 0.384309i 0.0592105 + 0.0380523i
\(103\) 2.10184 14.6186i 0.207100 1.44041i −0.575456 0.817832i \(-0.695176\pi\)
0.782556 0.622580i \(-0.213915\pi\)
\(104\) 0.436936 3.03896i 0.0428451 0.297994i
\(105\) −1.55236 0.997641i −0.151495 0.0973598i
\(106\) −1.04156 1.20202i −0.101165 0.116751i
\(107\) 6.73247 + 14.7420i 0.650852 + 1.42517i 0.890806 + 0.454383i \(0.150140\pi\)
−0.239954 + 0.970784i \(0.577133\pi\)
\(108\) 4.51963 2.90459i 0.434902 0.279495i
\(109\) 14.4208 + 4.23433i 1.38126 + 0.405575i 0.886208 0.463287i \(-0.153330\pi\)
0.495054 + 0.868862i \(0.335148\pi\)
\(110\) 0.790434 0.912210i 0.0753649 0.0869758i
\(111\) 0.0174480 0.00512320i 0.00165609 0.000486273i
\(112\) 3.87932 8.49453i 0.366562 0.802658i
\(113\) −0.164440 1.14370i −0.0154692 0.107591i 0.980624 0.195900i \(-0.0627627\pi\)
−0.996093 + 0.0883092i \(0.971854\pi\)
\(114\) 0.479142 0.0448758
\(115\) 0 0
\(116\) −12.2209 −1.13468
\(117\) 1.29797 + 9.02756i 0.119997 + 0.834598i
\(118\) −1.02349 + 2.24114i −0.0942201 + 0.206313i
\(119\) −15.3347 + 4.50269i −1.40573 + 0.412761i
\(120\) −0.442649 + 0.510844i −0.0404081 + 0.0466335i
\(121\) −0.360465 0.105842i −0.0327695 0.00962200i
\(122\) −0.716140 + 0.460235i −0.0648363 + 0.0416678i
\(123\) 0.645886 + 1.41429i 0.0582376 + 0.127522i
\(124\) −6.03710 6.96718i −0.542147 0.625671i
\(125\) 9.81536 + 6.30795i 0.877913 + 0.564200i
\(126\) 0.237421 1.65130i 0.0211511 0.147109i
\(127\) −1.48627 + 10.3372i −0.131885 + 0.917279i 0.811210 + 0.584755i \(0.198809\pi\)
−0.943095 + 0.332524i \(0.892100\pi\)
\(128\) −5.92847 3.80999i −0.524007 0.336759i
\(129\) 0.404200 + 0.466472i 0.0355879 + 0.0410706i
\(130\) −0.489373 1.07158i −0.0429208 0.0939835i
\(131\) −12.7825 + 8.21478i −1.11681 + 0.717729i −0.962766 0.270335i \(-0.912865\pi\)
−0.154042 + 0.988064i \(0.549229\pi\)
\(132\) 3.01288 + 0.884660i 0.262237 + 0.0769998i
\(133\) −7.05466 + 8.14152i −0.611717 + 0.705959i
\(134\) −1.54732 + 0.454334i −0.133668 + 0.0392485i
\(135\) 1.73732 3.80421i 0.149525 0.327414i
\(136\) 0.833164 + 5.79478i 0.0714432 + 0.496898i
\(137\) −1.22243 −0.104439 −0.0522196 0.998636i \(-0.516630\pi\)
−0.0522196 + 0.998636i \(0.516630\pi\)
\(138\) 0 0
\(139\) 2.18447 0.185284 0.0926420 0.995699i \(-0.470469\pi\)
0.0926420 + 0.995699i \(0.470469\pi\)
\(140\) −1.06609 7.41479i −0.0901007 0.626664i
\(141\) 0.679855 1.48867i 0.0572541 0.125369i
\(142\) −0.927961 + 0.272474i −0.0778727 + 0.0228655i
\(143\) −7.27055 + 8.39066i −0.607994 + 0.701663i
\(144\) 9.75005 + 2.86287i 0.812504 + 0.238573i
\(145\) −8.00298 + 5.14320i −0.664611 + 0.427120i
\(146\) 0.428459 + 0.938194i 0.0354595 + 0.0776455i
\(147\) 0.162092 + 0.187064i 0.0133691 + 0.0154288i
\(148\) 0.0621023 + 0.0399107i 0.00510478 + 0.00328064i
\(149\) −0.589164 + 4.09773i −0.0482662 + 0.335699i 0.951353 + 0.308103i \(0.0996942\pi\)
−0.999619 + 0.0275958i \(0.991215\pi\)
\(150\) 0.0436736 0.303756i 0.00356593 0.0248016i
\(151\) −5.71715 3.67419i −0.465255 0.299001i 0.286932 0.957951i \(-0.407365\pi\)
−0.752187 + 0.658950i \(0.771001\pi\)
\(152\) 2.58417 + 2.98229i 0.209604 + 0.241896i
\(153\) −7.22451 15.8195i −0.584067 1.27893i
\(154\) 1.70844 1.09795i 0.137670 0.0884753i
\(155\) −6.88562 2.02180i −0.553066 0.162395i
\(156\) 2.00692 2.31611i 0.160682 0.185437i
\(157\) 9.34292 2.74333i 0.745646 0.218941i 0.113228 0.993569i \(-0.463881\pi\)
0.632418 + 0.774628i \(0.282063\pi\)
\(158\) −0.235963 + 0.516688i −0.0187722 + 0.0411055i
\(159\) −0.458385 3.18814i −0.0363523 0.252836i
\(160\) −4.13548 −0.326939
\(161\) 0 0
\(162\) 1.65265 0.129844
\(163\) 0.857985 + 5.96742i 0.0672026 + 0.467404i 0.995438 + 0.0954108i \(0.0304165\pi\)
−0.928235 + 0.371993i \(0.878674\pi\)
\(164\) −2.62200 + 5.74137i −0.204744 + 0.448326i
\(165\) 2.34533 0.688650i 0.182583 0.0536113i
\(166\) 0.457947 0.528499i 0.0355436 0.0410195i
\(167\) −1.68834 0.495742i −0.130648 0.0383617i 0.215755 0.976448i \(-0.430779\pi\)
−0.346403 + 0.938086i \(0.612597\pi\)
\(168\) −0.956741 + 0.614860i −0.0738142 + 0.0474375i
\(169\) −0.899058 1.96866i −0.0691583 0.151436i
\(170\) 1.47102 + 1.69765i 0.112822 + 0.130204i
\(171\) −9.86155 6.33764i −0.754132 0.484651i
\(172\) −0.356594 + 2.48017i −0.0271901 + 0.189111i
\(173\) 1.45327 10.1077i 0.110490 0.768475i −0.856954 0.515392i \(-0.827646\pi\)
0.967445 0.253083i \(-0.0814446\pi\)
\(174\) 0.598888 + 0.384882i 0.0454016 + 0.0291778i
\(175\) 4.51836 + 5.21446i 0.341556 + 0.394176i
\(176\) 5.13869 + 11.2522i 0.387343 + 0.848163i
\(177\) −4.19734 + 2.69747i −0.315491 + 0.202754i
\(178\) 2.80464 + 0.823518i 0.210217 + 0.0617253i
\(179\) 6.74864 7.78835i 0.504417 0.582128i −0.445243 0.895410i \(-0.646883\pi\)
0.949660 + 0.313281i \(0.101428\pi\)
\(180\) 7.82123 2.29652i 0.582960 0.171172i
\(181\) −3.85982 + 8.45182i −0.286898 + 0.628219i −0.997127 0.0757519i \(-0.975864\pi\)
0.710229 + 0.703971i \(0.248592\pi\)
\(182\) −0.282075 1.96188i −0.0209088 0.145424i
\(183\) −1.72392 −0.127435
\(184\) 0 0
\(185\) 0.0574649 0.00422491
\(186\) 0.0764267 + 0.531560i 0.00560388 + 0.0389758i
\(187\) 8.79454 19.2574i 0.643121 1.40824i
\(188\) 6.37459 1.87175i 0.464915 0.136511i
\(189\) 4.60791 5.31782i 0.335176 0.386814i
\(190\) 1.45280 + 0.426579i 0.105397 + 0.0309473i
\(191\) 17.2711 11.0995i 1.24969 0.803128i 0.262853 0.964836i \(-0.415337\pi\)
0.986839 + 0.161708i \(0.0517002\pi\)
\(192\) −1.33069 2.91381i −0.0960345 0.210286i
\(193\) 8.99552 + 10.3814i 0.647512 + 0.747268i 0.980684 0.195597i \(-0.0626646\pi\)
−0.333172 + 0.942866i \(0.608119\pi\)
\(194\) 2.11203 + 1.35732i 0.151635 + 0.0974499i
\(195\) 0.339510 2.36134i 0.0243128 0.169099i
\(196\) −0.143001 + 0.994596i −0.0102144 + 0.0710426i
\(197\) 1.93441 + 1.24317i 0.137821 + 0.0885721i 0.607734 0.794140i \(-0.292079\pi\)
−0.469913 + 0.882712i \(0.655715\pi\)
\(198\) 1.44715 + 1.67010i 0.102845 + 0.118689i
\(199\) −0.710624 1.55605i −0.0503748 0.110305i 0.882771 0.469803i \(-0.155675\pi\)
−0.933146 + 0.359498i \(0.882948\pi\)
\(200\) 2.12620 1.36642i 0.150345 0.0966208i
\(201\) −3.13346 0.920068i −0.221017 0.0648966i
\(202\) −1.42457 + 1.64404i −0.100232 + 0.115674i
\(203\) −15.3576 + 4.50940i −1.07789 + 0.316498i
\(204\) −2.42759 + 5.31568i −0.169965 + 0.372172i
\(205\) 0.699234 + 4.86328i 0.0488366 + 0.339666i
\(206\) −3.49254 −0.243337
\(207\) 0 0
\(208\) 12.0729 0.837104
\(209\) −2.03083 14.1247i −0.140475 0.977028i
\(210\) −0.181276 + 0.396939i −0.0125092 + 0.0273914i
\(211\) 7.67876 2.25469i 0.528627 0.155219i −0.00651840 0.999979i \(-0.502075\pi\)
0.535146 + 0.844760i \(0.320257\pi\)
\(212\) 8.56260 9.88176i 0.588082 0.678682i
\(213\) −1.87921 0.551785i −0.128761 0.0378077i
\(214\) 3.22412 2.07202i 0.220396 0.141640i
\(215\) 0.810268 + 1.77424i 0.0552598 + 0.121002i
\(216\) −1.68791 1.94795i −0.114848 0.132541i
\(217\) −10.1575 6.52780i −0.689533 0.443136i
\(218\) 0.505813 3.51801i 0.0342580 0.238270i
\(219\) −0.297250 + 2.06742i −0.0200863 + 0.139703i
\(220\) 8.34766 + 5.36472i 0.562799 + 0.361689i
\(221\) −13.5307 15.6153i −0.910175 1.05040i
\(222\) −0.00178640 0.00391167i −0.000119895 0.000262534i
\(223\) 23.9952 15.4208i 1.60683 1.03265i 0.643102 0.765780i \(-0.277647\pi\)
0.963733 0.266870i \(-0.0859893\pi\)
\(224\) −6.67613 1.96029i −0.446068 0.130977i
\(225\) −4.91668 + 5.67415i −0.327778 + 0.378276i
\(226\) −0.262175 + 0.0769815i −0.0174396 + 0.00512073i
\(227\) 3.89788 8.53516i 0.258711 0.566499i −0.735052 0.678011i \(-0.762842\pi\)
0.993763 + 0.111512i \(0.0355694\pi\)
\(228\) 0.560577 + 3.89890i 0.0371251 + 0.258211i
\(229\) 6.65292 0.439637 0.219819 0.975541i \(-0.429453\pi\)
0.219819 + 0.975541i \(0.429453\pi\)
\(230\) 0 0
\(231\) 4.11262 0.270590
\(232\) 0.834405 + 5.80342i 0.0547814 + 0.381013i
\(233\) −10.6509 + 23.3223i −0.697765 + 1.52789i 0.144896 + 0.989447i \(0.453715\pi\)
−0.842661 + 0.538445i \(0.819012\pi\)
\(234\) 2.06941 0.607635i 0.135282 0.0397223i
\(235\) 3.38674 3.90850i 0.220926 0.254963i
\(236\) −19.4341 5.70638i −1.26506 0.371454i
\(237\) −0.967685 + 0.621893i −0.0628579 + 0.0403963i
\(238\) 1.57004 + 3.43790i 0.101770 + 0.222846i
\(239\) 1.00331 + 1.15788i 0.0648987 + 0.0748971i 0.787271 0.616608i \(-0.211494\pi\)
−0.722372 + 0.691505i \(0.756948\pi\)
\(240\) −2.23605 1.43702i −0.144336 0.0927592i
\(241\) −3.97139 + 27.6217i −0.255820 + 1.77927i 0.306024 + 0.952024i \(0.401001\pi\)
−0.561844 + 0.827243i \(0.689908\pi\)
\(242\) −0.0126434 + 0.0879367i −0.000812748 + 0.00565279i
\(243\) 9.78994 + 6.29161i 0.628025 + 0.403607i
\(244\) −4.58291 5.28896i −0.293391 0.338591i
\(245\) 0.324933 + 0.711504i 0.0207592 + 0.0454563i
\(246\) 0.309309 0.198781i 0.0197208 0.0126738i
\(247\) −13.3631 3.92375i −0.850272 0.249662i
\(248\) −2.89636 + 3.34258i −0.183919 + 0.212254i
\(249\) 1.35879 0.398977i 0.0861099 0.0252841i
\(250\) 1.14618 2.50979i 0.0724910 0.158733i
\(251\) −1.60349 11.1526i −0.101212 0.703943i −0.975734 0.218958i \(-0.929734\pi\)
0.874523 0.484985i \(-0.161175\pi\)
\(252\) 13.7148 0.863952
\(253\) 0 0
\(254\) 2.46967 0.154961
\(255\) 0.647389 + 4.50269i 0.0405411 + 0.281969i
\(256\) 4.86510 10.6531i 0.304069 0.665818i
\(257\) 15.7750 4.63196i 0.984018 0.288934i 0.250136 0.968211i \(-0.419525\pi\)
0.733882 + 0.679277i \(0.237706\pi\)
\(258\) 0.0955848 0.110311i 0.00595085 0.00686765i
\(259\) 0.0927688 + 0.0272394i 0.00576437 + 0.00169257i
\(260\) 8.14715 5.23586i 0.505265 0.324714i
\(261\) −7.23527 15.8430i −0.447852 0.980659i
\(262\) 2.35304 + 2.71555i 0.145371 + 0.167767i
\(263\) 19.7679 + 12.7041i 1.21894 + 0.783365i 0.982132 0.188191i \(-0.0602624\pi\)
0.236808 + 0.971556i \(0.423899\pi\)
\(264\) 0.214395 1.49115i 0.0131951 0.0917738i
\(265\) 1.44853 10.0748i 0.0889827 0.618889i
\(266\) 2.14312 + 1.37730i 0.131403 + 0.0844477i
\(267\) 3.87641 + 4.47362i 0.237232 + 0.273781i
\(268\) −5.50734 12.0594i −0.336414 0.736644i
\(269\) 3.73676 2.40147i 0.227834 0.146420i −0.421744 0.906715i \(-0.638582\pi\)
0.649578 + 0.760295i \(0.274946\pi\)
\(270\) −0.948927 0.278630i −0.0577498 0.0169569i
\(271\) 12.9014 14.8890i 0.783702 0.904440i −0.213669 0.976906i \(-0.568541\pi\)
0.997371 + 0.0724658i \(0.0230868\pi\)
\(272\) −22.0885 + 6.48576i −1.33931 + 0.393257i
\(273\) 1.66741 3.65111i 0.100916 0.220975i
\(274\) 0.0411402 + 0.286136i 0.00248537 + 0.0172861i
\(275\) −9.13961 −0.551139
\(276\) 0 0
\(277\) −18.8580 −1.13307 −0.566535 0.824038i \(-0.691716\pi\)
−0.566535 + 0.824038i \(0.691716\pi\)
\(278\) −0.0735170 0.511322i −0.00440926 0.0306671i
\(279\) 5.45797 11.9513i 0.326760 0.715505i
\(280\) −3.44832 + 1.01252i −0.206077 + 0.0605096i
\(281\) 12.5684 14.5047i 0.749768 0.865278i −0.244778 0.969579i \(-0.578715\pi\)
0.994546 + 0.104301i \(0.0332605\pi\)
\(282\) −0.371337 0.109034i −0.0221128 0.00649290i
\(283\) −0.917014 + 0.589329i −0.0545108 + 0.0350320i −0.567612 0.823296i \(-0.692133\pi\)
0.513102 + 0.858328i \(0.328496\pi\)
\(284\) −3.30287 7.23227i −0.195989 0.429157i
\(285\) 2.00797 + 2.31732i 0.118942 + 0.137266i
\(286\) 2.20870 + 1.41945i 0.130603 + 0.0839337i
\(287\) −1.17647 + 8.18250i −0.0694446 + 0.482998i
\(288\) 1.07752 7.49430i 0.0634933 0.441606i
\(289\) 18.8432 + 12.1098i 1.10842 + 0.712340i
\(290\) 1.47321 + 1.70018i 0.0865101 + 0.0998380i
\(291\) 2.11203 + 4.62470i 0.123809 + 0.271105i
\(292\) −7.13305 + 4.58413i −0.417430 + 0.268266i
\(293\) −13.3746 3.92714i −0.781353 0.229426i −0.133356 0.991068i \(-0.542575\pi\)
−0.647998 + 0.761642i \(0.724393\pi\)
\(294\) 0.0383314 0.0442368i 0.00223553 0.00257994i
\(295\) −15.1282 + 4.44204i −0.880799 + 0.258626i
\(296\) 0.0147125 0.0322159i 0.000855148 0.00187251i
\(297\) 1.32648 + 9.22589i 0.0769704 + 0.535341i
\(298\) 0.978991 0.0567114
\(299\) 0 0
\(300\) 2.52284 0.145656
\(301\) 0.467039 + 3.24833i 0.0269197 + 0.187231i
\(302\) −0.667617 + 1.46188i −0.0384170 + 0.0841216i
\(303\) −4.22688 + 1.24112i −0.242828 + 0.0713007i
\(304\) −10.1617 + 11.7272i −0.582812 + 0.672600i
\(305\) −5.22705 1.53480i −0.299300 0.0878824i
\(306\) −3.45975 + 2.22345i −0.197781 + 0.127106i
\(307\) −10.6472 23.3141i −0.607667 1.33061i −0.924158 0.382010i \(-0.875232\pi\)
0.316491 0.948596i \(-0.397495\pi\)
\(308\) 10.9331 + 12.6175i 0.622972 + 0.718948i
\(309\) −5.94994 3.82379i −0.338480 0.217528i
\(310\) −0.241515 + 1.67977i −0.0137171 + 0.0954047i
\(311\) 0.528507 3.67585i 0.0299689 0.208438i −0.969335 0.245743i \(-0.920968\pi\)
0.999304 + 0.0373046i \(0.0118772\pi\)
\(312\) −1.23689 0.794902i −0.0700252 0.0450024i
\(313\) 10.3001 + 11.8870i 0.582198 + 0.671893i 0.968076 0.250657i \(-0.0806467\pi\)
−0.385878 + 0.922550i \(0.626101\pi\)
\(314\) −0.956567 2.09459i −0.0539822 0.118205i
\(315\) 8.98129 5.77193i 0.506039 0.325211i
\(316\) −4.48049 1.31559i −0.252047 0.0740077i
\(317\) 2.16426 2.49769i 0.121557 0.140284i −0.691709 0.722176i \(-0.743142\pi\)
0.813266 + 0.581892i \(0.197687\pi\)
\(318\) −0.730826 + 0.214590i −0.0409827 + 0.0120336i
\(319\) 8.80765 19.2861i 0.493134 1.07981i
\(320\) −1.44060 10.0196i −0.0805322 0.560114i
\(321\) 7.76120 0.433188
\(322\) 0 0
\(323\) 26.5569 1.47766
\(324\) 1.93353 + 13.4480i 0.107419 + 0.747112i
\(325\) −3.70553 + 8.11399i −0.205546 + 0.450083i
\(326\) 1.36793 0.401660i 0.0757626 0.0222459i
\(327\) 4.71339 5.43954i 0.260651 0.300807i
\(328\) 2.90547 + 0.853122i 0.160428 + 0.0471058i
\(329\) 7.32009 4.70434i 0.403570 0.259359i
\(330\) −0.240124 0.525799i −0.0132184 0.0289443i
\(331\) −5.23932 6.04650i −0.287979 0.332346i 0.593265 0.805007i \(-0.297839\pi\)
−0.881244 + 0.472662i \(0.843293\pi\)
\(332\) 4.83631 + 3.10811i 0.265427 + 0.170580i
\(333\) −0.0149727 + 0.104138i −0.000820501 + 0.00570671i
\(334\) −0.0592191 + 0.411878i −0.00324032 + 0.0225369i
\(335\) −8.68177 5.57943i −0.474336 0.304837i
\(336\) −2.92860 3.37978i −0.159768 0.184382i
\(337\) −0.578363 1.26644i −0.0315055 0.0689873i 0.893225 0.449610i \(-0.148437\pi\)
−0.924730 + 0.380623i \(0.875710\pi\)
\(338\) −0.430551 + 0.276698i −0.0234189 + 0.0150504i
\(339\) −0.530928 0.155895i −0.0288360 0.00846703i
\(340\) −12.0932 + 13.9563i −0.655845 + 0.756885i
\(341\) 15.3460 4.50600i 0.831034 0.244014i
\(342\) −1.15158 + 2.52160i −0.0622702 + 0.136353i
\(343\) 2.72383 + 18.9446i 0.147073 + 1.02291i
\(344\) 1.20212 0.0648141
\(345\) 0 0
\(346\) −2.41484 −0.129823
\(347\) −2.39495 16.6573i −0.128568 0.894209i −0.947372 0.320136i \(-0.896271\pi\)
0.818804 0.574074i \(-0.194638\pi\)
\(348\) −2.43121 + 5.32360i −0.130326 + 0.285375i
\(349\) 18.3529 5.38891i 0.982410 0.288462i 0.249191 0.968454i \(-0.419835\pi\)
0.733219 + 0.679993i \(0.238017\pi\)
\(350\) 1.06850 1.23311i 0.0571135 0.0659125i
\(351\) 8.72839 + 2.56289i 0.465887 + 0.136797i
\(352\) 7.75365 4.98297i 0.413271 0.265593i
\(353\) 13.9787 + 30.6090i 0.744010 + 1.62915i 0.776844 + 0.629693i \(0.216819\pi\)
−0.0328346 + 0.999461i \(0.510453\pi\)
\(354\) 0.772660 + 0.891697i 0.0410664 + 0.0473932i
\(355\) −5.20665 3.34611i −0.276340 0.177593i
\(356\) −3.41985 + 23.7856i −0.181252 + 1.26063i
\(357\) −1.08924 + 7.57581i −0.0576485 + 0.400954i
\(358\) −2.05015 1.31755i −0.108354 0.0696349i
\(359\) −12.8559 14.8365i −0.678509 0.783041i 0.307174 0.951654i \(-0.400617\pi\)
−0.985682 + 0.168613i \(0.946071\pi\)
\(360\) −1.62457 3.55732i −0.0856225 0.187487i
\(361\) −0.924808 + 0.594338i −0.0486741 + 0.0312809i
\(362\) 2.10823 + 0.619033i 0.110806 + 0.0325357i
\(363\) −0.117817 + 0.135968i −0.00618378 + 0.00713646i
\(364\) 15.6343 4.59064i 0.819459 0.240615i
\(365\) −2.74191 + 6.00394i −0.143518 + 0.314260i
\(366\) 0.0580174 + 0.403520i 0.00303262 + 0.0210923i
\(367\) −6.73062 −0.351336 −0.175668 0.984449i \(-0.556208\pi\)
−0.175668 + 0.984449i \(0.556208\pi\)
\(368\) 0 0
\(369\) −8.99539 −0.468281
\(370\) −0.00193395 0.0134509i −0.000100541 0.000699280i
\(371\) 7.11406 15.5776i 0.369344 0.808750i
\(372\) −4.23602 + 1.24381i −0.219627 + 0.0644884i
\(373\) 16.5863 19.1416i 0.858808 0.991117i −0.141192 0.989982i \(-0.545093\pi\)
0.999999 0.00113459i \(-0.000361151\pi\)
\(374\) −4.80358 1.41046i −0.248387 0.0729331i
\(375\) 4.70049 3.02082i 0.242732 0.155995i
\(376\) −1.32409 2.89935i −0.0682847 0.149523i
\(377\) −13.5509 15.6386i −0.697906 0.805427i
\(378\) −1.39983 0.899615i −0.0719994 0.0462712i
\(379\) 4.10682 28.5635i 0.210953 1.46721i −0.559030 0.829147i \(-0.688827\pi\)
0.769984 0.638064i \(-0.220264\pi\)
\(380\) −1.77147 + 12.3209i −0.0908746 + 0.632047i
\(381\) 4.20737 + 2.70391i 0.215550 + 0.138525i
\(382\) −3.17932 3.66913i −0.162668 0.187729i
\(383\) 5.35696 + 11.7301i 0.273728 + 0.599381i 0.995710 0.0925315i \(-0.0294959\pi\)
−0.721982 + 0.691912i \(0.756769\pi\)
\(384\) −2.83909 + 1.82457i −0.144882 + 0.0931099i
\(385\) 12.4698 + 3.66146i 0.635519 + 0.186605i
\(386\) 2.12725 2.45498i 0.108274 0.124955i
\(387\) −3.42638 + 1.00608i −0.174173 + 0.0511418i
\(388\) −8.57387 + 18.7742i −0.435272 + 0.953114i
\(389\) 0.298358 + 2.07512i 0.0151273 + 0.105213i 0.995986 0.0895072i \(-0.0285292\pi\)
−0.980859 + 0.194720i \(0.937620\pi\)
\(390\) −0.564150 −0.0285669
\(391\) 0 0
\(392\) 0.482074 0.0243484
\(393\) 1.03556 + 7.20247i 0.0522370 + 0.363316i
\(394\) 0.225889 0.494629i 0.0113801 0.0249190i
\(395\) −3.48777 + 1.02410i −0.175489 + 0.0515281i
\(396\) −11.8969 + 13.7298i −0.597843 + 0.689948i
\(397\) −1.80289 0.529377i −0.0904846 0.0265687i 0.236177 0.971710i \(-0.424106\pi\)
−0.326661 + 0.945141i \(0.605924\pi\)
\(398\) −0.340312 + 0.218705i −0.0170583 + 0.0109627i
\(399\) 2.14312 + 4.69278i 0.107290 + 0.234933i
\(400\) 6.50832 + 7.51101i 0.325416 + 0.375550i
\(401\) −14.1790 9.11231i −0.708067 0.455047i 0.136400 0.990654i \(-0.456447\pi\)
−0.844468 + 0.535607i \(0.820083\pi\)
\(402\) −0.109907 + 0.764420i −0.00548166 + 0.0381258i
\(403\) 2.22150 15.4508i 0.110661 0.769661i
\(404\) −15.0446 9.66860i −0.748498 0.481031i
\(405\) 6.92584 + 7.99285i 0.344148 + 0.397168i
\(406\) 1.57238 + 3.44302i 0.0780357 + 0.170874i
\(407\) −0.107741 + 0.0692413i −0.00534055 + 0.00343216i
\(408\) 2.69004 + 0.789868i 0.133177 + 0.0391043i
\(409\) −8.51949 + 9.83201i −0.421261 + 0.486162i −0.926221 0.376982i \(-0.876962\pi\)
0.504959 + 0.863143i \(0.331507\pi\)
\(410\) 1.11482 0.327342i 0.0550572 0.0161663i
\(411\) −0.243189 + 0.532509i −0.0119956 + 0.0262667i
\(412\) −4.08613 28.4197i −0.201309 1.40014i
\(413\) −26.5279 −1.30535
\(414\) 0 0
\(415\) 4.47517 0.219677
\(416\) −1.28018 8.90383i −0.0627659 0.436546i
\(417\) 0.434575 0.951587i 0.0212812 0.0465994i
\(418\) −3.23786 + 0.950721i −0.158369 + 0.0465013i
\(419\) −19.2599 + 22.2271i −0.940907 + 1.08586i 0.0552671 + 0.998472i \(0.482399\pi\)
−0.996174 + 0.0873928i \(0.972146\pi\)
\(420\) −3.44208 1.01069i −0.167956 0.0493164i
\(421\) −18.7577 + 12.0548i −0.914192 + 0.587516i −0.910967 0.412479i \(-0.864663\pi\)
−0.00322504 + 0.999995i \(0.501027\pi\)
\(422\) −0.786183 1.72150i −0.0382708 0.0838013i
\(423\) 6.20054 + 7.15581i 0.301481 + 0.347927i
\(424\) −5.27725 3.39148i −0.256286 0.164705i
\(425\) 2.42065 16.8360i 0.117419 0.816665i
\(426\) −0.0659136 + 0.458439i −0.00319353 + 0.0222115i
\(427\) −7.71078 4.95542i −0.373151 0.239809i
\(428\) 20.6326 + 23.8113i 0.997316 + 1.15096i
\(429\) 2.20870 + 4.83639i 0.106637 + 0.233503i
\(430\) 0.388030 0.249372i 0.0187125 0.0120258i
\(431\) −1.69018 0.496283i −0.0814133 0.0239051i 0.240772 0.970582i \(-0.422599\pi\)
−0.322186 + 0.946677i \(0.604418\pi\)
\(432\) 6.63732 7.65988i 0.319338 0.368536i
\(433\) 13.2398 3.88756i 0.636265 0.186824i 0.0523366 0.998629i \(-0.483333\pi\)
0.583928 + 0.811805i \(0.301515\pi\)
\(434\) −1.18613 + 2.59727i −0.0569361 + 0.124673i
\(435\) 0.648354 + 4.50940i 0.0310862 + 0.216209i
\(436\) 29.2187 1.39932
\(437\) 0 0
\(438\) 0.493928 0.0236008
\(439\) −1.02303 7.11532i −0.0488265 0.339596i −0.999562 0.0295926i \(-0.990579\pi\)
0.950736 0.310003i \(-0.100330\pi\)
\(440\) 1.97763 4.33040i 0.0942797 0.206444i
\(441\) −1.37405 + 0.403457i −0.0654308 + 0.0192122i
\(442\) −3.19973 + 3.69269i −0.152196 + 0.175643i
\(443\) 22.4440 + 6.59015i 1.06635 + 0.313108i 0.767404 0.641164i \(-0.221548\pi\)
0.298942 + 0.954271i \(0.403366\pi\)
\(444\) 0.0297403 0.0191129i 0.00141141 0.000907059i
\(445\) 7.77073 + 17.0155i 0.368368 + 0.806613i
\(446\) −4.41711 5.09762i −0.209156 0.241379i
\(447\) 1.66782 + 1.07185i 0.0788854 + 0.0506966i
\(448\) 2.42383 16.8581i 0.114515 0.796470i
\(449\) −0.960988 + 6.68382i −0.0453518 + 0.315429i 0.954500 + 0.298211i \(0.0963900\pi\)
−0.999852 + 0.0172178i \(0.994519\pi\)
\(450\) 1.49363 + 0.959895i 0.0704102 + 0.0452499i
\(451\) −7.17091 8.27567i −0.337665 0.389686i
\(452\) −0.933152 2.04332i −0.0438918 0.0961096i
\(453\) −2.73789 + 1.75954i −0.128637 + 0.0826703i
\(454\) −2.12902 0.625137i −0.0999200 0.0293392i
\(455\) 8.30629 9.58597i 0.389405 0.449397i
\(456\) 1.81322 0.532411i 0.0849120 0.0249324i
\(457\) −3.00132 + 6.57197i −0.140396 + 0.307424i −0.966748 0.255729i \(-0.917685\pi\)
0.826353 + 0.563153i \(0.190412\pi\)
\(458\) −0.223900 1.55726i −0.0104622 0.0727660i
\(459\) −17.3462 −0.809653
\(460\) 0 0
\(461\) −32.1800 −1.49877 −0.749385 0.662134i \(-0.769651\pi\)
−0.749385 + 0.662134i \(0.769651\pi\)
\(462\) −0.138408 0.962648i −0.00643932 0.0447864i
\(463\) −7.79908 + 17.0776i −0.362454 + 0.793663i 0.637281 + 0.770632i \(0.280059\pi\)
−0.999735 + 0.0230316i \(0.992668\pi\)
\(464\) −22.1214 + 6.49542i −1.02696 + 0.301542i
\(465\) −2.25054 + 2.59727i −0.104366 + 0.120445i
\(466\) 5.81754 + 1.70818i 0.269492 + 0.0791300i
\(467\) −23.9547 + 15.3948i −1.10849 + 0.712384i −0.960964 0.276673i \(-0.910768\pi\)
−0.147528 + 0.989058i \(0.547132\pi\)
\(468\) 7.36562 + 16.1285i 0.340476 + 0.745538i
\(469\) −11.3707 13.1225i −0.525050 0.605940i
\(470\) −1.02885 0.661202i −0.0474573 0.0304990i
\(471\) 0.663633 4.61567i 0.0305786 0.212679i
\(472\) −1.38292 + 9.61844i −0.0636542 + 0.442725i
\(473\) −3.65701 2.35022i −0.168150 0.108063i
\(474\) 0.178135 + 0.205578i 0.00818199 + 0.00944252i
\(475\) −4.76273 10.4289i −0.218529 0.478512i
\(476\) −26.1382 + 16.7980i −1.19804 + 0.769935i
\(477\) 17.8800 + 5.25005i 0.818671 + 0.240383i
\(478\) 0.237261 0.273814i 0.0108521 0.0125240i
\(479\) 4.53596 1.33188i 0.207253 0.0608551i −0.176458 0.984308i \(-0.556464\pi\)
0.383711 + 0.923453i \(0.374646\pi\)
\(480\) −0.822707 + 1.80148i −0.0375513 + 0.0822258i
\(481\) 0.0177888 + 0.123724i 0.000811101 + 0.00564133i
\(482\) 6.59911 0.300581
\(483\) 0 0
\(484\) −0.730356 −0.0331980
\(485\) 2.28648 + 15.9028i 0.103824 + 0.722109i
\(486\) 1.14321 2.50329i 0.0518573 0.113552i
\(487\) −30.3933 + 8.92428i −1.37725 + 0.404398i −0.884812 0.465948i \(-0.845713\pi\)
−0.492441 + 0.870346i \(0.663895\pi\)
\(488\) −2.19870 + 2.53743i −0.0995304 + 0.114864i
\(489\) 2.77018 + 0.813399i 0.125272 + 0.0367832i
\(490\) 0.155608 0.100003i 0.00702964 0.00451767i
\(491\) −2.99049 6.54825i −0.134959 0.295519i 0.830071 0.557657i \(-0.188300\pi\)
−0.965030 + 0.262138i \(0.915572\pi\)
\(492\) 1.97941 + 2.28436i 0.0892388 + 0.102987i
\(493\) 33.1939 + 21.3324i 1.49498 + 0.960764i
\(494\) −0.468713 + 3.25997i −0.0210884 + 0.146673i
\(495\) −2.01260 + 13.9980i −0.0904598 + 0.629162i
\(496\) −14.6310 9.40277i −0.656951 0.422197i
\(497\) −6.81926 7.86984i −0.305885 0.353011i
\(498\) −0.139119 0.304627i −0.00623406 0.0136507i
\(499\) −19.1749 + 12.3230i −0.858388 + 0.551652i −0.894180 0.447707i \(-0.852241\pi\)
0.0357926 + 0.999359i \(0.488604\pi\)
\(500\) 21.7638 + 6.39043i 0.973307 + 0.285789i
\(501\) −0.551830 + 0.636845i −0.0246539 + 0.0284521i
\(502\) −2.55653 + 0.750666i −0.114104 + 0.0335039i
\(503\) 10.1483 22.2217i 0.452491 0.990818i −0.536644 0.843809i \(-0.680308\pi\)
0.989135 0.147009i \(-0.0469647\pi\)
\(504\) −0.936406 6.51285i −0.0417108 0.290105i
\(505\) −13.9212 −0.619485
\(506\) 0 0
\(507\) −1.03644 −0.0460297
\(508\) 2.88942 + 20.0963i 0.128197 + 0.891631i
\(509\) −3.25280 + 7.12264i −0.144178 + 0.315706i −0.967920 0.251259i \(-0.919155\pi\)
0.823742 + 0.566965i \(0.191883\pi\)
\(510\) 1.03217 0.303071i 0.0457050 0.0134202i
\(511\) −7.27237 + 8.39277i −0.321711 + 0.371274i
\(512\) −16.1808 4.75110i −0.715095 0.209971i
\(513\) −9.83613 + 6.32130i −0.434276 + 0.279092i
\(514\) −1.61511 3.53660i −0.0712395 0.155993i
\(515\) −14.6364 16.8913i −0.644955 0.744318i
\(516\) 1.00946 + 0.648739i 0.0444389 + 0.0285592i
\(517\) −1.64035 + 11.4089i −0.0721424 + 0.501762i
\(518\) 0.00325389 0.0226313i 0.000142968 0.000994361i
\(519\) −4.11396 2.64388i −0.180583 0.116054i
\(520\) −3.04265 3.51141i −0.133429 0.153985i
\(521\) −1.26024 2.75953i −0.0552119 0.120897i 0.880015 0.474945i \(-0.157532\pi\)
−0.935227 + 0.354048i \(0.884805\pi\)
\(522\) −3.46491 + 2.22676i −0.151655 + 0.0974628i
\(523\) 28.4478 + 8.35301i 1.24393 + 0.365252i 0.836492 0.547979i \(-0.184603\pi\)
0.407442 + 0.913231i \(0.366421\pi\)
\(524\) −19.3442 + 22.3243i −0.845053 + 0.975244i
\(525\) 3.17037 0.930906i 0.138366 0.0406281i
\(526\) 2.30838 5.05466i 0.100650 0.220393i
\(527\) 4.23602 + 29.4622i 0.184524 + 1.28339i
\(528\) 5.92389 0.257804
\(529\) 0 0
\(530\) −2.40697 −0.104552
\(531\) −4.10813 28.5727i −0.178278 1.23995i
\(532\) −8.70008 + 19.0505i −0.377196 + 0.825944i
\(533\) −10.2543 + 3.01095i −0.444165 + 0.130419i
\(534\) 0.916689 1.05792i 0.0396690 0.0457805i
\(535\) 23.5326 + 6.90979i 1.01740 + 0.298736i
\(536\) −5.35070 + 3.43868i −0.231115 + 0.148529i
\(537\) −2.05015 4.48921i −0.0884707 0.193724i
\(538\) −0.687874 0.793849i −0.0296564 0.0342253i
\(539\) −1.46653 0.942483i −0.0631680 0.0405956i
\(540\) 1.15708 8.04765i 0.0497927 0.346316i
\(541\) −3.38208 + 23.5229i −0.145407 + 1.01133i 0.778208 + 0.628007i \(0.216129\pi\)
−0.923615 + 0.383321i \(0.874780\pi\)
\(542\) −3.91928 2.51877i −0.168347 0.108190i
\(543\) 2.91387 + 3.36279i 0.125046 + 0.144311i
\(544\) 7.12549 + 15.6027i 0.305503 + 0.668958i
\(545\) 19.1342 12.2968i 0.819619 0.526737i
\(546\) −0.910738 0.267417i −0.0389760 0.0114444i
\(547\) 12.5164 14.4447i 0.535161 0.617609i −0.422200 0.906503i \(-0.638742\pi\)
0.957361 + 0.288894i \(0.0932874\pi\)
\(548\) −2.28023 + 0.669537i −0.0974068 + 0.0286012i
\(549\) 4.14328 9.07253i 0.176831 0.387206i
\(550\) 0.307589 + 2.13933i 0.0131156 + 0.0912212i
\(551\) 26.5965 1.13305
\(552\) 0 0
\(553\) −6.11593 −0.260076
\(554\) 0.634657 + 4.41413i 0.0269640 + 0.187539i
\(555\) 0.0114320 0.0250326i 0.000485261 0.00106257i
\(556\) 4.07475 1.19645i 0.172808 0.0507410i
\(557\) −12.8521 + 14.8322i −0.544563 + 0.628459i −0.959608 0.281342i \(-0.909221\pi\)
0.415045 + 0.909801i \(0.363766\pi\)
\(558\) −2.98115 0.875344i −0.126202 0.0370563i
\(559\) −3.56917 + 2.29377i −0.150960 + 0.0970160i
\(560\) −5.87072 12.8551i −0.248083 0.543227i
\(561\) −6.63922 7.66207i −0.280308 0.323493i
\(562\) −3.81813 2.45376i −0.161058 0.103506i
\(563\) 6.35856 44.2247i 0.267981 1.86385i −0.199568 0.979884i \(-0.563954\pi\)
0.467549 0.883967i \(-0.345137\pi\)
\(564\) 0.452791 3.14923i 0.0190659 0.132607i
\(565\) −1.47102 0.945369i −0.0618864 0.0397720i
\(566\) 0.168807 + 0.194814i 0.00709549 + 0.00818863i
\(567\) 7.39201 + 16.1862i 0.310435 + 0.679758i
\(568\) −3.20893 + 2.06225i −0.134644 + 0.0865303i
\(569\) 3.97732 + 1.16785i 0.166738 + 0.0489587i 0.364036 0.931385i \(-0.381399\pi\)
−0.197298 + 0.980344i \(0.563217\pi\)
\(570\) 0.474842 0.547996i 0.0198889 0.0229530i
\(571\) −12.8459 + 3.77191i −0.537586 + 0.157849i −0.539245 0.842149i \(-0.681290\pi\)
0.00165877 + 0.999999i \(0.499472\pi\)
\(572\) −8.96632 + 19.6335i −0.374901 + 0.820918i
\(573\) −1.39920 9.73165i −0.0584524 0.406546i
\(574\) 1.95489 0.0815954
\(575\) 0 0
\(576\) 18.5329 0.772203
\(577\) −3.33416 23.1896i −0.138803 0.965394i −0.933548 0.358452i \(-0.883305\pi\)
0.794746 0.606943i \(-0.207604\pi\)
\(578\) 2.20040 4.81821i 0.0915247 0.200411i
\(579\) 6.31184 1.85332i 0.262311 0.0770215i
\(580\) −12.1112 + 13.9771i −0.502890 + 0.580366i
\(581\) 7.22451 + 2.12131i 0.299723 + 0.0880066i
\(582\) 1.01143 0.650009i 0.0419253 0.0269437i
\(583\) 9.42353 + 20.6347i 0.390283 + 0.854600i
\(584\) 2.66392 + 3.07433i 0.110234 + 0.127217i
\(585\) 11.6112 + 7.46205i 0.480063 + 0.308518i
\(586\) −0.469118 + 3.26279i −0.0193791 + 0.134784i
\(587\) 5.70196 39.6580i 0.235345 1.63686i −0.439029 0.898473i \(-0.644678\pi\)
0.674375 0.738389i \(-0.264413\pi\)
\(588\) 0.404812 + 0.260157i 0.0166942 + 0.0107287i
\(589\) 13.1386 + 15.1628i 0.541367 + 0.624771i
\(590\) 1.54889 + 3.39159i 0.0637668 + 0.139630i
\(591\) 0.926372 0.595343i 0.0381059 0.0244891i
\(592\) 0.133626 + 0.0392361i 0.00549199 + 0.00161259i
\(593\) −3.82517 + 4.41448i −0.157081 + 0.181281i −0.828835 0.559493i \(-0.810996\pi\)
0.671754 + 0.740774i \(0.265541\pi\)
\(594\) 2.11488 0.620985i 0.0867746 0.0254793i
\(595\) −10.0474 + 22.0007i −0.411902 + 0.901940i
\(596\) 1.14538 + 7.96630i 0.0469167 + 0.326312i
\(597\) −0.819209 −0.0335280
\(598\) 0 0
\(599\) −5.01179 −0.204776 −0.102388 0.994745i \(-0.532648\pi\)
−0.102388 + 0.994745i \(0.532648\pi\)
\(600\) −0.172252 1.19804i −0.00703216 0.0489097i
\(601\) 5.29349 11.5911i 0.215926 0.472812i −0.770412 0.637546i \(-0.779949\pi\)
0.986338 + 0.164734i \(0.0526767\pi\)
\(602\) 0.744625 0.218641i 0.0303486 0.00891116i
\(603\) 12.3731 14.2793i 0.503871 0.581499i
\(604\) −12.6768 3.72223i −0.515810 0.151455i
\(605\) −0.478282 + 0.307373i −0.0194449 + 0.0124965i
\(606\) 0.432766 + 0.947624i 0.0175799 + 0.0384946i
\(607\) 0.404746 + 0.467102i 0.0164282 + 0.0189591i 0.763904 0.645330i \(-0.223280\pi\)
−0.747476 + 0.664289i \(0.768735\pi\)
\(608\) 9.72640 + 6.25078i 0.394458 + 0.253503i
\(609\) −1.09086 + 7.58710i −0.0442039 + 0.307445i
\(610\) −0.183340 + 1.27516i −0.00742322 + 0.0516296i
\(611\) 9.46354 + 6.08185i 0.382854 + 0.246045i
\(612\) −22.1406 25.5516i −0.894979 1.03286i
\(613\) −13.2131 28.9326i −0.533672 1.16858i −0.963999 0.265905i \(-0.914329\pi\)
0.430327 0.902673i \(-0.358398\pi\)
\(614\) −5.09885 + 3.27683i −0.205773 + 0.132242i
\(615\) 2.25762 + 0.662897i 0.0910361 + 0.0267306i
\(616\) 5.24527 6.05337i 0.211338 0.243897i
\(617\) 38.3561 11.2624i 1.54416 0.453406i 0.604811 0.796369i \(-0.293249\pi\)
0.939349 + 0.342963i \(0.111430\pi\)
\(618\) −0.694801 + 1.52140i −0.0279490 + 0.0611997i
\(619\) −5.00003 34.7760i −0.200968 1.39776i −0.801420 0.598103i \(-0.795922\pi\)
0.600451 0.799661i \(-0.294988\pi\)
\(620\) −13.9513 −0.560298
\(621\) 0 0
\(622\) −0.878199 −0.0352126
\(623\) 4.47906 + 31.1525i 0.179450 + 1.24810i
\(624\) 2.40176 5.25913i 0.0961475 0.210534i
\(625\) 3.94147 1.15732i 0.157659 0.0462928i
\(626\) 2.43577 2.81102i 0.0973528 0.112351i
\(627\) −6.55696 1.92530i −0.261860 0.0768889i
\(628\) 15.9251 10.2344i 0.635479 0.408398i
\(629\) −0.0990129 0.216808i −0.00394790 0.00864470i
\(630\) −1.65331 1.90802i −0.0658693 0.0760172i
\(631\) −39.7262 25.5305i −1.58148 1.01635i −0.975262 0.221052i \(-0.929051\pi\)
−0.606214 0.795301i \(-0.707313\pi\)
\(632\) −0.318829 + 2.21750i −0.0126823 + 0.0882076i
\(633\) 0.545427 3.79353i 0.0216788 0.150779i
\(634\) −0.657476 0.422534i −0.0261117 0.0167810i
\(635\) 10.3498 + 11.9443i 0.410718 + 0.473994i
\(636\) −2.60121 5.69586i −0.103145 0.225856i
\(637\) −1.43131 + 0.919845i −0.0567104 + 0.0364456i
\(638\) −4.81074 1.41256i −0.190459 0.0559238i
\(639\) 7.42041 8.56362i 0.293547 0.338771i
\(640\) −10.2328 + 3.00461i −0.404485 + 0.118768i
\(641\) −2.87062 + 6.28577i −0.113382 + 0.248273i −0.957813 0.287392i \(-0.907212\pi\)
0.844431 + 0.535665i \(0.179939\pi\)
\(642\) −0.261199 1.81668i −0.0103087 0.0716986i
\(643\) −38.9219 −1.53493 −0.767465 0.641091i \(-0.778482\pi\)
−0.767465 + 0.641091i \(0.778482\pi\)
\(644\) 0 0
\(645\) 0.934078 0.0367793
\(646\) −0.893757 6.21622i −0.0351644 0.244574i
\(647\) 4.84099 10.6003i 0.190319 0.416741i −0.790285 0.612739i \(-0.790068\pi\)
0.980604 + 0.195999i \(0.0627948\pi\)
\(648\) 6.25414 1.83638i 0.245686 0.0721398i
\(649\) 23.0117 26.5569i 0.903286 1.04245i
\(650\) 2.02396 + 0.594290i 0.0793864 + 0.0233100i
\(651\) −4.86432 + 3.12611i −0.190648 + 0.122522i
\(652\) 4.86884 + 10.6613i 0.190678 + 0.417527i
\(653\) 25.8359 + 29.8162i 1.01104 + 1.16680i 0.985938 + 0.167112i \(0.0534442\pi\)
0.0250976 + 0.999685i \(0.492010\pi\)
\(654\) −1.43187 0.920208i −0.0559906 0.0359830i
\(655\) −3.27245 + 22.7604i −0.127865 + 0.889322i
\(656\) −1.69460 + 11.7862i −0.0661631 + 0.460175i
\(657\) −10.1659 6.53322i −0.396609 0.254885i
\(658\) −1.34751 1.55511i −0.0525313 0.0606243i
\(659\) 0.309947 + 0.678690i 0.0120738 + 0.0264380i 0.915573 0.402152i \(-0.131738\pi\)
−0.903499 + 0.428590i \(0.859010\pi\)
\(660\) 3.99762 2.56912i 0.155607 0.100003i
\(661\) −28.0196 8.22730i −1.08984 0.320005i −0.313029 0.949743i \(-0.601344\pi\)
−0.776807 + 0.629739i \(0.783162\pi\)
\(662\) −1.23899 + 1.42987i −0.0481547 + 0.0555734i
\(663\) −9.49404 + 2.78770i −0.368718 + 0.108265i
\(664\) 1.14576 2.50887i 0.0444641 0.0973629i
\(665\) 2.32013 + 16.1369i 0.0899710 + 0.625762i
\(666\) 0.0248796 0.000964065
\(667\) 0 0
\(668\) −3.42084 −0.132356
\(669\) −1.94395 13.5204i −0.0751573 0.522730i
\(670\) −1.01381 + 2.21993i −0.0391668 + 0.0857634i
\(671\) 11.6496 3.42062i 0.449726 0.132052i
\(672\) −2.18207 + 2.51825i −0.0841753 + 0.0971434i
\(673\) −16.0572 4.71481i −0.618958 0.181743i −0.0428041 0.999083i \(-0.513629\pi\)
−0.576154 + 0.817341i \(0.695447\pi\)
\(674\) −0.276973 + 0.178000i −0.0106686 + 0.00685630i
\(675\) 3.11088 + 6.81189i 0.119738 + 0.262190i
\(676\) −2.75529 3.17978i −0.105973 0.122299i
\(677\) −38.0491 24.4527i −1.46235 0.939793i −0.998549 0.0538511i \(-0.982850\pi\)
−0.463797 0.885942i \(-0.653513\pi\)
\(678\) −0.0186224 + 0.129522i −0.000715190 + 0.00497426i
\(679\) −3.84702 + 26.7566i −0.147635 + 1.02682i
\(680\) 7.45320 + 4.78988i 0.285817 + 0.183684i
\(681\) −2.94261 3.39595i −0.112761 0.130133i
\(682\) −1.57119 3.44043i −0.0601640 0.131741i
\(683\) 29.2790 18.8165i 1.12033 0.719993i 0.156811 0.987629i \(-0.449879\pi\)
0.963520 + 0.267635i \(0.0862423\pi\)
\(684\) −21.8662 6.42050i −0.836076 0.245494i
\(685\) −1.21146 + 1.39810i −0.0462875 + 0.0534186i
\(686\) 4.34274 1.27514i 0.165806 0.0486852i
\(687\) 1.32352 2.89811i 0.0504955 0.110570i
\(688\) 0.672732 + 4.67895i 0.0256477 + 0.178383i
\(689\) 22.1397 0.843457
\(690\) 0 0
\(691\) 10.7550 0.409140 0.204570 0.978852i \(-0.434420\pi\)
0.204570 + 0.978852i \(0.434420\pi\)
\(692\) −2.82527 19.6502i −0.107401 0.746988i
\(693\) −9.88433 + 21.6437i −0.375475 + 0.822175i
\(694\) −3.81840 + 1.12118i −0.144944 + 0.0425595i
\(695\) 2.16486 2.49838i 0.0821179 0.0947691i
\(696\) 2.69405 + 0.791045i 0.102118 + 0.0299845i
\(697\) 17.1437 11.0176i 0.649366 0.417322i
\(698\) −1.87905 4.11455i −0.0711231 0.155738i
\(699\) 8.04064 + 9.27940i 0.304125 + 0.350979i
\(700\) 11.2842 + 7.25194i 0.426504 + 0.274097i
\(701\) −2.88330 + 20.0538i −0.108901 + 0.757421i 0.860058 + 0.510197i \(0.170428\pi\)
−0.968958 + 0.247224i \(0.920482\pi\)
\(702\) 0.306151 2.12932i 0.0115549 0.0803661i
\(703\) −0.135154 0.0868582i −0.00509743 0.00327592i
\(704\) 14.7739 + 17.0500i 0.556814 + 0.642598i
\(705\) −1.02885 2.25287i −0.0387487 0.0848479i
\(706\) 6.69427 4.30214i 0.251942 0.161913i
\(707\) −22.4737 6.59889i −0.845212 0.248177i
\(708\) −6.35199 + 7.33059i −0.238722 + 0.275500i
\(709\) −12.6191 + 3.70531i −0.473922 + 0.139156i −0.509967 0.860194i \(-0.670342\pi\)
0.0360448 + 0.999350i \(0.488524\pi\)
\(710\) −0.608003 + 1.33134i −0.0228179 + 0.0499643i
\(711\) −0.947117 6.58735i −0.0355197 0.247045i
\(712\) 11.5287 0.432057
\(713\) 0 0
\(714\) 1.80994 0.0677353
\(715\) 2.39114 + 16.6307i 0.0894234 + 0.621954i
\(716\) 8.32268 18.2241i 0.311033 0.681068i
\(717\) 0.703987 0.206709i 0.0262909 0.00771970i
\(718\) −3.04015 + 3.50852i −0.113457 + 0.130937i
\(719\) 27.5764 + 8.09716i 1.02843 + 0.301973i 0.752071 0.659082i \(-0.229055\pi\)
0.276355 + 0.961056i \(0.410873\pi\)
\(720\) 12.9368 8.31399i 0.482127 0.309844i
\(721\) −15.6215 34.2064i −0.581776 1.27391i
\(722\) 0.170242 + 0.196469i 0.00633574 + 0.00731183i
\(723\) 11.2423 + 7.22501i 0.418107 + 0.268701i
\(724\) −2.57068 + 17.8795i −0.0955387 + 0.664486i
\(725\) 2.42425 16.8611i 0.0900345 0.626204i
\(726\) 0.0357913 + 0.0230017i 0.00132834 + 0.000853672i
\(727\) −18.2371 21.0467i −0.676376 0.780579i 0.308984 0.951067i \(-0.400011\pi\)
−0.985360 + 0.170488i \(0.945466\pi\)
\(728\) −3.24745 7.11092i −0.120358 0.263548i
\(729\) −12.9491 + 8.32191i −0.479598 + 0.308219i
\(730\) 1.49763 + 0.439744i 0.0554298 + 0.0162756i
\(731\) 5.29788 6.11408i 0.195949 0.226137i
\(732\) −3.21567 + 0.944206i −0.118855 + 0.0348988i
\(733\) 10.3915 22.7542i 0.383818 0.840445i −0.614840 0.788652i \(-0.710779\pi\)
0.998658 0.0517927i \(-0.0164935\pi\)
\(734\) 0.226515 + 1.57545i 0.00836084 + 0.0581509i
\(735\) 0.374584 0.0138167
\(736\) 0 0
\(737\) 23.0003 0.847229
\(738\) 0.302735 + 2.10557i 0.0111438 + 0.0775070i
\(739\) 2.65383 5.81107i 0.0976226 0.213764i −0.854520 0.519419i \(-0.826148\pi\)
0.952142 + 0.305656i \(0.0988756\pi\)
\(740\) 0.107191 0.0314741i 0.00394042 0.00115701i
\(741\) −4.36768 + 5.04057i −0.160451 + 0.185170i
\(742\) −3.88570 1.14095i −0.142649 0.0418854i
\(743\) 24.3287 15.6351i 0.892534 0.573597i −0.0120334 0.999928i \(-0.503830\pi\)
0.904567 + 0.426331i \(0.140194\pi\)
\(744\) 0.879879 + 1.92667i 0.0322579 + 0.0706350i
\(745\) 4.10271 + 4.73478i 0.150312 + 0.173469i
\(746\) −5.03872 3.23819i −0.184481 0.118559i
\(747\) −1.16602 + 8.10988i −0.0426626 + 0.296725i
\(748\) 5.85726 40.7382i 0.214163 1.48954i
\(749\) 34.7145 + 22.3097i 1.26844 + 0.815178i
\(750\) −0.865282 0.998589i −0.0315956 0.0364633i
\(751\) 20.8826 + 45.7264i 0.762016 + 1.66858i 0.743484 + 0.668753i \(0.233172\pi\)
0.0185315 + 0.999828i \(0.494101\pi\)
\(752\) 10.5440 6.77621i 0.384500 0.247103i
\(753\) −5.17722 1.52017i −0.188668 0.0553980i
\(754\) −3.20450 + 3.69819i −0.116701 + 0.134680i
\(755\) −9.86802 + 2.89751i −0.359134 + 0.105451i
\(756\) 5.68265 12.4433i 0.206676 0.452558i
\(757\) 5.00587 + 34.8166i 0.181941 + 1.26543i 0.852166 + 0.523272i \(0.175289\pi\)
−0.670224 + 0.742159i \(0.733802\pi\)
\(758\) −6.82414 −0.247864
\(759\) 0 0
\(760\) 5.97184 0.216621
\(761\) 5.02676 + 34.9619i 0.182220 + 1.26737i 0.851499 + 0.524357i \(0.175694\pi\)
−0.669279 + 0.743011i \(0.733397\pi\)
\(762\) 0.491313 1.07582i 0.0177984 0.0389730i
\(763\) 36.7182 10.7814i 1.32929 0.390315i
\(764\) 26.1370 30.1637i 0.945602 1.09128i
\(765\) −25.2524 7.41479i −0.913004 0.268082i
\(766\) 2.56540 1.64868i 0.0926918 0.0595694i
\(767\) −14.2470 31.1965i −0.514428 1.12644i
\(768\) −3.67279 4.23862i −0.132530 0.152948i
\(769\) 41.4759 + 26.6549i 1.49566 + 0.961201i 0.995449 + 0.0952967i \(0.0303800\pi\)
0.500209 + 0.865904i \(0.333256\pi\)
\(770\) 0.437381 3.04205i 0.0157621 0.109628i
\(771\) 1.12051 7.79331i 0.0403541 0.280669i
\(772\) 22.4656 + 14.4378i 0.808554 + 0.519626i
\(773\) 2.45228 + 2.83008i 0.0882022 + 0.101791i 0.798135 0.602479i \(-0.205820\pi\)
−0.709933 + 0.704269i \(0.751275\pi\)
\(774\) 0.350807 + 0.768161i 0.0126095 + 0.0276110i
\(775\) 10.8101 6.94726i 0.388312 0.249553i
\(776\) 9.50081 + 2.78969i 0.341059 + 0.100144i
\(777\) 0.0303212 0.0349925i 0.00108777 0.00125535i
\(778\) 0.475687 0.139674i 0.0170542 0.00500757i
\(779\) 5.70628 12.4950i 0.204449 0.447681i
\(780\) −0.660034 4.59064i −0.0236330 0.164371i
\(781\) 13.7938 0.493581
\(782\) 0 0
\(783\) −17.3721 −0.620827
\(784\) 0.269779 + 1.87635i 0.00963495 + 0.0670126i
\(785\) 6.12151 13.4042i 0.218486 0.478418i
\(786\) 1.65104 0.484790i 0.0588908 0.0172919i
\(787\) 7.62046 8.79448i 0.271640 0.313489i −0.603496 0.797366i \(-0.706226\pi\)
0.875136 + 0.483877i \(0.160772\pi\)
\(788\) 4.28921 + 1.25942i 0.152797 + 0.0448651i
\(789\) 9.46667 6.08386i 0.337023 0.216591i
\(790\) 0.357092 + 0.781922i 0.0127048 + 0.0278195i
\(791\) −1.92663 2.22345i −0.0685031 0.0790568i
\(792\) 7.33225 + 4.71215i 0.260540 + 0.167439i
\(793\) 1.68639 11.7291i 0.0598856 0.416513i
\(794\) −0.0632369 + 0.439822i −0.00224419 + 0.0156087i
\(795\) −4.10055 2.63527i −0.145432 0.0934633i
\(796\) −2.17781 2.51333i −0.0771904 0.0890825i
\(797\) −20.7941 45.5327i −0.736564 1.61285i −0.789126 0.614232i \(-0.789466\pi\)
0.0525618 0.998618i \(-0.483261\pi\)
\(798\) 1.02632 0.659577i 0.0363314 0.0233488i
\(799\) −20.5817 6.04333i −0.728128 0.213798i
\(800\) 4.84929 5.59638i 0.171448 0.197862i
\(801\) −32.8601 + 9.64860i −1.16106 + 0.340917i
\(802\) −1.65575 + 3.62558i −0.0584665 + 0.128024i
\(803\) −2.09350 14.5606i −0.0738781 0.513834i
\(804\) −6.34887 −0.223907
\(805\) 0 0
\(806\) −3.69137 −0.130023
\(807\) −0.302730 2.10553i −0.0106566 0.0741182i
\(808\) −3.56419 + 7.80449i −0.125388 + 0.274561i
\(809\) 30.7570 9.03106i 1.08136 0.317515i 0.307936 0.951407i \(-0.400362\pi\)
0.773421 + 0.633892i \(0.218544\pi\)
\(810\) 1.63781 1.89014i 0.0575470 0.0664127i
\(811\) −46.4089 13.6269i −1.62964 0.478505i −0.666052 0.745905i \(-0.732017\pi\)
−0.963585 + 0.267401i \(0.913835\pi\)
\(812\) −26.1771 + 16.8230i −0.918637 + 0.590372i
\(813\) −3.91928 8.58202i −0.137455 0.300985i
\(814\) 0.0198334 + 0.0228890i 0.000695161 + 0.000802258i
\(815\) 7.67524 + 4.93258i 0.268852 + 0.172781i
\(816\) −1.56896 + 10.9123i −0.0549245 + 0.382008i
\(817\) 0.776060 5.39762i 0.0271509 0.188839i
\(818\) 2.58812 + 1.66328i 0.0904913 + 0.0581553i
\(819\) 15.2074 + 17.5503i 0.531389 + 0.613256i
\(820\) 3.96797 + 8.68863i 0.138567 + 0.303420i
\(821\) −8.85375 + 5.68996i −0.308998 + 0.198581i −0.685944 0.727654i \(-0.740611\pi\)
0.376946 + 0.926235i \(0.376974\pi\)
\(822\) 0.132830 + 0.0390023i 0.00463297 + 0.00136036i
\(823\) −31.1472 + 35.9458i −1.08572 + 1.25299i −0.120180 + 0.992752i \(0.538347\pi\)
−0.965544 + 0.260240i \(0.916198\pi\)
\(824\) −13.2169 + 3.88082i −0.460431 + 0.135195i
\(825\) −1.81822 + 3.98135i −0.0633024 + 0.138613i
\(826\) 0.892782 + 6.20943i 0.0310638 + 0.216054i
\(827\) 52.9294 1.84053 0.920267 0.391291i \(-0.127971\pi\)
0.920267 + 0.391291i \(0.127971\pi\)
\(828\) 0 0
\(829\) 12.4245 0.431522 0.215761 0.976446i \(-0.430777\pi\)
0.215761 + 0.976446i \(0.430777\pi\)
\(830\) −0.150609 1.04751i −0.00522773 0.0363596i
\(831\) −3.75159 + 8.21484i −0.130141 + 0.284970i
\(832\) 21.1266 6.20334i 0.732434 0.215062i
\(833\) 2.12455 2.45186i 0.0736114 0.0849520i
\(834\) −0.237365 0.0696967i −0.00821928 0.00241340i
\(835\) −2.24017 + 1.43967i −0.0775244 + 0.0498219i
\(836\) −11.5244 25.2350i −0.398581 0.872770i
\(837\) −8.58178 9.90390i −0.296630 0.342329i
\(838\) 5.85092 + 3.76016i 0.202117 + 0.129892i
\(839\) −6.21688 + 43.2394i −0.214631 + 1.49279i 0.542794 + 0.839866i \(0.317367\pi\)
−0.757424 + 0.652923i \(0.773543\pi\)
\(840\) −0.244936 + 1.70357i −0.00845111 + 0.0587788i
\(841\) 8.84701 + 5.68563i 0.305069 + 0.196056i
\(842\) 3.45297 + 3.98494i 0.118997 + 0.137330i
\(843\) −3.81813 8.36053i −0.131503 0.287952i
\(844\) 13.0885 8.41146i 0.450524 0.289534i
\(845\) −3.14256 0.922737i −0.108107 0.0317431i
\(846\) 1.46630 1.69220i 0.0504123 0.0581789i
\(847\) −0.917816 + 0.269495i −0.0315365 + 0.00925996i
\(848\) 10.2472 22.4383i 0.351891 0.770534i
\(849\) 0.0742910 + 0.516706i 0.00254966 + 0.0177333i
\(850\) −4.02229 −0.137963
\(851\) 0 0
\(852\) −3.80756 −0.130445
\(853\) −4.24520 29.5260i −0.145353 1.01095i −0.923700 0.383116i \(-0.874851\pi\)
0.778347 0.627834i \(-0.216058\pi\)
\(854\) −0.900422 + 1.97165i −0.0308118 + 0.0674684i
\(855\) −17.0214 + 4.99794i −0.582120 + 0.170926i
\(856\) 9.89871 11.4237i 0.338331 0.390455i
\(857\) 6.31022 + 1.85285i 0.215553 + 0.0632920i 0.387726 0.921775i \(-0.373261\pi\)
−0.172173 + 0.985067i \(0.555079\pi\)
\(858\) 1.05773 0.679762i 0.0361103 0.0232067i
\(859\) 7.67530 + 16.8066i 0.261878 + 0.573433i 0.994203 0.107523i \(-0.0342919\pi\)
−0.732325 + 0.680956i \(0.761565\pi\)
\(860\) 2.48318 + 2.86575i 0.0846759 + 0.0977212i
\(861\) 3.33037 + 2.14030i 0.113499 + 0.0729413i
\(862\) −0.0592836 + 0.412327i −0.00201921 + 0.0140439i
\(863\) −4.20322 + 29.2341i −0.143079 + 0.995139i 0.784130 + 0.620596i \(0.213109\pi\)
−0.927210 + 0.374543i \(0.877800\pi\)
\(864\) −6.35302 4.08284i −0.216134 0.138901i
\(865\) −10.1200 11.6791i −0.344091 0.397102i
\(866\) −1.35555 2.96823i −0.0460634 0.100865i
\(867\) 9.02384 5.79927i 0.306466 0.196954i
\(868\) −22.5223 6.61316i −0.764458 0.224465i
\(869\) 5.30527 6.12261i 0.179969 0.207695i
\(870\) 1.03370 0.303523i 0.0350458 0.0102904i
\(871\) 9.32519 20.4193i 0.315972 0.691882i
\(872\) −1.99497 13.8753i −0.0675581 0.469877i
\(873\) −29.4147 −0.995538
\(874\) 0 0
\(875\) 29.7079 1.00431
\(876\) 0.577877 + 4.01922i 0.0195247 + 0.135797i
\(877\) 3.57597 7.83028i 0.120752 0.264410i −0.839598 0.543209i \(-0.817209\pi\)
0.960349 + 0.278799i \(0.0899364\pi\)
\(878\) −1.63107 + 0.478924i −0.0550458 + 0.0161629i
\(879\) −4.37145 + 5.04492i −0.147445 + 0.170161i
\(880\) 17.9617 + 5.27403i 0.605489 + 0.177788i
\(881\) 4.23160 2.71949i 0.142566 0.0916218i −0.467413 0.884039i \(-0.654814\pi\)
0.609980 + 0.792417i \(0.291178\pi\)
\(882\) 0.140681 + 0.308048i 0.00473696 + 0.0103725i
\(883\) 14.1685 + 16.3514i 0.476809 + 0.550267i 0.942293 0.334789i \(-0.108665\pi\)
−0.465484 + 0.885056i \(0.654120\pi\)
\(884\) −33.7919 21.7167i −1.13654 0.730413i
\(885\) −1.07457 + 7.47377i −0.0361211 + 0.251228i
\(886\) 0.787229 5.47530i 0.0264475 0.183946i
\(887\) 23.1463 + 14.8753i 0.777178 + 0.499462i 0.868096 0.496396i \(-0.165344\pi\)
−0.0909178 + 0.995858i \(0.528980\pi\)
\(888\) −0.0111069 0.0128180i −0.000372722 0.000430144i
\(889\) 11.0464 + 24.1883i 0.370485 + 0.811248i
\(890\) 3.72133 2.39156i 0.124739 0.0801651i
\(891\) −22.6161 6.64070i −0.757669 0.222472i
\(892\) 36.3128 41.9072i 1.21584 1.40316i
\(893\) −13.8731 + 4.07351i −0.464246 + 0.136315i
\(894\) 0.194759 0.426463i 0.00651372 0.0142631i
\(895\) −2.21949 15.4369i −0.0741894 0.515998i
\(896\) −17.9435 −0.599451
\(897\) 0 0
\(898\) 1.59684 0.0532871
\(899\) 4.24233 + 29.5061i 0.141490 + 0.984083i
\(900\) −6.06343 + 13.2771i −0.202114 + 0.442569i
\(901\) −40.5067 + 11.8938i −1.34947 + 0.396241i
\(902\) −1.69577 + 1.95702i −0.0564629 + 0.0651617i
\(903\) 1.50793 + 0.442769i 0.0501809 + 0.0147344i
\(904\) −0.906612 + 0.582644i −0.0301535 + 0.0193785i
\(905\) 5.84121 + 12.7905i 0.194168 + 0.425169i
\(906\) 0.504001 + 0.581648i 0.0167443 + 0.0193240i
\(907\) −1.60375 1.03066i −0.0532515 0.0342227i 0.513744 0.857943i \(-0.328258\pi\)
−0.566996 + 0.823721i \(0.691894\pi\)
\(908\) 2.59603 18.0558i 0.0861523 0.599203i
\(909\) 3.62723 25.2279i 0.120308 0.836758i
\(910\) −2.52335 1.62166i −0.0836482 0.0537574i
\(911\) −24.6917 28.4958i −0.818073 0.944107i 0.181152 0.983455i \(-0.442017\pi\)
−0.999226 + 0.0393483i \(0.987472\pi\)
\(912\) 3.08699 + 6.75957i 0.102220 + 0.223832i
\(913\) −8.39053 + 5.39227i −0.277686 + 0.178458i
\(914\) 1.63932 + 0.481348i 0.0542239 + 0.0159216i
\(915\) −1.70844 + 1.97165i −0.0564794 + 0.0651807i
\(916\) 12.4099 3.64387i 0.410034 0.120397i
\(917\) −16.0717 + 35.1921i −0.530735 + 1.16215i
\(918\) 0.583778 + 4.06026i 0.0192675 + 0.134009i
\(919\) 1.89744 0.0625909 0.0312955 0.999510i \(-0.490037\pi\)
0.0312955 + 0.999510i \(0.490037\pi\)
\(920\) 0 0
\(921\) −12.2741 −0.404446
\(922\) 1.08300 + 7.53242i 0.0356667 + 0.248067i
\(923\) 5.59252 12.2459i 0.184080 0.403079i
\(924\) 7.67139 2.25252i 0.252370 0.0741025i
\(925\) −0.0673838 + 0.0777650i −0.00221556 + 0.00255690i
\(926\) 4.25986 + 1.25081i 0.139988 + 0.0411041i
\(927\) 34.4238 22.1229i 1.13063 0.726610i
\(928\) 7.13611 + 15.6259i 0.234254 + 0.512946i
\(929\) 18.2366 + 21.0462i 0.598324 + 0.690502i 0.971441 0.237282i \(-0.0762565\pi\)
−0.373117 + 0.927784i \(0.621711\pi\)
\(930\) 0.683688 + 0.439379i 0.0224190 + 0.0144078i
\(931\) 0.311215 2.16455i 0.0101997 0.0709403i
\(932\) −7.09363 + 49.3373i −0.232360 + 1.61610i
\(933\) −1.49611 0.961494i −0.0489806 0.0314779i
\(934\) 4.40966 + 5.08902i 0.144289 + 0.166518i
\(935\) −13.3091 29.1429i −0.435254 0.953074i
\(936\) 7.15613 4.59896i 0.233905 0.150322i
\(937\) 13.7475 + 4.03663i 0.449111 + 0.131871i 0.498464 0.866910i \(-0.333898\pi\)
−0.0493526 + 0.998781i \(0.515716\pi\)
\(938\) −2.68893 + 3.10319i −0.0877967 + 0.101323i
\(939\) 7.22725 2.12211i 0.235852 0.0692525i
\(940\) 4.17665 9.14560i 0.136227 0.298296i
\(941\) −4.98897 34.6991i −0.162636 1.13116i −0.893640 0.448784i \(-0.851857\pi\)
0.731004 0.682373i \(-0.239052\pi\)
\(942\) −1.10273 −0.0359290
\(943\) 0 0
\(944\) −38.2113 −1.24367
\(945\) −1.51545 10.5402i −0.0492975 0.342872i
\(946\) −0.427045 + 0.935099i −0.0138844 + 0.0304027i
\(947\) 7.59450 2.22995i 0.246788 0.0724636i −0.155999 0.987757i \(-0.549860\pi\)
0.402787 + 0.915294i \(0.368041\pi\)
\(948\) −1.46443 + 1.69005i −0.0475626 + 0.0548901i
\(949\) −13.7755 4.04484i −0.447170 0.131301i
\(950\) −2.28083 + 1.46580i −0.0739999 + 0.0475569i
\(951\) −0.657476 1.43967i −0.0213201 0.0466846i
\(952\) 9.76161 + 11.2655i 0.316376 + 0.365117i
\(953\) −14.8432 9.53918i −0.480820 0.309004i 0.277684 0.960672i \(-0.410433\pi\)
−0.758504 + 0.651668i \(0.774069\pi\)
\(954\) 0.627147 4.36190i 0.0203046 0.141222i
\(955\) 4.42159 30.7528i 0.143079 0.995139i
\(956\) 2.50568 + 1.61031i 0.0810396 + 0.0520810i
\(957\) −6.64911 7.67349i −0.214935 0.248049i
\(958\) −0.464410 1.01692i −0.0150044 0.0328551i
\(959\) −2.61844 + 1.68277i −0.0845540 + 0.0543396i
\(960\) −4.65129 1.36574i −0.150120 0.0440791i
\(961\) 5.57484 6.43371i 0.179834 0.207539i
\(962\) 0.0283616 0.00832773i 0.000914416 0.000268497i
\(963\) −18.6534 + 40.8452i −0.601097 + 1.31622i
\(964\) 7.72070 + 53.6986i 0.248667 + 1.72952i
\(965\) 20.7880 0.669190
\(966\) 0 0
\(967\) −18.1226 −0.582785 −0.291392 0.956604i \(-0.594119\pi\)
−0.291392 + 0.956604i \(0.594119\pi\)
\(968\) 0.0498665 + 0.346829i 0.00160277 + 0.0111475i
\(969\) 5.28319 11.5686i 0.169721 0.371636i
\(970\) 3.64545 1.07040i 0.117048 0.0343685i
\(971\) −6.94481 + 8.01474i −0.222870 + 0.257205i −0.856162 0.516707i \(-0.827158\pi\)
0.633292 + 0.773913i \(0.281703\pi\)
\(972\) 21.7074 + 6.37388i 0.696266 + 0.204442i
\(973\) 4.67913 3.00709i 0.150006 0.0964030i
\(974\) 3.11179 + 6.81388i 0.0997083 + 0.218331i
\(975\) 2.79740 + 3.22837i 0.0895885 + 0.103391i
\(976\) −11.1067 7.13787i −0.355518 0.228478i
\(977\) 0.935724 6.50810i 0.0299365 0.208213i −0.969363 0.245632i \(-0.921005\pi\)
0.999300 + 0.0374192i \(0.0119137\pi\)
\(978\) 0.0971648 0.675796i 0.00310699 0.0216096i
\(979\) −35.0719 22.5393i −1.12090 0.720361i
\(980\) 0.995805 + 1.14922i 0.0318098 + 0.0367105i
\(981\) 17.2987 + 37.8789i 0.552305 + 1.20938i
\(982\) −1.43212 + 0.920367i −0.0457007 + 0.0293701i
\(983\) 41.9409 + 12.3150i 1.33771 + 0.392787i 0.870851 0.491546i \(-0.163568\pi\)
0.466857 + 0.884333i \(0.345386\pi\)
\(984\) 0.949643 1.09595i 0.0302735 0.0349375i
\(985\) 3.33887 0.980379i 0.106385 0.0312375i
\(986\) 3.87620 8.48769i 0.123443 0.270303i
\(987\) −0.593030 4.12462i −0.0188764 0.131288i
\(988\) −27.0756 −0.861390
\(989\) 0 0
\(990\) 3.34426 0.106288
\(991\) −7.71784 53.6787i −0.245165 1.70516i −0.625427 0.780282i \(-0.715075\pi\)
0.380262 0.924879i \(-0.375834\pi\)
\(992\) −5.38317 + 11.7875i −0.170916 + 0.374254i
\(993\) −3.67625 + 1.07944i −0.116662 + 0.0342551i
\(994\) −1.61261 + 1.86105i −0.0511489 + 0.0590290i
\(995\) −2.48390 0.729340i −0.0787451 0.0231216i
\(996\) 2.31607 1.48845i 0.0733874 0.0471632i
\(997\) 0.285697 + 0.625589i 0.00904811 + 0.0198126i 0.914102 0.405484i \(-0.132897\pi\)
−0.905054 + 0.425297i \(0.860170\pi\)
\(998\) 3.52978 + 4.07359i 0.111733 + 0.128947i
\(999\) 0.0882789 + 0.0567334i 0.00279302 + 0.00179497i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 529.2.c.e.118.1 10
23.2 even 11 529.2.c.c.334.1 10
23.3 even 11 529.2.c.h.487.1 10
23.4 even 11 529.2.c.c.255.1 10
23.5 odd 22 529.2.c.i.466.1 10
23.6 even 11 529.2.c.f.177.1 10
23.7 odd 22 23.2.c.a.9.1 10
23.8 even 11 inner 529.2.c.e.399.1 10
23.9 even 11 529.2.c.f.266.1 10
23.10 odd 22 529.2.a.i.1.2 5
23.11 odd 22 23.2.c.a.18.1 yes 10
23.12 even 11 529.2.c.a.501.1 10
23.13 even 11 529.2.a.j.1.2 5
23.14 odd 22 529.2.c.g.266.1 10
23.15 odd 22 529.2.c.d.399.1 10
23.16 even 11 529.2.c.a.170.1 10
23.17 odd 22 529.2.c.g.177.1 10
23.18 even 11 529.2.c.h.466.1 10
23.19 odd 22 529.2.c.b.255.1 10
23.20 odd 22 529.2.c.i.487.1 10
23.21 odd 22 529.2.c.b.334.1 10
23.22 odd 2 529.2.c.d.118.1 10
69.11 even 22 207.2.i.c.64.1 10
69.53 even 22 207.2.i.c.55.1 10
69.56 even 22 4761.2.a.bo.1.4 5
69.59 odd 22 4761.2.a.bn.1.4 5
92.7 even 22 368.2.m.c.193.1 10
92.11 even 22 368.2.m.c.225.1 10
92.59 odd 22 8464.2.a.bt.1.3 5
92.79 even 22 8464.2.a.bs.1.3 5
115.7 even 44 575.2.p.b.124.1 20
115.34 odd 22 575.2.k.b.501.1 10
115.53 even 44 575.2.p.b.124.2 20
115.57 even 44 575.2.p.b.524.2 20
115.99 odd 22 575.2.k.b.101.1 10
115.103 even 44 575.2.p.b.524.1 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.c.a.9.1 10 23.7 odd 22
23.2.c.a.18.1 yes 10 23.11 odd 22
207.2.i.c.55.1 10 69.53 even 22
207.2.i.c.64.1 10 69.11 even 22
368.2.m.c.193.1 10 92.7 even 22
368.2.m.c.225.1 10 92.11 even 22
529.2.a.i.1.2 5 23.10 odd 22
529.2.a.j.1.2 5 23.13 even 11
529.2.c.a.170.1 10 23.16 even 11
529.2.c.a.501.1 10 23.12 even 11
529.2.c.b.255.1 10 23.19 odd 22
529.2.c.b.334.1 10 23.21 odd 22
529.2.c.c.255.1 10 23.4 even 11
529.2.c.c.334.1 10 23.2 even 11
529.2.c.d.118.1 10 23.22 odd 2
529.2.c.d.399.1 10 23.15 odd 22
529.2.c.e.118.1 10 1.1 even 1 trivial
529.2.c.e.399.1 10 23.8 even 11 inner
529.2.c.f.177.1 10 23.6 even 11
529.2.c.f.266.1 10 23.9 even 11
529.2.c.g.177.1 10 23.17 odd 22
529.2.c.g.266.1 10 23.14 odd 22
529.2.c.h.466.1 10 23.18 even 11
529.2.c.h.487.1 10 23.3 even 11
529.2.c.i.466.1 10 23.5 odd 22
529.2.c.i.487.1 10 23.20 odd 22
575.2.k.b.101.1 10 115.99 odd 22
575.2.k.b.501.1 10 115.34 odd 22
575.2.p.b.124.1 20 115.7 even 44
575.2.p.b.124.2 20 115.53 even 44
575.2.p.b.524.1 20 115.103 even 44
575.2.p.b.524.2 20 115.57 even 44
4761.2.a.bn.1.4 5 69.59 odd 22
4761.2.a.bo.1.4 5 69.56 even 22
8464.2.a.bs.1.3 5 92.79 even 22
8464.2.a.bt.1.3 5 92.59 odd 22