Defining parameters
Level: | \( N \) | \(=\) | \( 529 = 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 529.c (of order \(11\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 23 \) |
Character field: | \(\Q(\zeta_{11})\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(92\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(529, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 580 | 520 | 60 |
Cusp forms | 340 | 320 | 20 |
Eisenstein series | 240 | 200 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(529, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(529, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(529, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(23, [\chi])\)\(^{\oplus 2}\)