Properties

Label 4761.2.a.bn.1.4
Level $4761$
Weight $2$
Character 4761.1
Self dual yes
Analytic conductor $38.017$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4761,2,Mod(1,4761)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4761.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4761, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4761 = 3^{2} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4761.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,0,4,-7,0,8,9,0,5,-13,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.0167764023\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.284630\) of defining polynomial
Character \(\chi\) \(=\) 4761.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.236479 q^{2} -1.94408 q^{4} +1.51334 q^{5} +2.54620 q^{7} +0.932691 q^{8} -0.357872 q^{10} -3.37279 q^{11} +3.29177 q^{13} -0.602123 q^{14} +3.66759 q^{16} -6.27686 q^{17} +4.23092 q^{19} -2.94204 q^{20} +0.797593 q^{22} -2.70981 q^{25} -0.778434 q^{26} -4.95001 q^{28} -6.28621 q^{29} -4.74204 q^{31} -2.73269 q^{32} +1.48434 q^{34} +3.85326 q^{35} -0.0379723 q^{37} -1.00052 q^{38} +1.41148 q^{40} -3.24666 q^{41} -1.28887 q^{43} +6.55696 q^{44} -3.41741 q^{47} -0.516864 q^{49} +0.640813 q^{50} -6.39946 q^{52} -6.72578 q^{53} -5.10416 q^{55} +2.37482 q^{56} +1.48656 q^{58} +10.4186 q^{59} -3.59980 q^{61} +1.12139 q^{62} -6.68896 q^{64} +4.98156 q^{65} +6.81939 q^{67} +12.2027 q^{68} -0.911214 q^{70} -4.08974 q^{71} +4.36149 q^{73} +0.00897966 q^{74} -8.22524 q^{76} -8.58779 q^{77} -2.40198 q^{79} +5.55031 q^{80} +0.767766 q^{82} +2.95715 q^{83} -9.49900 q^{85} +0.304792 q^{86} -3.14577 q^{88} +12.3607 q^{89} +8.38151 q^{91} +0.808145 q^{94} +6.40281 q^{95} +10.6165 q^{97} +0.122227 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{4} - 7 q^{5} + 8 q^{7} + 9 q^{8} + 5 q^{10} - 13 q^{11} + 4 q^{13} - 12 q^{14} + 6 q^{16} - 16 q^{17} + 10 q^{19} - 10 q^{20} + 3 q^{22} - 2 q^{25} - 6 q^{26} - 9 q^{28} - 7 q^{29}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.236479 −0.167216 −0.0836079 0.996499i \(-0.526644\pi\)
−0.0836079 + 0.996499i \(0.526644\pi\)
\(3\) 0 0
\(4\) −1.94408 −0.972039
\(5\) 1.51334 0.676785 0.338392 0.941005i \(-0.390117\pi\)
0.338392 + 0.941005i \(0.390117\pi\)
\(6\) 0 0
\(7\) 2.54620 0.962373 0.481187 0.876618i \(-0.340206\pi\)
0.481187 + 0.876618i \(0.340206\pi\)
\(8\) 0.932691 0.329756
\(9\) 0 0
\(10\) −0.357872 −0.113169
\(11\) −3.37279 −1.01693 −0.508467 0.861082i \(-0.669787\pi\)
−0.508467 + 0.861082i \(0.669787\pi\)
\(12\) 0 0
\(13\) 3.29177 0.912973 0.456487 0.889730i \(-0.349108\pi\)
0.456487 + 0.889730i \(0.349108\pi\)
\(14\) −0.602123 −0.160924
\(15\) 0 0
\(16\) 3.66759 0.916898
\(17\) −6.27686 −1.52236 −0.761181 0.648540i \(-0.775380\pi\)
−0.761181 + 0.648540i \(0.775380\pi\)
\(18\) 0 0
\(19\) 4.23092 0.970639 0.485320 0.874337i \(-0.338703\pi\)
0.485320 + 0.874337i \(0.338703\pi\)
\(20\) −2.94204 −0.657861
\(21\) 0 0
\(22\) 0.797593 0.170047
\(23\) 0 0
\(24\) 0 0
\(25\) −2.70981 −0.541962
\(26\) −0.778434 −0.152664
\(27\) 0 0
\(28\) −4.95001 −0.935464
\(29\) −6.28621 −1.16732 −0.583660 0.811998i \(-0.698380\pi\)
−0.583660 + 0.811998i \(0.698380\pi\)
\(30\) 0 0
\(31\) −4.74204 −0.851696 −0.425848 0.904795i \(-0.640024\pi\)
−0.425848 + 0.904795i \(0.640024\pi\)
\(32\) −2.73269 −0.483076
\(33\) 0 0
\(34\) 1.48434 0.254563
\(35\) 3.85326 0.651320
\(36\) 0 0
\(37\) −0.0379723 −0.00624261 −0.00312131 0.999995i \(-0.500994\pi\)
−0.00312131 + 0.999995i \(0.500994\pi\)
\(38\) −1.00052 −0.162306
\(39\) 0 0
\(40\) 1.41148 0.223174
\(41\) −3.24666 −0.507043 −0.253521 0.967330i \(-0.581589\pi\)
−0.253521 + 0.967330i \(0.581589\pi\)
\(42\) 0 0
\(43\) −1.28887 −0.196552 −0.0982758 0.995159i \(-0.531333\pi\)
−0.0982758 + 0.995159i \(0.531333\pi\)
\(44\) 6.55696 0.988499
\(45\) 0 0
\(46\) 0 0
\(47\) −3.41741 −0.498480 −0.249240 0.968442i \(-0.580181\pi\)
−0.249240 + 0.968442i \(0.580181\pi\)
\(48\) 0 0
\(49\) −0.516864 −0.0738377
\(50\) 0.640813 0.0906246
\(51\) 0 0
\(52\) −6.39946 −0.887445
\(53\) −6.72578 −0.923857 −0.461929 0.886917i \(-0.652842\pi\)
−0.461929 + 0.886917i \(0.652842\pi\)
\(54\) 0 0
\(55\) −5.10416 −0.688245
\(56\) 2.37482 0.317348
\(57\) 0 0
\(58\) 1.48656 0.195194
\(59\) 10.4186 1.35639 0.678194 0.734883i \(-0.262763\pi\)
0.678194 + 0.734883i \(0.262763\pi\)
\(60\) 0 0
\(61\) −3.59980 −0.460908 −0.230454 0.973083i \(-0.574021\pi\)
−0.230454 + 0.973083i \(0.574021\pi\)
\(62\) 1.12139 0.142417
\(63\) 0 0
\(64\) −6.68896 −0.836120
\(65\) 4.98156 0.617886
\(66\) 0 0
\(67\) 6.81939 0.833121 0.416561 0.909108i \(-0.363235\pi\)
0.416561 + 0.909108i \(0.363235\pi\)
\(68\) 12.2027 1.47979
\(69\) 0 0
\(70\) −0.911214 −0.108911
\(71\) −4.08974 −0.485363 −0.242681 0.970106i \(-0.578027\pi\)
−0.242681 + 0.970106i \(0.578027\pi\)
\(72\) 0 0
\(73\) 4.36149 0.510473 0.255237 0.966879i \(-0.417847\pi\)
0.255237 + 0.966879i \(0.417847\pi\)
\(74\) 0.00897966 0.00104386
\(75\) 0 0
\(76\) −8.22524 −0.943499
\(77\) −8.58779 −0.978669
\(78\) 0 0
\(79\) −2.40198 −0.270244 −0.135122 0.990829i \(-0.543143\pi\)
−0.135122 + 0.990829i \(0.543143\pi\)
\(80\) 5.55031 0.620543
\(81\) 0 0
\(82\) 0.767766 0.0847856
\(83\) 2.95715 0.324590 0.162295 0.986742i \(-0.448110\pi\)
0.162295 + 0.986742i \(0.448110\pi\)
\(84\) 0 0
\(85\) −9.49900 −1.03031
\(86\) 0.304792 0.0328665
\(87\) 0 0
\(88\) −3.14577 −0.335340
\(89\) 12.3607 1.31023 0.655117 0.755528i \(-0.272619\pi\)
0.655117 + 0.755528i \(0.272619\pi\)
\(90\) 0 0
\(91\) 8.38151 0.878621
\(92\) 0 0
\(93\) 0 0
\(94\) 0.808145 0.0833538
\(95\) 6.40281 0.656914
\(96\) 0 0
\(97\) 10.6165 1.07794 0.538971 0.842324i \(-0.318813\pi\)
0.538971 + 0.842324i \(0.318813\pi\)
\(98\) 0.122227 0.0123468
\(99\) 0 0
\(100\) 5.26808 0.526808
\(101\) −9.19901 −0.915336 −0.457668 0.889123i \(-0.651315\pi\)
−0.457668 + 0.889123i \(0.651315\pi\)
\(102\) 0 0
\(103\) −14.7689 −1.45522 −0.727612 0.685989i \(-0.759370\pi\)
−0.727612 + 0.685989i \(0.759370\pi\)
\(104\) 3.07021 0.301058
\(105\) 0 0
\(106\) 1.59051 0.154484
\(107\) −16.2066 −1.56675 −0.783376 0.621549i \(-0.786504\pi\)
−0.783376 + 0.621549i \(0.786504\pi\)
\(108\) 0 0
\(109\) −15.0296 −1.43958 −0.719788 0.694194i \(-0.755761\pi\)
−0.719788 + 0.694194i \(0.755761\pi\)
\(110\) 1.20703 0.115085
\(111\) 0 0
\(112\) 9.33843 0.882399
\(113\) −1.15546 −0.108697 −0.0543485 0.998522i \(-0.517308\pi\)
−0.0543485 + 0.998522i \(0.517308\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 12.2209 1.13468
\(117\) 0 0
\(118\) −2.46378 −0.226810
\(119\) −15.9821 −1.46508
\(120\) 0 0
\(121\) 0.375683 0.0341530
\(122\) 0.851278 0.0770711
\(123\) 0 0
\(124\) 9.21890 0.827882
\(125\) −11.6675 −1.04358
\(126\) 0 0
\(127\) 10.4435 0.926711 0.463356 0.886172i \(-0.346645\pi\)
0.463356 + 0.886172i \(0.346645\pi\)
\(128\) 7.04718 0.622889
\(129\) 0 0
\(130\) −1.17803 −0.103320
\(131\) 15.1945 1.32755 0.663776 0.747931i \(-0.268953\pi\)
0.663776 + 0.747931i \(0.268953\pi\)
\(132\) 0 0
\(133\) 10.7728 0.934117
\(134\) −1.61264 −0.139311
\(135\) 0 0
\(136\) −5.85437 −0.502008
\(137\) 1.22243 0.104439 0.0522196 0.998636i \(-0.483370\pi\)
0.0522196 + 0.998636i \(0.483370\pi\)
\(138\) 0 0
\(139\) 2.18447 0.185284 0.0926420 0.995699i \(-0.470469\pi\)
0.0926420 + 0.995699i \(0.470469\pi\)
\(140\) −7.49104 −0.633108
\(141\) 0 0
\(142\) 0.967137 0.0811603
\(143\) −11.1024 −0.928433
\(144\) 0 0
\(145\) −9.51316 −0.790025
\(146\) −1.03140 −0.0853592
\(147\) 0 0
\(148\) 0.0738212 0.00606806
\(149\) −4.13987 −0.339151 −0.169576 0.985517i \(-0.554240\pi\)
−0.169576 + 0.985517i \(0.554240\pi\)
\(150\) 0 0
\(151\) −6.79599 −0.553050 −0.276525 0.961007i \(-0.589183\pi\)
−0.276525 + 0.961007i \(0.589183\pi\)
\(152\) 3.94614 0.320074
\(153\) 0 0
\(154\) 2.03083 0.163649
\(155\) −7.17631 −0.576415
\(156\) 0 0
\(157\) −9.73735 −0.777125 −0.388563 0.921422i \(-0.627028\pi\)
−0.388563 + 0.921422i \(0.627028\pi\)
\(158\) 0.568018 0.0451891
\(159\) 0 0
\(160\) −4.13548 −0.326939
\(161\) 0 0
\(162\) 0 0
\(163\) −6.02878 −0.472210 −0.236105 0.971727i \(-0.575871\pi\)
−0.236105 + 0.971727i \(0.575871\pi\)
\(164\) 6.31175 0.492865
\(165\) 0 0
\(166\) −0.699304 −0.0542765
\(167\) −1.75962 −0.136164 −0.0680818 0.997680i \(-0.521688\pi\)
−0.0680818 + 0.997680i \(0.521688\pi\)
\(168\) 0 0
\(169\) −2.16424 −0.166480
\(170\) 2.24631 0.172284
\(171\) 0 0
\(172\) 2.50567 0.191056
\(173\) 10.2117 0.776378 0.388189 0.921580i \(-0.373101\pi\)
0.388189 + 0.921580i \(0.373101\pi\)
\(174\) 0 0
\(175\) −6.89972 −0.521570
\(176\) −12.3700 −0.932424
\(177\) 0 0
\(178\) −2.92305 −0.219092
\(179\) 10.3055 0.770266 0.385133 0.922861i \(-0.374156\pi\)
0.385133 + 0.922861i \(0.374156\pi\)
\(180\) 0 0
\(181\) −9.29148 −0.690630 −0.345315 0.938487i \(-0.612228\pi\)
−0.345315 + 0.938487i \(0.612228\pi\)
\(182\) −1.98205 −0.146919
\(183\) 0 0
\(184\) 0 0
\(185\) −0.0574649 −0.00422491
\(186\) 0 0
\(187\) 21.1705 1.54814
\(188\) 6.64371 0.484542
\(189\) 0 0
\(190\) −1.51413 −0.109846
\(191\) −20.5302 −1.48551 −0.742756 0.669562i \(-0.766482\pi\)
−0.742756 + 0.669562i \(0.766482\pi\)
\(192\) 0 0
\(193\) −13.7365 −0.988778 −0.494389 0.869241i \(-0.664608\pi\)
−0.494389 + 0.869241i \(0.664608\pi\)
\(194\) −2.51058 −0.180249
\(195\) 0 0
\(196\) 1.00482 0.0717731
\(197\) −2.29944 −0.163828 −0.0819140 0.996639i \(-0.526103\pi\)
−0.0819140 + 0.996639i \(0.526103\pi\)
\(198\) 0 0
\(199\) −1.71064 −0.121264 −0.0606319 0.998160i \(-0.519312\pi\)
−0.0606319 + 0.998160i \(0.519312\pi\)
\(200\) −2.52742 −0.178715
\(201\) 0 0
\(202\) 2.17537 0.153059
\(203\) −16.0060 −1.12340
\(204\) 0 0
\(205\) −4.91329 −0.343159
\(206\) 3.49254 0.243337
\(207\) 0 0
\(208\) 12.0729 0.837104
\(209\) −14.2700 −0.987075
\(210\) 0 0
\(211\) −8.00293 −0.550944 −0.275472 0.961309i \(-0.588834\pi\)
−0.275472 + 0.961309i \(0.588834\pi\)
\(212\) 13.0754 0.898025
\(213\) 0 0
\(214\) 3.83252 0.261986
\(215\) −1.95050 −0.133023
\(216\) 0 0
\(217\) −12.0742 −0.819650
\(218\) 3.55418 0.240720
\(219\) 0 0
\(220\) 9.92289 0.669001
\(221\) −20.6620 −1.38988
\(222\) 0 0
\(223\) 28.5231 1.91005 0.955024 0.296528i \(-0.0958289\pi\)
0.955024 + 0.296528i \(0.0958289\pi\)
\(224\) −6.95798 −0.464899
\(225\) 0 0
\(226\) 0.273243 0.0181759
\(227\) −9.38310 −0.622778 −0.311389 0.950283i \(-0.600794\pi\)
−0.311389 + 0.950283i \(0.600794\pi\)
\(228\) 0 0
\(229\) 6.65292 0.439637 0.219819 0.975541i \(-0.429453\pi\)
0.219819 + 0.975541i \(0.429453\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.86309 −0.384931
\(233\) 25.6392 1.67968 0.839841 0.542833i \(-0.182648\pi\)
0.839841 + 0.542833i \(0.182648\pi\)
\(234\) 0 0
\(235\) −5.17169 −0.337364
\(236\) −20.2546 −1.31846
\(237\) 0 0
\(238\) 3.77944 0.244985
\(239\) 1.53210 0.0991030 0.0495515 0.998772i \(-0.484221\pi\)
0.0495515 + 0.998772i \(0.484221\pi\)
\(240\) 0 0
\(241\) 27.9057 1.79756 0.898782 0.438396i \(-0.144453\pi\)
0.898782 + 0.438396i \(0.144453\pi\)
\(242\) −0.0888410 −0.00571092
\(243\) 0 0
\(244\) 6.99830 0.448020
\(245\) −0.782189 −0.0499722
\(246\) 0 0
\(247\) 13.9272 0.886168
\(248\) −4.42286 −0.280852
\(249\) 0 0
\(250\) 2.75913 0.174503
\(251\) −11.2672 −0.711182 −0.355591 0.934642i \(-0.615720\pi\)
−0.355591 + 0.934642i \(0.615720\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −2.46967 −0.154961
\(255\) 0 0
\(256\) 11.7114 0.731964
\(257\) 16.4410 1.02556 0.512780 0.858520i \(-0.328616\pi\)
0.512780 + 0.858520i \(0.328616\pi\)
\(258\) 0 0
\(259\) −0.0966852 −0.00600772
\(260\) −9.68454 −0.600610
\(261\) 0 0
\(262\) −3.59319 −0.221988
\(263\) −23.4981 −1.44896 −0.724479 0.689297i \(-0.757919\pi\)
−0.724479 + 0.689297i \(0.757919\pi\)
\(264\) 0 0
\(265\) −10.1784 −0.625253
\(266\) −2.54753 −0.156199
\(267\) 0 0
\(268\) −13.2574 −0.809826
\(269\) −4.44189 −0.270827 −0.135413 0.990789i \(-0.543236\pi\)
−0.135413 + 0.990789i \(0.543236\pi\)
\(270\) 0 0
\(271\) −19.7009 −1.19675 −0.598373 0.801218i \(-0.704186\pi\)
−0.598373 + 0.801218i \(0.704186\pi\)
\(272\) −23.0210 −1.39585
\(273\) 0 0
\(274\) −0.289079 −0.0174639
\(275\) 9.13961 0.551139
\(276\) 0 0
\(277\) −18.8580 −1.13307 −0.566535 0.824038i \(-0.691716\pi\)
−0.566535 + 0.824038i \(0.691716\pi\)
\(278\) −0.516580 −0.0309824
\(279\) 0 0
\(280\) 3.59390 0.214777
\(281\) 19.1925 1.14493 0.572464 0.819930i \(-0.305988\pi\)
0.572464 + 0.819930i \(0.305988\pi\)
\(282\) 0 0
\(283\) −1.09006 −0.0647972 −0.0323986 0.999475i \(-0.510315\pi\)
−0.0323986 + 0.999475i \(0.510315\pi\)
\(284\) 7.95077 0.471791
\(285\) 0 0
\(286\) 2.62549 0.155249
\(287\) −8.26664 −0.487964
\(288\) 0 0
\(289\) 22.3989 1.31759
\(290\) 2.24966 0.132105
\(291\) 0 0
\(292\) −8.47907 −0.496200
\(293\) −13.9393 −0.814340 −0.407170 0.913352i \(-0.633484\pi\)
−0.407170 + 0.913352i \(0.633484\pi\)
\(294\) 0 0
\(295\) 15.7669 0.917983
\(296\) −0.0354165 −0.00205854
\(297\) 0 0
\(298\) 0.978991 0.0567114
\(299\) 0 0
\(300\) 0 0
\(301\) −3.28173 −0.189156
\(302\) 1.60711 0.0924787
\(303\) 0 0
\(304\) 15.5173 0.889978
\(305\) −5.44772 −0.311935
\(306\) 0 0
\(307\) −25.6303 −1.46280 −0.731398 0.681951i \(-0.761132\pi\)
−0.731398 + 0.681951i \(0.761132\pi\)
\(308\) 16.6953 0.951305
\(309\) 0 0
\(310\) 1.69705 0.0963857
\(311\) 3.71365 0.210582 0.105291 0.994441i \(-0.466423\pi\)
0.105291 + 0.994441i \(0.466423\pi\)
\(312\) 0 0
\(313\) −15.7287 −0.889041 −0.444521 0.895769i \(-0.646626\pi\)
−0.444521 + 0.895769i \(0.646626\pi\)
\(314\) 2.30268 0.129948
\(315\) 0 0
\(316\) 4.66964 0.262688
\(317\) 3.30492 0.185623 0.0928114 0.995684i \(-0.470415\pi\)
0.0928114 + 0.995684i \(0.470415\pi\)
\(318\) 0 0
\(319\) 21.2020 1.18709
\(320\) −10.1227 −0.565874
\(321\) 0 0
\(322\) 0 0
\(323\) −26.5569 −1.47766
\(324\) 0 0
\(325\) −8.92008 −0.494797
\(326\) 1.42568 0.0789611
\(327\) 0 0
\(328\) −3.02813 −0.167200
\(329\) −8.70141 −0.479724
\(330\) 0 0
\(331\) 8.00066 0.439756 0.219878 0.975527i \(-0.429434\pi\)
0.219878 + 0.975527i \(0.429434\pi\)
\(332\) −5.74894 −0.315514
\(333\) 0 0
\(334\) 0.416113 0.0227687
\(335\) 10.3200 0.563844
\(336\) 0 0
\(337\) −1.39225 −0.0758409 −0.0379205 0.999281i \(-0.512073\pi\)
−0.0379205 + 0.999281i \(0.512073\pi\)
\(338\) 0.511797 0.0278381
\(339\) 0 0
\(340\) 18.4668 1.00150
\(341\) 15.9939 0.866118
\(342\) 0 0
\(343\) −19.1394 −1.03343
\(344\) −1.20212 −0.0648141
\(345\) 0 0
\(346\) −2.41484 −0.129823
\(347\) −16.8286 −0.903405 −0.451702 0.892169i \(-0.649183\pi\)
−0.451702 + 0.892169i \(0.649183\pi\)
\(348\) 0 0
\(349\) −19.1277 −1.02388 −0.511942 0.859020i \(-0.671074\pi\)
−0.511942 + 0.859020i \(0.671074\pi\)
\(350\) 1.63164 0.0872147
\(351\) 0 0
\(352\) 9.21678 0.491256
\(353\) −33.6499 −1.79100 −0.895502 0.445058i \(-0.853183\pi\)
−0.895502 + 0.445058i \(0.853183\pi\)
\(354\) 0 0
\(355\) −6.18915 −0.328486
\(356\) −24.0302 −1.27360
\(357\) 0 0
\(358\) −2.43702 −0.128801
\(359\) −19.6315 −1.03611 −0.518056 0.855347i \(-0.673344\pi\)
−0.518056 + 0.855347i \(0.673344\pi\)
\(360\) 0 0
\(361\) −1.09932 −0.0578590
\(362\) 2.19724 0.115484
\(363\) 0 0
\(364\) −16.2943 −0.854054
\(365\) 6.60040 0.345481
\(366\) 0 0
\(367\) −6.73062 −0.351336 −0.175668 0.984449i \(-0.556208\pi\)
−0.175668 + 0.984449i \(0.556208\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0.0135892 0.000706471 0
\(371\) −17.1252 −0.889096
\(372\) 0 0
\(373\) −25.3280 −1.31144 −0.655718 0.755006i \(-0.727634\pi\)
−0.655718 + 0.755006i \(0.727634\pi\)
\(374\) −5.00638 −0.258874
\(375\) 0 0
\(376\) −3.18739 −0.164377
\(377\) −20.6928 −1.06573
\(378\) 0 0
\(379\) −28.8573 −1.48230 −0.741149 0.671340i \(-0.765719\pi\)
−0.741149 + 0.671340i \(0.765719\pi\)
\(380\) −12.4476 −0.638546
\(381\) 0 0
\(382\) 4.85495 0.248401
\(383\) −12.8954 −0.658926 −0.329463 0.944168i \(-0.606868\pi\)
−0.329463 + 0.944168i \(0.606868\pi\)
\(384\) 0 0
\(385\) −12.9962 −0.662349
\(386\) 3.24840 0.165339
\(387\) 0 0
\(388\) −20.6393 −1.04780
\(389\) 2.09646 0.106295 0.0531475 0.998587i \(-0.483075\pi\)
0.0531475 + 0.998587i \(0.483075\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.482074 −0.0243484
\(393\) 0 0
\(394\) 0.543768 0.0273946
\(395\) −3.63501 −0.182897
\(396\) 0 0
\(397\) 1.87901 0.0943046 0.0471523 0.998888i \(-0.484985\pi\)
0.0471523 + 0.998888i \(0.484985\pi\)
\(398\) 0.404529 0.0202772
\(399\) 0 0
\(400\) −9.93849 −0.496924
\(401\) 16.8547 0.841681 0.420841 0.907135i \(-0.361735\pi\)
0.420841 + 0.907135i \(0.361735\pi\)
\(402\) 0 0
\(403\) −15.6097 −0.777576
\(404\) 17.8836 0.889742
\(405\) 0 0
\(406\) 3.78507 0.187850
\(407\) 0.128073 0.00634832
\(408\) 0 0
\(409\) 13.0096 0.643284 0.321642 0.946861i \(-0.395765\pi\)
0.321642 + 0.946861i \(0.395765\pi\)
\(410\) 1.16189 0.0573816
\(411\) 0 0
\(412\) 28.7119 1.41453
\(413\) 26.5279 1.30535
\(414\) 0 0
\(415\) 4.47517 0.219677
\(416\) −8.99539 −0.441035
\(417\) 0 0
\(418\) 3.37455 0.165055
\(419\) −29.4107 −1.43680 −0.718402 0.695628i \(-0.755126\pi\)
−0.718402 + 0.695628i \(0.755126\pi\)
\(420\) 0 0
\(421\) −22.2973 −1.08670 −0.543351 0.839506i \(-0.682845\pi\)
−0.543351 + 0.839506i \(0.682845\pi\)
\(422\) 1.89252 0.0921266
\(423\) 0 0
\(424\) −6.27308 −0.304648
\(425\) 17.0091 0.825062
\(426\) 0 0
\(427\) −9.16582 −0.443565
\(428\) 31.5069 1.52294
\(429\) 0 0
\(430\) 0.461252 0.0222436
\(431\) −1.76154 −0.0848504 −0.0424252 0.999100i \(-0.513508\pi\)
−0.0424252 + 0.999100i \(0.513508\pi\)
\(432\) 0 0
\(433\) −13.7988 −0.663126 −0.331563 0.943433i \(-0.607576\pi\)
−0.331563 + 0.943433i \(0.607576\pi\)
\(434\) 2.85529 0.137058
\(435\) 0 0
\(436\) 29.2187 1.39932
\(437\) 0 0
\(438\) 0 0
\(439\) 7.18849 0.343088 0.171544 0.985176i \(-0.445124\pi\)
0.171544 + 0.985176i \(0.445124\pi\)
\(440\) −4.76061 −0.226953
\(441\) 0 0
\(442\) 4.88612 0.232409
\(443\) 23.3915 1.11136 0.555682 0.831395i \(-0.312457\pi\)
0.555682 + 0.831395i \(0.312457\pi\)
\(444\) 0 0
\(445\) 18.7059 0.886746
\(446\) −6.74511 −0.319390
\(447\) 0 0
\(448\) −17.0314 −0.804660
\(449\) −6.75255 −0.318673 −0.159336 0.987224i \(-0.550935\pi\)
−0.159336 + 0.987224i \(0.550935\pi\)
\(450\) 0 0
\(451\) 10.9503 0.515629
\(452\) 2.24631 0.105658
\(453\) 0 0
\(454\) 2.21890 0.104138
\(455\) 12.6840 0.594637
\(456\) 0 0
\(457\) −7.22487 −0.337965 −0.168983 0.985619i \(-0.554048\pi\)
−0.168983 + 0.985619i \(0.554048\pi\)
\(458\) −1.57327 −0.0735143
\(459\) 0 0
\(460\) 0 0
\(461\) 32.1800 1.49877 0.749385 0.662134i \(-0.230349\pi\)
0.749385 + 0.662134i \(0.230349\pi\)
\(462\) 0 0
\(463\) −18.7742 −0.872510 −0.436255 0.899823i \(-0.643695\pi\)
−0.436255 + 0.899823i \(0.643695\pi\)
\(464\) −23.0553 −1.07031
\(465\) 0 0
\(466\) −6.06313 −0.280869
\(467\) 28.4750 1.31767 0.658833 0.752289i \(-0.271050\pi\)
0.658833 + 0.752289i \(0.271050\pi\)
\(468\) 0 0
\(469\) 17.3635 0.801774
\(470\) 1.22300 0.0564126
\(471\) 0 0
\(472\) 9.71735 0.447277
\(473\) 4.34710 0.199880
\(474\) 0 0
\(475\) −11.4650 −0.526050
\(476\) 31.0705 1.42411
\(477\) 0 0
\(478\) −0.362308 −0.0165716
\(479\) 4.72745 0.216003 0.108001 0.994151i \(-0.465555\pi\)
0.108001 + 0.994151i \(0.465555\pi\)
\(480\) 0 0
\(481\) −0.124996 −0.00569934
\(482\) −6.59911 −0.300581
\(483\) 0 0
\(484\) −0.730356 −0.0331980
\(485\) 16.0663 0.729535
\(486\) 0 0
\(487\) 31.6764 1.43540 0.717698 0.696354i \(-0.245196\pi\)
0.717698 + 0.696354i \(0.245196\pi\)
\(488\) −3.35751 −0.151987
\(489\) 0 0
\(490\) 0.184971 0.00835615
\(491\) 7.19879 0.324877 0.162439 0.986719i \(-0.448064\pi\)
0.162439 + 0.986719i \(0.448064\pi\)
\(492\) 0 0
\(493\) 39.4577 1.77708
\(494\) −3.29349 −0.148181
\(495\) 0 0
\(496\) −17.3919 −0.780919
\(497\) −10.4133 −0.467100
\(498\) 0 0
\(499\) −22.7933 −1.02037 −0.510184 0.860065i \(-0.670423\pi\)
−0.510184 + 0.860065i \(0.670423\pi\)
\(500\) 22.6826 1.01440
\(501\) 0 0
\(502\) 2.66446 0.118921
\(503\) −24.4294 −1.08925 −0.544626 0.838679i \(-0.683328\pi\)
−0.544626 + 0.838679i \(0.683328\pi\)
\(504\) 0 0
\(505\) −13.9212 −0.619485
\(506\) 0 0
\(507\) 0 0
\(508\) −20.3030 −0.900799
\(509\) 7.83025 0.347070 0.173535 0.984828i \(-0.444481\pi\)
0.173535 + 0.984828i \(0.444481\pi\)
\(510\) 0 0
\(511\) 11.1052 0.491266
\(512\) −16.8639 −0.745284
\(513\) 0 0
\(514\) −3.88795 −0.171490
\(515\) −22.3503 −0.984874
\(516\) 0 0
\(517\) 11.5262 0.506921
\(518\) 0.0228640 0.00100459
\(519\) 0 0
\(520\) 4.64626 0.203752
\(521\) 3.03368 0.132908 0.0664539 0.997789i \(-0.478831\pi\)
0.0664539 + 0.997789i \(0.478831\pi\)
\(522\) 0 0
\(523\) −29.6487 −1.29645 −0.648224 0.761449i \(-0.724488\pi\)
−0.648224 + 0.761449i \(0.724488\pi\)
\(524\) −29.5393 −1.29043
\(525\) 0 0
\(526\) 5.55681 0.242289
\(527\) 29.7651 1.29659
\(528\) 0 0
\(529\) 0 0
\(530\) 2.40697 0.104552
\(531\) 0 0
\(532\) −20.9431 −0.907999
\(533\) −10.6873 −0.462916
\(534\) 0 0
\(535\) −24.5261 −1.06035
\(536\) 6.36039 0.274727
\(537\) 0 0
\(538\) 1.05041 0.0452865
\(539\) 1.74327 0.0750880
\(540\) 0 0
\(541\) 23.7648 1.02173 0.510864 0.859662i \(-0.329326\pi\)
0.510864 + 0.859662i \(0.329326\pi\)
\(542\) 4.65885 0.200115
\(543\) 0 0
\(544\) 17.1527 0.735416
\(545\) −22.7449 −0.974283
\(546\) 0 0
\(547\) −19.1130 −0.817214 −0.408607 0.912710i \(-0.633985\pi\)
−0.408607 + 0.912710i \(0.633985\pi\)
\(548\) −2.37650 −0.101519
\(549\) 0 0
\(550\) −2.16132 −0.0921592
\(551\) −26.5965 −1.13305
\(552\) 0 0
\(553\) −6.11593 −0.260076
\(554\) 4.45953 0.189467
\(555\) 0 0
\(556\) −4.24677 −0.180103
\(557\) −19.6258 −0.831571 −0.415785 0.909463i \(-0.636493\pi\)
−0.415785 + 0.909463i \(0.636493\pi\)
\(558\) 0 0
\(559\) −4.24268 −0.179446
\(560\) 14.1322 0.597194
\(561\) 0 0
\(562\) −4.53862 −0.191450
\(563\) 44.6795 1.88302 0.941509 0.336989i \(-0.109408\pi\)
0.941509 + 0.336989i \(0.109408\pi\)
\(564\) 0 0
\(565\) −1.74861 −0.0735645
\(566\) 0.257775 0.0108351
\(567\) 0 0
\(568\) −3.81446 −0.160051
\(569\) 4.14523 0.173777 0.0868885 0.996218i \(-0.472308\pi\)
0.0868885 + 0.996218i \(0.472308\pi\)
\(570\) 0 0
\(571\) 13.3883 0.560281 0.280141 0.959959i \(-0.409619\pi\)
0.280141 + 0.959959i \(0.409619\pi\)
\(572\) 21.5840 0.902473
\(573\) 0 0
\(574\) 1.95489 0.0815954
\(575\) 0 0
\(576\) 0 0
\(577\) 23.4280 0.975322 0.487661 0.873033i \(-0.337850\pi\)
0.487661 + 0.873033i \(0.337850\pi\)
\(578\) −5.29688 −0.220321
\(579\) 0 0
\(580\) 18.4943 0.767935
\(581\) 7.52950 0.312376
\(582\) 0 0
\(583\) 22.6846 0.939501
\(584\) 4.06792 0.168332
\(585\) 0 0
\(586\) 3.29634 0.136170
\(587\) 40.0658 1.65369 0.826847 0.562427i \(-0.190132\pi\)
0.826847 + 0.562427i \(0.190132\pi\)
\(588\) 0 0
\(589\) −20.0632 −0.826690
\(590\) −3.72853 −0.153501
\(591\) 0 0
\(592\) −0.139267 −0.00572384
\(593\) −5.84119 −0.239869 −0.119935 0.992782i \(-0.538268\pi\)
−0.119935 + 0.992782i \(0.538268\pi\)
\(594\) 0 0
\(595\) −24.1864 −0.991544
\(596\) 8.04822 0.329668
\(597\) 0 0
\(598\) 0 0
\(599\) 5.01179 0.204776 0.102388 0.994745i \(-0.467352\pi\)
0.102388 + 0.994745i \(0.467352\pi\)
\(600\) 0 0
\(601\) 12.7427 0.519784 0.259892 0.965638i \(-0.416313\pi\)
0.259892 + 0.965638i \(0.416313\pi\)
\(602\) 0.776060 0.0316299
\(603\) 0 0
\(604\) 13.2119 0.537586
\(605\) 0.568535 0.0231142
\(606\) 0 0
\(607\) −0.618065 −0.0250865 −0.0125432 0.999921i \(-0.503993\pi\)
−0.0125432 + 0.999921i \(0.503993\pi\)
\(608\) −11.5618 −0.468893
\(609\) 0 0
\(610\) 1.28827 0.0521605
\(611\) −11.2493 −0.455099
\(612\) 0 0
\(613\) −31.8070 −1.28467 −0.642336 0.766423i \(-0.722034\pi\)
−0.642336 + 0.766423i \(0.722034\pi\)
\(614\) 6.06101 0.244603
\(615\) 0 0
\(616\) −8.00975 −0.322722
\(617\) 39.9754 1.60935 0.804675 0.593715i \(-0.202340\pi\)
0.804675 + 0.593715i \(0.202340\pi\)
\(618\) 0 0
\(619\) 35.1336 1.41214 0.706069 0.708143i \(-0.250467\pi\)
0.706069 + 0.708143i \(0.250467\pi\)
\(620\) 13.9513 0.560298
\(621\) 0 0
\(622\) −0.878199 −0.0352126
\(623\) 31.4729 1.26093
\(624\) 0 0
\(625\) −4.10787 −0.164315
\(626\) 3.71952 0.148662
\(627\) 0 0
\(628\) 18.9302 0.755396
\(629\) 0.238347 0.00950352
\(630\) 0 0
\(631\) −47.2227 −1.87990 −0.939952 0.341306i \(-0.889131\pi\)
−0.939952 + 0.341306i \(0.889131\pi\)
\(632\) −2.24031 −0.0891147
\(633\) 0 0
\(634\) −0.781544 −0.0310391
\(635\) 15.8045 0.627184
\(636\) 0 0
\(637\) −1.70140 −0.0674118
\(638\) −5.01384 −0.198500
\(639\) 0 0
\(640\) 10.6648 0.421562
\(641\) 6.91023 0.272938 0.136469 0.990644i \(-0.456425\pi\)
0.136469 + 0.990644i \(0.456425\pi\)
\(642\) 0 0
\(643\) −38.9219 −1.53493 −0.767465 0.641091i \(-0.778482\pi\)
−0.767465 + 0.641091i \(0.778482\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 6.28014 0.247089
\(647\) −11.6534 −0.458142 −0.229071 0.973410i \(-0.573569\pi\)
−0.229071 + 0.973410i \(0.573569\pi\)
\(648\) 0 0
\(649\) −35.1398 −1.37936
\(650\) 2.10941 0.0827379
\(651\) 0 0
\(652\) 11.7204 0.459007
\(653\) 39.4525 1.54389 0.771947 0.635687i \(-0.219283\pi\)
0.771947 + 0.635687i \(0.219283\pi\)
\(654\) 0 0
\(655\) 22.9944 0.898467
\(656\) −11.9074 −0.464907
\(657\) 0 0
\(658\) 2.05770 0.0802175
\(659\) −0.746115 −0.0290645 −0.0145323 0.999894i \(-0.504626\pi\)
−0.0145323 + 0.999894i \(0.504626\pi\)
\(660\) 0 0
\(661\) 29.2025 1.13585 0.567923 0.823082i \(-0.307747\pi\)
0.567923 + 0.823082i \(0.307747\pi\)
\(662\) −1.89199 −0.0735342
\(663\) 0 0
\(664\) 2.75811 0.107035
\(665\) 16.3028 0.632197
\(666\) 0 0
\(667\) 0 0
\(668\) 3.42084 0.132356
\(669\) 0 0
\(670\) −2.44047 −0.0942836
\(671\) 12.1414 0.468712
\(672\) 0 0
\(673\) 16.7351 0.645089 0.322545 0.946554i \(-0.395462\pi\)
0.322545 + 0.946554i \(0.395462\pi\)
\(674\) 0.329239 0.0126818
\(675\) 0 0
\(676\) 4.20745 0.161825
\(677\) 45.2291 1.73829 0.869147 0.494554i \(-0.164669\pi\)
0.869147 + 0.494554i \(0.164669\pi\)
\(678\) 0 0
\(679\) 27.0317 1.03738
\(680\) −8.85963 −0.339751
\(681\) 0 0
\(682\) −3.78222 −0.144829
\(683\) −34.8041 −1.33174 −0.665870 0.746068i \(-0.731940\pi\)
−0.665870 + 0.746068i \(0.731940\pi\)
\(684\) 0 0
\(685\) 1.84995 0.0706829
\(686\) 4.52607 0.172806
\(687\) 0 0
\(688\) −4.72707 −0.180218
\(689\) −22.1397 −0.843457
\(690\) 0 0
\(691\) 10.7550 0.409140 0.204570 0.978852i \(-0.434420\pi\)
0.204570 + 0.978852i \(0.434420\pi\)
\(692\) −19.8523 −0.754669
\(693\) 0 0
\(694\) 3.97960 0.151064
\(695\) 3.30583 0.125397
\(696\) 0 0
\(697\) 20.3788 0.771902
\(698\) 4.52331 0.171210
\(699\) 0 0
\(700\) 13.4136 0.506986
\(701\) −20.2600 −0.765210 −0.382605 0.923912i \(-0.624973\pi\)
−0.382605 + 0.923912i \(0.624973\pi\)
\(702\) 0 0
\(703\) −0.160658 −0.00605933
\(704\) 22.5604 0.850279
\(705\) 0 0
\(706\) 7.95749 0.299484
\(707\) −23.4225 −0.880895
\(708\) 0 0
\(709\) 13.1519 0.493929 0.246965 0.969024i \(-0.420567\pi\)
0.246965 + 0.969024i \(0.420567\pi\)
\(710\) 1.46360 0.0549281
\(711\) 0 0
\(712\) 11.5287 0.432057
\(713\) 0 0
\(714\) 0 0
\(715\) −16.8017 −0.628349
\(716\) −20.0346 −0.748729
\(717\) 0 0
\(718\) 4.64244 0.173254
\(719\) 28.7406 1.07184 0.535922 0.844268i \(-0.319964\pi\)
0.535922 + 0.844268i \(0.319964\pi\)
\(720\) 0 0
\(721\) −37.6046 −1.40047
\(722\) 0.259966 0.00967494
\(723\) 0 0
\(724\) 18.0634 0.671319
\(725\) 17.0344 0.632643
\(726\) 0 0
\(727\) 27.8488 1.03285 0.516427 0.856331i \(-0.327262\pi\)
0.516427 + 0.856331i \(0.327262\pi\)
\(728\) 7.81736 0.289731
\(729\) 0 0
\(730\) −1.56086 −0.0577698
\(731\) 8.09008 0.299222
\(732\) 0 0
\(733\) 25.0147 0.923939 0.461970 0.886896i \(-0.347143\pi\)
0.461970 + 0.886896i \(0.347143\pi\)
\(734\) 1.59165 0.0587489
\(735\) 0 0
\(736\) 0 0
\(737\) −23.0003 −0.847229
\(738\) 0 0
\(739\) 6.38838 0.235000 0.117500 0.993073i \(-0.462512\pi\)
0.117500 + 0.993073i \(0.462512\pi\)
\(740\) 0.111716 0.00410677
\(741\) 0 0
\(742\) 4.04975 0.148671
\(743\) −28.9196 −1.06096 −0.530479 0.847698i \(-0.677988\pi\)
−0.530479 + 0.847698i \(0.677988\pi\)
\(744\) 0 0
\(745\) −6.26501 −0.229532
\(746\) 5.98954 0.219293
\(747\) 0 0
\(748\) −41.1571 −1.50485
\(749\) −41.2653 −1.50780
\(750\) 0 0
\(751\) 50.2692 1.83435 0.917174 0.398487i \(-0.130465\pi\)
0.917174 + 0.398487i \(0.130465\pi\)
\(752\) −12.5337 −0.457056
\(753\) 0 0
\(754\) 4.89340 0.178207
\(755\) −10.2846 −0.374296
\(756\) 0 0
\(757\) −35.1746 −1.27844 −0.639222 0.769023i \(-0.720743\pi\)
−0.639222 + 0.769023i \(0.720743\pi\)
\(758\) 6.82414 0.247864
\(759\) 0 0
\(760\) 5.97184 0.216621
\(761\) 35.3214 1.28040 0.640200 0.768208i \(-0.278851\pi\)
0.640200 + 0.768208i \(0.278851\pi\)
\(762\) 0 0
\(763\) −38.2684 −1.38541
\(764\) 39.9123 1.44397
\(765\) 0 0
\(766\) 3.04950 0.110183
\(767\) 34.2957 1.23835
\(768\) 0 0
\(769\) 49.3025 1.77789 0.888946 0.458012i \(-0.151438\pi\)
0.888946 + 0.458012i \(0.151438\pi\)
\(770\) 3.07333 0.110755
\(771\) 0 0
\(772\) 26.7049 0.961130
\(773\) 3.74473 0.134689 0.0673443 0.997730i \(-0.478547\pi\)
0.0673443 + 0.997730i \(0.478547\pi\)
\(774\) 0 0
\(775\) 12.8500 0.461587
\(776\) 9.90191 0.355458
\(777\) 0 0
\(778\) −0.495769 −0.0177742
\(779\) −13.7363 −0.492156
\(780\) 0 0
\(781\) 13.7938 0.493581
\(782\) 0 0
\(783\) 0 0
\(784\) −1.89565 −0.0677017
\(785\) −14.7359 −0.525947
\(786\) 0 0
\(787\) −11.6368 −0.414806 −0.207403 0.978256i \(-0.566501\pi\)
−0.207403 + 0.978256i \(0.566501\pi\)
\(788\) 4.47028 0.159247
\(789\) 0 0
\(790\) 0.859603 0.0305833
\(791\) −2.94204 −0.104607
\(792\) 0 0
\(793\) −11.8497 −0.420796
\(794\) −0.444345 −0.0157692
\(795\) 0 0
\(796\) 3.32561 0.117873
\(797\) 50.0561 1.77308 0.886540 0.462653i \(-0.153102\pi\)
0.886540 + 0.462653i \(0.153102\pi\)
\(798\) 0 0
\(799\) 21.4506 0.758868
\(800\) 7.40507 0.261809
\(801\) 0 0
\(802\) −3.98577 −0.140742
\(803\) −14.7104 −0.519117
\(804\) 0 0
\(805\) 0 0
\(806\) 3.69137 0.130023
\(807\) 0 0
\(808\) −8.57983 −0.301837
\(809\) 32.0554 1.12701 0.563504 0.826113i \(-0.309453\pi\)
0.563504 + 0.826113i \(0.309453\pi\)
\(810\) 0 0
\(811\) 48.3682 1.69844 0.849218 0.528042i \(-0.177074\pi\)
0.849218 + 0.528042i \(0.177074\pi\)
\(812\) 31.1168 1.09199
\(813\) 0 0
\(814\) −0.0302865 −0.00106154
\(815\) −9.12358 −0.319585
\(816\) 0 0
\(817\) −5.45312 −0.190781
\(818\) −3.07650 −0.107567
\(819\) 0 0
\(820\) 9.55181 0.333564
\(821\) 10.5245 0.367307 0.183653 0.982991i \(-0.441208\pi\)
0.183653 + 0.982991i \(0.441208\pi\)
\(822\) 0 0
\(823\) 47.5631 1.65795 0.828973 0.559288i \(-0.188926\pi\)
0.828973 + 0.559288i \(0.188926\pi\)
\(824\) −13.7748 −0.479869
\(825\) 0 0
\(826\) −6.27329 −0.218276
\(827\) −52.9294 −1.84053 −0.920267 0.391291i \(-0.872029\pi\)
−0.920267 + 0.391291i \(0.872029\pi\)
\(828\) 0 0
\(829\) 12.4245 0.431522 0.215761 0.976446i \(-0.430777\pi\)
0.215761 + 0.976446i \(0.430777\pi\)
\(830\) −1.05828 −0.0367335
\(831\) 0 0
\(832\) −22.0185 −0.763356
\(833\) 3.24428 0.112408
\(834\) 0 0
\(835\) −2.66290 −0.0921534
\(836\) 27.7420 0.959476
\(837\) 0 0
\(838\) 6.95500 0.240256
\(839\) −43.6840 −1.50814 −0.754070 0.656794i \(-0.771912\pi\)
−0.754070 + 0.656794i \(0.771912\pi\)
\(840\) 0 0
\(841\) 10.5165 0.362637
\(842\) 5.27283 0.181714
\(843\) 0 0
\(844\) 15.5583 0.535539
\(845\) −3.27522 −0.112671
\(846\) 0 0
\(847\) 0.956563 0.0328679
\(848\) −24.6674 −0.847083
\(849\) 0 0
\(850\) −4.02229 −0.137963
\(851\) 0 0
\(852\) 0 0
\(853\) 29.8296 1.02135 0.510673 0.859775i \(-0.329396\pi\)
0.510673 + 0.859775i \(0.329396\pi\)
\(854\) 2.16752 0.0741711
\(855\) 0 0
\(856\) −15.1158 −0.516646
\(857\) 6.57662 0.224653 0.112326 0.993671i \(-0.464170\pi\)
0.112326 + 0.993671i \(0.464170\pi\)
\(858\) 0 0
\(859\) 18.4762 0.630401 0.315200 0.949025i \(-0.397928\pi\)
0.315200 + 0.949025i \(0.397928\pi\)
\(860\) 3.79193 0.129304
\(861\) 0 0
\(862\) 0.416567 0.0141883
\(863\) −29.5347 −1.00537 −0.502686 0.864469i \(-0.667655\pi\)
−0.502686 + 0.864469i \(0.667655\pi\)
\(864\) 0 0
\(865\) 15.4537 0.525441
\(866\) 3.26312 0.110885
\(867\) 0 0
\(868\) 23.4732 0.796731
\(869\) 8.10137 0.274820
\(870\) 0 0
\(871\) 22.4479 0.760617
\(872\) −14.0180 −0.474709
\(873\) 0 0
\(874\) 0 0
\(875\) −29.7079 −1.00431
\(876\) 0 0
\(877\) 8.60818 0.290678 0.145339 0.989382i \(-0.453573\pi\)
0.145339 + 0.989382i \(0.453573\pi\)
\(878\) −1.69993 −0.0573697
\(879\) 0 0
\(880\) −18.7200 −0.631051
\(881\) −5.03012 −0.169469 −0.0847344 0.996404i \(-0.527004\pi\)
−0.0847344 + 0.996404i \(0.527004\pi\)
\(882\) 0 0
\(883\) −21.6359 −0.728108 −0.364054 0.931378i \(-0.618608\pi\)
−0.364054 + 0.931378i \(0.618608\pi\)
\(884\) 40.1685 1.35101
\(885\) 0 0
\(886\) −5.53160 −0.185838
\(887\) −27.5141 −0.923834 −0.461917 0.886923i \(-0.652838\pi\)
−0.461917 + 0.886923i \(0.652838\pi\)
\(888\) 0 0
\(889\) 26.5913 0.891842
\(890\) −4.42356 −0.148278
\(891\) 0 0
\(892\) −55.4511 −1.85664
\(893\) −14.4588 −0.483845
\(894\) 0 0
\(895\) 15.5956 0.521305
\(896\) 17.9435 0.599451
\(897\) 0 0
\(898\) 1.59684 0.0532871
\(899\) 29.8095 0.994202
\(900\) 0 0
\(901\) 42.2168 1.40645
\(902\) −2.58951 −0.0862212
\(903\) 0 0
\(904\) −1.07769 −0.0358435
\(905\) −14.0611 −0.467408
\(906\) 0 0
\(907\) −1.90638 −0.0633002 −0.0316501 0.999499i \(-0.510076\pi\)
−0.0316501 + 0.999499i \(0.510076\pi\)
\(908\) 18.2415 0.605364
\(909\) 0 0
\(910\) −2.99951 −0.0994328
\(911\) −37.7053 −1.24923 −0.624616 0.780932i \(-0.714745\pi\)
−0.624616 + 0.780932i \(0.714745\pi\)
\(912\) 0 0
\(913\) −9.97384 −0.330086
\(914\) 1.70853 0.0565131
\(915\) 0 0
\(916\) −12.9338 −0.427344
\(917\) 38.6883 1.27760
\(918\) 0 0
\(919\) 1.89744 0.0625909 0.0312955 0.999510i \(-0.490037\pi\)
0.0312955 + 0.999510i \(0.490037\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −7.60988 −0.250618
\(923\) −13.4625 −0.443123
\(924\) 0 0
\(925\) 0.102898 0.00338326
\(926\) 4.43970 0.145898
\(927\) 0 0
\(928\) 17.1783 0.563904
\(929\) 27.8481 0.913666 0.456833 0.889553i \(-0.348984\pi\)
0.456833 + 0.889553i \(0.348984\pi\)
\(930\) 0 0
\(931\) −2.18681 −0.0716698
\(932\) −49.8446 −1.63272
\(933\) 0 0
\(934\) −6.73374 −0.220335
\(935\) 32.0381 1.04776
\(936\) 0 0
\(937\) −14.3279 −0.468072 −0.234036 0.972228i \(-0.575193\pi\)
−0.234036 + 0.972228i \(0.575193\pi\)
\(938\) −4.10611 −0.134069
\(939\) 0 0
\(940\) 10.0542 0.327931
\(941\) −35.0559 −1.14279 −0.571395 0.820676i \(-0.693597\pi\)
−0.571395 + 0.820676i \(0.693597\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 38.2113 1.24367
\(945\) 0 0
\(946\) −1.02800 −0.0334231
\(947\) 7.91512 0.257207 0.128603 0.991696i \(-0.458951\pi\)
0.128603 + 0.991696i \(0.458951\pi\)
\(948\) 0 0
\(949\) 14.3570 0.466049
\(950\) 2.71123 0.0879639
\(951\) 0 0
\(952\) −14.9064 −0.483119
\(953\) 17.6442 0.571552 0.285776 0.958296i \(-0.407749\pi\)
0.285776 + 0.958296i \(0.407749\pi\)
\(954\) 0 0
\(955\) −31.0691 −1.00537
\(956\) −2.97851 −0.0963320
\(957\) 0 0
\(958\) −1.11794 −0.0361191
\(959\) 3.11255 0.100510
\(960\) 0 0
\(961\) −8.51301 −0.274613
\(962\) 0.0295590 0.000953020 0
\(963\) 0 0
\(964\) −54.2508 −1.74730
\(965\) −20.7880 −0.669190
\(966\) 0 0
\(967\) −18.1226 −0.582785 −0.291392 0.956604i \(-0.594119\pi\)
−0.291392 + 0.956604i \(0.594119\pi\)
\(968\) 0.350396 0.0112622
\(969\) 0 0
\(970\) −3.79935 −0.121990
\(971\) −10.6050 −0.340331 −0.170166 0.985415i \(-0.554430\pi\)
−0.170166 + 0.985415i \(0.554430\pi\)
\(972\) 0 0
\(973\) 5.56209 0.178312
\(974\) −7.49081 −0.240021
\(975\) 0 0
\(976\) −13.2026 −0.422606
\(977\) 6.57503 0.210354 0.105177 0.994454i \(-0.466459\pi\)
0.105177 + 0.994454i \(0.466459\pi\)
\(978\) 0 0
\(979\) −41.6901 −1.33242
\(980\) 1.52064 0.0485750
\(981\) 0 0
\(982\) −1.70236 −0.0543246
\(983\) 43.7116 1.39418 0.697091 0.716983i \(-0.254477\pi\)
0.697091 + 0.716983i \(0.254477\pi\)
\(984\) 0 0
\(985\) −3.47982 −0.110876
\(986\) −9.33090 −0.297157
\(987\) 0 0
\(988\) −27.0756 −0.861390
\(989\) 0 0
\(990\) 0 0
\(991\) 54.2307 1.72270 0.861348 0.508016i \(-0.169621\pi\)
0.861348 + 0.508016i \(0.169621\pi\)
\(992\) 12.9585 0.411434
\(993\) 0 0
\(994\) 2.46252 0.0781065
\(995\) −2.58877 −0.0820695
\(996\) 0 0
\(997\) 0.687738 0.0217809 0.0108904 0.999941i \(-0.496533\pi\)
0.0108904 + 0.999941i \(0.496533\pi\)
\(998\) 5.39013 0.170622
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4761.2.a.bn.1.4 5
3.2 odd 2 529.2.a.j.1.2 5
12.11 even 2 8464.2.a.bt.1.3 5
23.15 odd 22 207.2.i.c.64.1 10
23.20 odd 22 207.2.i.c.55.1 10
23.22 odd 2 4761.2.a.bo.1.4 5
69.2 odd 22 529.2.c.h.487.1 10
69.5 even 22 529.2.c.b.255.1 10
69.8 odd 22 529.2.c.a.501.1 10
69.11 even 22 529.2.c.i.466.1 10
69.14 even 22 529.2.c.b.334.1 10
69.17 even 22 529.2.c.g.266.1 10
69.20 even 22 23.2.c.a.9.1 10
69.26 odd 22 529.2.c.a.170.1 10
69.29 odd 22 529.2.c.f.266.1 10
69.32 odd 22 529.2.c.c.334.1 10
69.35 odd 22 529.2.c.h.466.1 10
69.38 even 22 23.2.c.a.18.1 yes 10
69.41 odd 22 529.2.c.c.255.1 10
69.44 even 22 529.2.c.i.487.1 10
69.50 odd 22 529.2.c.f.177.1 10
69.53 even 22 529.2.c.d.118.1 10
69.56 even 22 529.2.c.d.399.1 10
69.59 odd 22 529.2.c.e.399.1 10
69.62 odd 22 529.2.c.e.118.1 10
69.65 even 22 529.2.c.g.177.1 10
69.68 even 2 529.2.a.i.1.2 5
276.107 odd 22 368.2.m.c.225.1 10
276.227 odd 22 368.2.m.c.193.1 10
276.275 odd 2 8464.2.a.bs.1.3 5
345.38 odd 44 575.2.p.b.524.1 20
345.89 even 22 575.2.k.b.101.1 10
345.107 odd 44 575.2.p.b.524.2 20
345.158 odd 44 575.2.p.b.124.2 20
345.227 odd 44 575.2.p.b.124.1 20
345.314 even 22 575.2.k.b.501.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.2.c.a.9.1 10 69.20 even 22
23.2.c.a.18.1 yes 10 69.38 even 22
207.2.i.c.55.1 10 23.20 odd 22
207.2.i.c.64.1 10 23.15 odd 22
368.2.m.c.193.1 10 276.227 odd 22
368.2.m.c.225.1 10 276.107 odd 22
529.2.a.i.1.2 5 69.68 even 2
529.2.a.j.1.2 5 3.2 odd 2
529.2.c.a.170.1 10 69.26 odd 22
529.2.c.a.501.1 10 69.8 odd 22
529.2.c.b.255.1 10 69.5 even 22
529.2.c.b.334.1 10 69.14 even 22
529.2.c.c.255.1 10 69.41 odd 22
529.2.c.c.334.1 10 69.32 odd 22
529.2.c.d.118.1 10 69.53 even 22
529.2.c.d.399.1 10 69.56 even 22
529.2.c.e.118.1 10 69.62 odd 22
529.2.c.e.399.1 10 69.59 odd 22
529.2.c.f.177.1 10 69.50 odd 22
529.2.c.f.266.1 10 69.29 odd 22
529.2.c.g.177.1 10 69.65 even 22
529.2.c.g.266.1 10 69.17 even 22
529.2.c.h.466.1 10 69.35 odd 22
529.2.c.h.487.1 10 69.2 odd 22
529.2.c.i.466.1 10 69.11 even 22
529.2.c.i.487.1 10 69.44 even 22
575.2.k.b.101.1 10 345.89 even 22
575.2.k.b.501.1 10 345.314 even 22
575.2.p.b.124.1 20 345.227 odd 44
575.2.p.b.124.2 20 345.158 odd 44
575.2.p.b.524.1 20 345.38 odd 44
575.2.p.b.524.2 20 345.107 odd 44
4761.2.a.bn.1.4 5 1.1 even 1 trivial
4761.2.a.bo.1.4 5 23.22 odd 2
8464.2.a.bs.1.3 5 276.275 odd 2
8464.2.a.bt.1.3 5 12.11 even 2