Defining parameters
Level: | \( N \) | \(=\) | \( 575 = 5^{2} \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 575.p (of order \(22\) and degree \(10\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 115 \) |
Character field: | \(\Q(\zeta_{22})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 660 | 380 | 280 |
Cusp forms | 540 | 340 | 200 |
Eisenstein series | 120 | 40 | 80 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
575.2.p.a | $20$ | $4.591$ | \(\Q(\zeta_{44})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{44}^{3}+\zeta_{44}^{5}+\zeta_{44}^{9}+\zeta_{44}^{13}+\cdots)q^{2}+\cdots\) |
575.2.p.b | $20$ | $4.591$ | \(\Q(\zeta_{44})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\zeta_{44}-\zeta_{44}^{5}+\zeta_{44}^{7}+\zeta_{44}^{11}+\cdots)q^{2}+\cdots\) |
575.2.p.c | $40$ | $4.591$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
575.2.p.d | $100$ | $4.591$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
575.2.p.e | $160$ | $4.591$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(575, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(575, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)