Properties

Label 575.2.p
Level $575$
Weight $2$
Character orbit 575.p
Rep. character $\chi_{575}(49,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $340$
Newform subspaces $5$
Sturm bound $120$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 575 = 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 575.p (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 115 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 5 \)
Sturm bound: \(120\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(575, [\chi])\).

Total New Old
Modular forms 660 380 280
Cusp forms 540 340 200
Eisenstein series 120 40 80

Trace form

\( 340 q + 58 q^{4} - 26 q^{6} + 52 q^{9} - 14 q^{11} + 18 q^{14} - 62 q^{16} + 26 q^{19} - 30 q^{21} + 52 q^{24} + 2 q^{26} + 38 q^{29} - 42 q^{31} - 18 q^{34} - 46 q^{36} - 66 q^{39} - 70 q^{41} + 80 q^{44}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(575, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
575.2.p.a 575.p 115.j $20$ $4.591$ \(\Q(\zeta_{44})\) None 115.2.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$ \(q+(-\zeta_{44}^{3}+\zeta_{44}^{5}+\zeta_{44}^{9}+\zeta_{44}^{13}+\cdots)q^{2}+\cdots\)
575.2.p.b 575.p 115.j $20$ $4.591$ \(\Q(\zeta_{44})\) None 23.2.c.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$ \(q+(-\zeta_{44}-\zeta_{44}^{5}+\zeta_{44}^{7}+\zeta_{44}^{11}+\cdots)q^{2}+\cdots\)
575.2.p.c 575.p 115.j $40$ $4.591$ None 115.2.g.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$
575.2.p.d 575.p 115.j $100$ $4.591$ None 115.2.g.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$
575.2.p.e 575.p 115.j $160$ $4.591$ None 575.2.k.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{22}]$

Decomposition of \(S_{2}^{\mathrm{old}}(575, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(575, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(115, [\chi])\)\(^{\oplus 2}\)