Properties

Label 540.2.n.d.359.8
Level $540$
Weight $2$
Character 540.359
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 359.8
Character \(\chi\) \(=\) 540.359
Dual form 540.2.n.d.179.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.745653 - 1.20167i) q^{2} +(-0.888004 + 1.79205i) q^{4} +(1.91817 + 1.14918i) q^{5} +(-1.44473 + 2.50234i) q^{7} +(2.81559 - 0.269163i) q^{8} +(-0.0493612 - 3.16189i) q^{10} +(0.395318 - 0.684712i) q^{11} +(-4.04214 + 2.33373i) q^{13} +(4.08425 - 0.129797i) q^{14} +(-2.42290 - 3.18270i) q^{16} -5.89560 q^{17} +4.55505i q^{19} +(-3.76273 + 2.41699i) q^{20} +(-1.11756 + 0.0355161i) q^{22} +(-1.15468 + 0.666656i) q^{23} +(2.35878 + 4.40865i) q^{25} +(5.81840 + 3.11715i) q^{26} +(-3.20140 - 4.81112i) q^{28} +(-2.29484 - 1.32492i) q^{29} +(-2.26893 + 1.30997i) q^{31} +(-2.01790 + 5.28470i) q^{32} +(4.39607 + 7.08454i) q^{34} +(-5.64688 + 3.13968i) q^{35} +7.44000i q^{37} +(5.47365 - 3.39649i) q^{38} +(5.71011 + 2.71932i) q^{40} +(5.91566 - 3.41541i) q^{41} +(5.95249 - 10.3100i) q^{43} +(0.875994 + 1.31646i) q^{44} +(1.66209 + 0.890449i) q^{46} +(2.60947 + 1.50658i) q^{47} +(-0.674484 - 1.16824i) q^{49} +(3.53890 - 6.12178i) q^{50} +(-0.592728 - 9.31609i) q^{52} -1.70763 q^{53} +(1.54515 - 0.859104i) q^{55} +(-3.39423 + 7.43444i) q^{56} +(0.119034 + 3.74556i) q^{58} +(5.29436 + 9.17010i) q^{59} +(-0.869749 + 1.50645i) q^{61} +(3.26598 + 1.74972i) q^{62} +(7.85510 - 1.51570i) q^{64} +(-10.4354 - 0.168643i) q^{65} +(3.76721 + 6.52500i) q^{67} +(5.23532 - 10.5652i) q^{68} +(7.98346 + 4.44456i) q^{70} -2.88566 q^{71} -6.50847i q^{73} +(8.94040 - 5.54766i) q^{74} +(-8.16289 - 4.04491i) q^{76} +(1.14226 + 1.97845i) q^{77} +(3.30854 + 1.91019i) q^{79} +(-0.990045 - 8.88931i) q^{80} +(-8.51521 - 4.56194i) q^{82} +(8.33679 + 4.81325i) q^{83} +(-11.3088 - 6.77510i) q^{85} +(-16.8277 + 0.534782i) q^{86} +(0.928756 - 2.03427i) q^{88} +0.00741921i q^{89} -13.4864i q^{91} +(-0.169319 - 2.66124i) q^{92} +(-0.135354 - 4.25910i) q^{94} +(-5.23457 + 8.73738i) q^{95} +(5.74925 + 3.31933i) q^{97} +(-0.900905 + 1.68161i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.745653 1.20167i −0.527256 0.849706i
\(3\) 0 0
\(4\) −0.888004 + 1.79205i −0.444002 + 0.896026i
\(5\) 1.91817 + 1.14918i 0.857833 + 0.513928i
\(6\) 0 0
\(7\) −1.44473 + 2.50234i −0.546056 + 0.945797i 0.452483 + 0.891773i \(0.350538\pi\)
−0.998540 + 0.0540243i \(0.982795\pi\)
\(8\) 2.81559 0.269163i 0.995462 0.0951634i
\(9\) 0 0
\(10\) −0.0493612 3.16189i −0.0156094 0.999878i
\(11\) 0.395318 0.684712i 0.119193 0.206448i −0.800255 0.599660i \(-0.795303\pi\)
0.919448 + 0.393211i \(0.128636\pi\)
\(12\) 0 0
\(13\) −4.04214 + 2.33373i −1.12109 + 0.647261i −0.941679 0.336514i \(-0.890752\pi\)
−0.179410 + 0.983774i \(0.557419\pi\)
\(14\) 4.08425 0.129797i 1.09156 0.0346897i
\(15\) 0 0
\(16\) −2.42290 3.18270i −0.605724 0.795675i
\(17\) −5.89560 −1.42989 −0.714946 0.699179i \(-0.753549\pi\)
−0.714946 + 0.699179i \(0.753549\pi\)
\(18\) 0 0
\(19\) 4.55505i 1.04500i 0.852639 + 0.522500i \(0.175001\pi\)
−0.852639 + 0.522500i \(0.824999\pi\)
\(20\) −3.76273 + 2.41699i −0.841373 + 0.540455i
\(21\) 0 0
\(22\) −1.11756 + 0.0355161i −0.238266 + 0.00757206i
\(23\) −1.15468 + 0.666656i −0.240768 + 0.139007i −0.615530 0.788114i \(-0.711058\pi\)
0.374762 + 0.927121i \(0.377725\pi\)
\(24\) 0 0
\(25\) 2.35878 + 4.40865i 0.471755 + 0.881730i
\(26\) 5.81840 + 3.11715i 1.14108 + 0.611324i
\(27\) 0 0
\(28\) −3.20140 4.81112i −0.605008 0.909216i
\(29\) −2.29484 1.32492i −0.426140 0.246032i 0.271561 0.962421i \(-0.412460\pi\)
−0.697701 + 0.716389i \(0.745794\pi\)
\(30\) 0 0
\(31\) −2.26893 + 1.30997i −0.407512 + 0.235277i −0.689720 0.724076i \(-0.742266\pi\)
0.282208 + 0.959353i \(0.408933\pi\)
\(32\) −2.01790 + 5.28470i −0.356718 + 0.934212i
\(33\) 0 0
\(34\) 4.39607 + 7.08454i 0.753919 + 1.21499i
\(35\) −5.64688 + 3.13968i −0.954497 + 0.530702i
\(36\) 0 0
\(37\) 7.44000i 1.22313i 0.791195 + 0.611564i \(0.209459\pi\)
−0.791195 + 0.611564i \(0.790541\pi\)
\(38\) 5.47365 3.39649i 0.887944 0.550983i
\(39\) 0 0
\(40\) 5.71011 + 2.71932i 0.902847 + 0.429962i
\(41\) 5.91566 3.41541i 0.923871 0.533397i 0.0390029 0.999239i \(-0.487582\pi\)
0.884868 + 0.465842i \(0.154249\pi\)
\(42\) 0 0
\(43\) 5.95249 10.3100i 0.907746 1.57226i 0.0905567 0.995891i \(-0.471135\pi\)
0.817189 0.576370i \(-0.195531\pi\)
\(44\) 0.875994 + 1.31646i 0.132061 + 0.198463i
\(45\) 0 0
\(46\) 1.66209 + 0.890449i 0.245062 + 0.131290i
\(47\) 2.60947 + 1.50658i 0.380631 + 0.219757i 0.678093 0.734976i \(-0.262807\pi\)
−0.297462 + 0.954734i \(0.596140\pi\)
\(48\) 0 0
\(49\) −0.674484 1.16824i −0.0963548 0.166891i
\(50\) 3.53890 6.12178i 0.500476 0.865751i
\(51\) 0 0
\(52\) −0.592728 9.31609i −0.0821965 1.29191i
\(53\) −1.70763 −0.234561 −0.117281 0.993099i \(-0.537418\pi\)
−0.117281 + 0.993099i \(0.537418\pi\)
\(54\) 0 0
\(55\) 1.54515 0.859104i 0.208347 0.115842i
\(56\) −3.39423 + 7.43444i −0.453573 + 0.993469i
\(57\) 0 0
\(58\) 0.119034 + 3.74556i 0.0156299 + 0.491816i
\(59\) 5.29436 + 9.17010i 0.689267 + 1.19385i 0.972075 + 0.234669i \(0.0754007\pi\)
−0.282808 + 0.959176i \(0.591266\pi\)
\(60\) 0 0
\(61\) −0.869749 + 1.50645i −0.111360 + 0.192881i −0.916319 0.400450i \(-0.868854\pi\)
0.804959 + 0.593331i \(0.202187\pi\)
\(62\) 3.26598 + 1.74972i 0.414779 + 0.222214i
\(63\) 0 0
\(64\) 7.85510 1.51570i 0.981888 0.189463i
\(65\) −10.4354 0.168643i −1.29435 0.0209175i
\(66\) 0 0
\(67\) 3.76721 + 6.52500i 0.460238 + 0.797155i 0.998973 0.0453201i \(-0.0144308\pi\)
−0.538735 + 0.842476i \(0.681097\pi\)
\(68\) 5.23532 10.5652i 0.634875 1.28122i
\(69\) 0 0
\(70\) 7.98346 + 4.44456i 0.954206 + 0.531226i
\(71\) −2.88566 −0.342465 −0.171233 0.985231i \(-0.554775\pi\)
−0.171233 + 0.985231i \(0.554775\pi\)
\(72\) 0 0
\(73\) 6.50847i 0.761759i −0.924625 0.380880i \(-0.875621\pi\)
0.924625 0.380880i \(-0.124379\pi\)
\(74\) 8.94040 5.54766i 1.03930 0.644902i
\(75\) 0 0
\(76\) −8.16289 4.04491i −0.936347 0.463983i
\(77\) 1.14226 + 1.97845i 0.130172 + 0.225465i
\(78\) 0 0
\(79\) 3.30854 + 1.91019i 0.372240 + 0.214913i 0.674436 0.738333i \(-0.264387\pi\)
−0.302197 + 0.953246i \(0.597720\pi\)
\(80\) −0.990045 8.88931i −0.110690 0.993855i
\(81\) 0 0
\(82\) −8.51521 4.56194i −0.940347 0.503782i
\(83\) 8.33679 + 4.81325i 0.915081 + 0.528322i 0.882063 0.471132i \(-0.156155\pi\)
0.0330187 + 0.999455i \(0.489488\pi\)
\(84\) 0 0
\(85\) −11.3088 6.77510i −1.22661 0.734862i
\(86\) −16.8277 + 0.534782i −1.81457 + 0.0576670i
\(87\) 0 0
\(88\) 0.928756 2.03427i 0.0990057 0.216854i
\(89\) 0.00741921i 0.000786434i 1.00000 0.000393217i \(0.000125165\pi\)
−1.00000 0.000393217i \(0.999875\pi\)
\(90\) 0 0
\(91\) 13.4864i 1.41376i
\(92\) −0.169319 2.66124i −0.0176528 0.277454i
\(93\) 0 0
\(94\) −0.135354 4.25910i −0.0139607 0.439293i
\(95\) −5.23457 + 8.73738i −0.537055 + 0.896436i
\(96\) 0 0
\(97\) 5.74925 + 3.31933i 0.583748 + 0.337027i 0.762621 0.646845i \(-0.223912\pi\)
−0.178874 + 0.983872i \(0.557245\pi\)
\(98\) −0.900905 + 1.68161i −0.0910051 + 0.169868i
\(99\) 0 0
\(100\) −9.99513 + 0.312149i −0.999513 + 0.0312149i
\(101\) 2.20027 + 1.27033i 0.218935 + 0.126402i 0.605457 0.795878i \(-0.292990\pi\)
−0.386522 + 0.922280i \(0.626324\pi\)
\(102\) 0 0
\(103\) 3.82824 + 6.63071i 0.377208 + 0.653343i 0.990655 0.136393i \(-0.0435509\pi\)
−0.613447 + 0.789736i \(0.710218\pi\)
\(104\) −10.7529 + 7.65883i −1.05441 + 0.751010i
\(105\) 0 0
\(106\) 1.27330 + 2.05200i 0.123674 + 0.199308i
\(107\) 13.7118i 1.32557i −0.748808 0.662787i \(-0.769374\pi\)
0.748808 0.662787i \(-0.230626\pi\)
\(108\) 0 0
\(109\) −13.2664 −1.27069 −0.635347 0.772227i \(-0.719143\pi\)
−0.635347 + 0.772227i \(0.719143\pi\)
\(110\) −2.18450 1.21616i −0.208284 0.115956i
\(111\) 0 0
\(112\) 11.4646 1.46478i 1.08331 0.138409i
\(113\) −4.62487 8.01051i −0.435071 0.753565i 0.562230 0.826981i \(-0.309943\pi\)
−0.997301 + 0.0734153i \(0.976610\pi\)
\(114\) 0 0
\(115\) −2.98099 0.0481746i −0.277979 0.00449231i
\(116\) 4.41216 2.93593i 0.409659 0.272594i
\(117\) 0 0
\(118\) 7.07165 13.1998i 0.650998 1.21514i
\(119\) 8.51754 14.7528i 0.780802 1.35239i
\(120\) 0 0
\(121\) 5.18745 + 8.98492i 0.471586 + 0.816811i
\(122\) 2.45878 0.0781398i 0.222608 0.00707445i
\(123\) 0 0
\(124\) −0.332709 5.22929i −0.0298781 0.469604i
\(125\) −0.541784 + 11.1672i −0.0484587 + 0.998825i
\(126\) 0 0
\(127\) −9.77239 −0.867159 −0.433580 0.901115i \(-0.642750\pi\)
−0.433580 + 0.901115i \(0.642750\pi\)
\(128\) −7.67855 8.30902i −0.678694 0.734421i
\(129\) 0 0
\(130\) 7.57853 + 12.6656i 0.664681 + 1.11085i
\(131\) −6.61827 11.4632i −0.578241 1.00154i −0.995681 0.0928382i \(-0.970406\pi\)
0.417440 0.908704i \(-0.362927\pi\)
\(132\) 0 0
\(133\) −11.3983 6.58082i −0.988359 0.570629i
\(134\) 5.03184 9.39231i 0.434685 0.811372i
\(135\) 0 0
\(136\) −16.5996 + 1.58688i −1.42340 + 0.136073i
\(137\) −1.57622 + 2.73010i −0.134666 + 0.233248i −0.925470 0.378822i \(-0.876329\pi\)
0.790804 + 0.612069i \(0.209663\pi\)
\(138\) 0 0
\(139\) −2.22556 + 1.28493i −0.188770 + 0.108986i −0.591407 0.806374i \(-0.701427\pi\)
0.402637 + 0.915360i \(0.368094\pi\)
\(140\) −0.612008 12.9075i −0.0517241 1.09089i
\(141\) 0 0
\(142\) 2.15170 + 3.46761i 0.180567 + 0.290995i
\(143\) 3.69027i 0.308596i
\(144\) 0 0
\(145\) −2.87932 5.17861i −0.239114 0.430060i
\(146\) −7.82101 + 4.85306i −0.647272 + 0.401642i
\(147\) 0 0
\(148\) −13.3329 6.60675i −1.09595 0.543072i
\(149\) −8.52719 + 4.92318i −0.698575 + 0.403322i −0.806816 0.590802i \(-0.798811\pi\)
0.108242 + 0.994125i \(0.465478\pi\)
\(150\) 0 0
\(151\) 9.24153 + 5.33560i 0.752065 + 0.434205i 0.826440 0.563025i \(-0.190363\pi\)
−0.0743744 + 0.997230i \(0.523696\pi\)
\(152\) 1.22605 + 12.8252i 0.0994458 + 1.04026i
\(153\) 0 0
\(154\) 1.52571 2.84784i 0.122945 0.229486i
\(155\) −5.85758 0.0946622i −0.470493 0.00760345i
\(156\) 0 0
\(157\) 12.9992 7.50509i 1.03745 0.598972i 0.118340 0.992973i \(-0.462243\pi\)
0.919110 + 0.394001i \(0.128909\pi\)
\(158\) −0.171614 5.40009i −0.0136529 0.429608i
\(159\) 0 0
\(160\) −9.94375 + 7.81804i −0.786123 + 0.618070i
\(161\) 3.85255i 0.303624i
\(162\) 0 0
\(163\) −4.15873 −0.325737 −0.162869 0.986648i \(-0.552075\pi\)
−0.162869 + 0.986648i \(0.552075\pi\)
\(164\) 0.867455 + 13.6341i 0.0677368 + 1.06464i
\(165\) 0 0
\(166\) −0.432431 13.6070i −0.0335631 1.05611i
\(167\) −0.0288855 + 0.0166770i −0.00223522 + 0.00129051i −0.501117 0.865379i \(-0.667077\pi\)
0.498882 + 0.866670i \(0.333744\pi\)
\(168\) 0 0
\(169\) 4.39261 7.60822i 0.337893 0.585248i
\(170\) 0.291014 + 18.6412i 0.0223197 + 1.42972i
\(171\) 0 0
\(172\) 13.1902 + 19.8225i 1.00575 + 1.51145i
\(173\) 11.9161 20.6392i 0.905962 1.56917i 0.0863411 0.996266i \(-0.472483\pi\)
0.819621 0.572906i \(-0.194184\pi\)
\(174\) 0 0
\(175\) −14.4397 0.466832i −1.09154 0.0352892i
\(176\) −3.13705 + 0.400806i −0.236464 + 0.0302119i
\(177\) 0 0
\(178\) 0.00891541 0.00553215i 0.000668238 0.000414652i
\(179\) −25.5288 −1.90811 −0.954055 0.299631i \(-0.903136\pi\)
−0.954055 + 0.299631i \(0.903136\pi\)
\(180\) 0 0
\(181\) 25.6109 1.90364 0.951821 0.306653i \(-0.0992092\pi\)
0.951821 + 0.306653i \(0.0992092\pi\)
\(182\) −16.2062 + 10.0562i −1.20128 + 0.745415i
\(183\) 0 0
\(184\) −3.07168 + 2.18783i −0.226447 + 0.161289i
\(185\) −8.54989 + 14.2712i −0.628601 + 1.04924i
\(186\) 0 0
\(187\) −2.33064 + 4.03678i −0.170433 + 0.295199i
\(188\) −5.01709 + 3.33846i −0.365909 + 0.243482i
\(189\) 0 0
\(190\) 14.4026 0.224843i 1.04487 0.0163118i
\(191\) 3.85863 6.68334i 0.279200 0.483589i −0.691986 0.721911i \(-0.743264\pi\)
0.971186 + 0.238322i \(0.0765973\pi\)
\(192\) 0 0
\(193\) 4.47373 2.58291i 0.322026 0.185922i −0.330269 0.943887i \(-0.607139\pi\)
0.652295 + 0.757965i \(0.273806\pi\)
\(194\) −0.298215 9.38374i −0.0214106 0.673714i
\(195\) 0 0
\(196\) 2.69249 0.171307i 0.192321 0.0122362i
\(197\) 8.47116 0.603545 0.301773 0.953380i \(-0.402422\pi\)
0.301773 + 0.953380i \(0.402422\pi\)
\(198\) 0 0
\(199\) 0.555967i 0.0394115i 0.999806 + 0.0197057i \(0.00627293\pi\)
−0.999806 + 0.0197057i \(0.993727\pi\)
\(200\) 7.82799 + 11.7781i 0.553523 + 0.832834i
\(201\) 0 0
\(202\) −0.114128 3.59121i −0.00803004 0.252677i
\(203\) 6.63083 3.82831i 0.465393 0.268695i
\(204\) 0 0
\(205\) 15.2722 + 0.246808i 1.06665 + 0.0172378i
\(206\) 5.11336 9.54447i 0.356265 0.664995i
\(207\) 0 0
\(208\) 17.2213 + 7.21053i 1.19408 + 0.499960i
\(209\) 3.11890 + 1.80070i 0.215739 + 0.124557i
\(210\) 0 0
\(211\) 21.0649 12.1618i 1.45016 0.837253i 0.451675 0.892183i \(-0.350827\pi\)
0.998490 + 0.0549298i \(0.0174935\pi\)
\(212\) 1.51638 3.06016i 0.104146 0.210173i
\(213\) 0 0
\(214\) −16.4771 + 10.2243i −1.12635 + 0.698917i
\(215\) 23.2659 12.9359i 1.58672 0.882222i
\(216\) 0 0
\(217\) 7.57019i 0.513898i
\(218\) 9.89215 + 15.9418i 0.669981 + 1.07972i
\(219\) 0 0
\(220\) 0.167462 + 3.53187i 0.0112903 + 0.238118i
\(221\) 23.8308 13.7587i 1.60304 0.925513i
\(222\) 0 0
\(223\) −0.169636 + 0.293817i −0.0113596 + 0.0196755i −0.871649 0.490130i \(-0.836949\pi\)
0.860290 + 0.509805i \(0.170283\pi\)
\(224\) −10.3088 12.6844i −0.688787 0.847515i
\(225\) 0 0
\(226\) −6.17741 + 11.5306i −0.410915 + 0.767005i
\(227\) −7.45137 4.30205i −0.494565 0.285537i 0.231902 0.972739i \(-0.425505\pi\)
−0.726466 + 0.687202i \(0.758839\pi\)
\(228\) 0 0
\(229\) 0.358866 + 0.621574i 0.0237145 + 0.0410748i 0.877639 0.479322i \(-0.159117\pi\)
−0.853925 + 0.520397i \(0.825784\pi\)
\(230\) 2.16489 + 3.61808i 0.142749 + 0.238569i
\(231\) 0 0
\(232\) −6.81794 3.11276i −0.447620 0.204363i
\(233\) 13.8379 0.906553 0.453276 0.891370i \(-0.350255\pi\)
0.453276 + 0.891370i \(0.350255\pi\)
\(234\) 0 0
\(235\) 3.27409 + 5.88864i 0.213578 + 0.384132i
\(236\) −21.1347 + 1.34468i −1.37575 + 0.0875310i
\(237\) 0 0
\(238\) −24.0791 + 0.765231i −1.56082 + 0.0496026i
\(239\) 13.8553 + 23.9980i 0.896223 + 1.55230i 0.832284 + 0.554350i \(0.187033\pi\)
0.0639388 + 0.997954i \(0.479634\pi\)
\(240\) 0 0
\(241\) −5.71303 + 9.89526i −0.368009 + 0.637410i −0.989254 0.146206i \(-0.953294\pi\)
0.621245 + 0.783616i \(0.286627\pi\)
\(242\) 6.92884 12.9332i 0.445403 0.831378i
\(243\) 0 0
\(244\) −1.92729 2.89637i −0.123382 0.185421i
\(245\) 0.0487403 3.01599i 0.00311390 0.192685i
\(246\) 0 0
\(247\) −10.6303 18.4122i −0.676388 1.17154i
\(248\) −6.03578 + 4.29904i −0.383272 + 0.272989i
\(249\) 0 0
\(250\) 13.8232 7.67581i 0.874258 0.485461i
\(251\) −5.05161 −0.318855 −0.159427 0.987210i \(-0.550965\pi\)
−0.159427 + 0.987210i \(0.550965\pi\)
\(252\) 0 0
\(253\) 1.05417i 0.0662749i
\(254\) 7.28681 + 11.7432i 0.457215 + 0.736831i
\(255\) 0 0
\(256\) −4.25914 + 15.4227i −0.266197 + 0.963919i
\(257\) 1.32366 + 2.29265i 0.0825679 + 0.143012i 0.904352 0.426787i \(-0.140355\pi\)
−0.821784 + 0.569799i \(0.807021\pi\)
\(258\) 0 0
\(259\) −18.6174 10.7488i −1.15683 0.667897i
\(260\) 9.56890 18.5510i 0.593438 1.15049i
\(261\) 0 0
\(262\) −8.83999 + 16.5005i −0.546136 + 1.01940i
\(263\) 2.19210 + 1.26561i 0.135171 + 0.0780408i 0.566060 0.824364i \(-0.308467\pi\)
−0.430890 + 0.902405i \(0.641800\pi\)
\(264\) 0 0
\(265\) −3.27553 1.96237i −0.201214 0.120548i
\(266\) 0.591232 + 18.6040i 0.0362508 + 1.14068i
\(267\) 0 0
\(268\) −15.0384 + 0.956806i −0.918618 + 0.0584462i
\(269\) 5.26469i 0.320994i 0.987036 + 0.160497i \(0.0513097\pi\)
−0.987036 + 0.160497i \(0.948690\pi\)
\(270\) 0 0
\(271\) 16.6468i 1.01122i 0.862761 + 0.505612i \(0.168733\pi\)
−0.862761 + 0.505612i \(0.831267\pi\)
\(272\) 14.2844 + 18.7639i 0.866120 + 1.13773i
\(273\) 0 0
\(274\) 4.45598 0.141611i 0.269196 0.00855501i
\(275\) 3.95112 + 0.127738i 0.238261 + 0.00770292i
\(276\) 0 0
\(277\) −22.8566 13.1963i −1.37332 0.792888i −0.381978 0.924171i \(-0.624757\pi\)
−0.991345 + 0.131283i \(0.958090\pi\)
\(278\) 3.20355 + 1.71627i 0.192136 + 0.102935i
\(279\) 0 0
\(280\) −15.0542 + 10.3600i −0.899662 + 0.619127i
\(281\) 19.8511 + 11.4611i 1.18422 + 0.683710i 0.956987 0.290131i \(-0.0936987\pi\)
0.227233 + 0.973840i \(0.427032\pi\)
\(282\) 0 0
\(283\) −3.25733 5.64186i −0.193628 0.335374i 0.752822 0.658224i \(-0.228692\pi\)
−0.946450 + 0.322851i \(0.895359\pi\)
\(284\) 2.56248 5.17126i 0.152055 0.306858i
\(285\) 0 0
\(286\) 4.43447 2.75166i 0.262216 0.162709i
\(287\) 19.7374i 1.16506i
\(288\) 0 0
\(289\) 17.7581 1.04459
\(290\) −4.07599 + 7.32143i −0.239351 + 0.429929i
\(291\) 0 0
\(292\) 11.6635 + 5.77955i 0.682556 + 0.338223i
\(293\) 8.37272 + 14.5020i 0.489140 + 0.847215i 0.999922 0.0124952i \(-0.00397745\pi\)
−0.510782 + 0.859710i \(0.670644\pi\)
\(294\) 0 0
\(295\) −0.382587 + 23.6740i −0.0222751 + 1.37835i
\(296\) 2.00257 + 20.9480i 0.116397 + 1.21758i
\(297\) 0 0
\(298\) 12.2743 + 6.57586i 0.711033 + 0.380929i
\(299\) 3.11159 5.38944i 0.179948 0.311679i
\(300\) 0 0
\(301\) 17.1995 + 29.7903i 0.991360 + 1.71709i
\(302\) −0.479360 15.0837i −0.0275841 0.867972i
\(303\) 0 0
\(304\) 14.4974 11.0364i 0.831481 0.632982i
\(305\) −3.39951 + 1.89013i −0.194655 + 0.108229i
\(306\) 0 0
\(307\) 24.2759 1.38550 0.692749 0.721179i \(-0.256400\pi\)
0.692749 + 0.721179i \(0.256400\pi\)
\(308\) −4.55980 + 0.290113i −0.259819 + 0.0165307i
\(309\) 0 0
\(310\) 4.25397 + 7.10945i 0.241609 + 0.403790i
\(311\) 3.81664 + 6.61061i 0.216422 + 0.374853i 0.953711 0.300723i \(-0.0972281\pi\)
−0.737290 + 0.675577i \(0.763895\pi\)
\(312\) 0 0
\(313\) −3.85836 2.22762i −0.218087 0.125913i 0.386977 0.922089i \(-0.373519\pi\)
−0.605064 + 0.796177i \(0.706853\pi\)
\(314\) −18.7115 10.0245i −1.05595 0.565716i
\(315\) 0 0
\(316\) −6.36115 + 4.23282i −0.357842 + 0.238115i
\(317\) 2.47795 4.29194i 0.139176 0.241059i −0.788009 0.615663i \(-0.788888\pi\)
0.927185 + 0.374604i \(0.122221\pi\)
\(318\) 0 0
\(319\) −1.81438 + 1.04753i −0.101586 + 0.0586506i
\(320\) 16.8093 + 6.11953i 0.939666 + 0.342092i
\(321\) 0 0
\(322\) −4.62948 + 2.87267i −0.257991 + 0.160087i
\(323\) 26.8548i 1.49424i
\(324\) 0 0
\(325\) −19.8231 12.3156i −1.09959 0.683148i
\(326\) 3.10097 + 4.99741i 0.171747 + 0.276781i
\(327\) 0 0
\(328\) 15.7368 11.2087i 0.868918 0.618895i
\(329\) −7.53997 + 4.35320i −0.415692 + 0.240000i
\(330\) 0 0
\(331\) −23.0250 13.2935i −1.26557 0.730676i −0.291422 0.956594i \(-0.594129\pi\)
−0.974146 + 0.225918i \(0.927462\pi\)
\(332\) −16.0287 + 10.6658i −0.879689 + 0.585360i
\(333\) 0 0
\(334\) 0.0415787 + 0.0222754i 0.00227509 + 0.00121886i
\(335\) −0.272230 + 16.8453i −0.0148735 + 0.920356i
\(336\) 0 0
\(337\) −10.7769 + 6.22205i −0.587056 + 0.338937i −0.763933 0.645296i \(-0.776734\pi\)
0.176877 + 0.984233i \(0.443401\pi\)
\(338\) −12.4179 + 0.394640i −0.675445 + 0.0214656i
\(339\) 0 0
\(340\) 22.1836 14.2496i 1.20307 0.772793i
\(341\) 2.07142i 0.112173i
\(342\) 0 0
\(343\) −16.3284 −0.881652
\(344\) 13.9847 30.6309i 0.754004 1.65151i
\(345\) 0 0
\(346\) −33.6867 + 1.07056i −1.81101 + 0.0575537i
\(347\) −14.6546 + 8.46084i −0.786701 + 0.454202i −0.838800 0.544440i \(-0.816742\pi\)
0.0520991 + 0.998642i \(0.483409\pi\)
\(348\) 0 0
\(349\) −0.955553 + 1.65507i −0.0511496 + 0.0885937i −0.890467 0.455049i \(-0.849622\pi\)
0.839317 + 0.543642i \(0.182955\pi\)
\(350\) 10.2061 + 17.6999i 0.545537 + 0.946097i
\(351\) 0 0
\(352\) 2.82078 + 3.47082i 0.150348 + 0.184995i
\(353\) −11.0561 + 19.1497i −0.588457 + 1.01924i 0.405978 + 0.913883i \(0.366931\pi\)
−0.994435 + 0.105355i \(0.966402\pi\)
\(354\) 0 0
\(355\) −5.53520 3.31614i −0.293778 0.176003i
\(356\) −0.0132956 0.00658829i −0.000704665 0.000349178i
\(357\) 0 0
\(358\) 19.0356 + 30.6771i 1.00606 + 1.62133i
\(359\) −1.48034 −0.0781296 −0.0390648 0.999237i \(-0.512438\pi\)
−0.0390648 + 0.999237i \(0.512438\pi\)
\(360\) 0 0
\(361\) −1.74850 −0.0920262
\(362\) −19.0968 30.7757i −1.00371 1.61754i
\(363\) 0 0
\(364\) 24.1684 + 11.9760i 1.26677 + 0.627714i
\(365\) 7.47940 12.4844i 0.391490 0.653462i
\(366\) 0 0
\(367\) −0.0631149 + 0.109318i −0.00329457 + 0.00570636i −0.867668 0.497144i \(-0.834382\pi\)
0.864373 + 0.502850i \(0.167715\pi\)
\(368\) 4.91944 + 2.05977i 0.256444 + 0.107373i
\(369\) 0 0
\(370\) 23.5245 0.367247i 1.22298 0.0190923i
\(371\) 2.46707 4.27308i 0.128084 0.221847i
\(372\) 0 0
\(373\) 19.8527 11.4620i 1.02794 0.593479i 0.111543 0.993760i \(-0.464421\pi\)
0.916393 + 0.400280i \(0.131087\pi\)
\(374\) 6.58871 0.209389i 0.340694 0.0108272i
\(375\) 0 0
\(376\) 7.75273 + 3.53954i 0.399816 + 0.182538i
\(377\) 12.3681 0.636988
\(378\) 0 0
\(379\) 27.5123i 1.41321i −0.707608 0.706605i \(-0.750226\pi\)
0.707608 0.706605i \(-0.249774\pi\)
\(380\) −11.0095 17.1394i −0.564776 0.879235i
\(381\) 0 0
\(382\) −10.9083 + 0.346666i −0.558119 + 0.0177370i
\(383\) −20.5507 + 11.8649i −1.05009 + 0.606270i −0.922675 0.385579i \(-0.874002\pi\)
−0.127416 + 0.991849i \(0.540668\pi\)
\(384\) 0 0
\(385\) −0.0825429 + 5.10766i −0.00420678 + 0.260310i
\(386\) −6.43965 3.44998i −0.327770 0.175599i
\(387\) 0 0
\(388\) −11.0538 + 7.35537i −0.561170 + 0.373412i
\(389\) 1.58128 + 0.912954i 0.0801742 + 0.0462886i 0.539551 0.841953i \(-0.318594\pi\)
−0.459377 + 0.888241i \(0.651927\pi\)
\(390\) 0 0
\(391\) 6.80755 3.93034i 0.344272 0.198766i
\(392\) −2.21352 3.10774i −0.111800 0.156965i
\(393\) 0 0
\(394\) −6.31654 10.1795i −0.318223 0.512836i
\(395\) 4.15120 + 7.46617i 0.208870 + 0.375664i
\(396\) 0 0
\(397\) 19.0828i 0.957737i 0.877887 + 0.478868i \(0.158953\pi\)
−0.877887 + 0.478868i \(0.841047\pi\)
\(398\) 0.668087 0.414558i 0.0334882 0.0207799i
\(399\) 0 0
\(400\) 8.31633 18.1890i 0.415816 0.909449i
\(401\) 15.1375 8.73963i 0.755930 0.436436i −0.0719025 0.997412i \(-0.522907\pi\)
0.827833 + 0.560975i \(0.189574\pi\)
\(402\) 0 0
\(403\) 6.11422 10.5901i 0.304571 0.527533i
\(404\) −4.23034 + 2.81494i −0.210467 + 0.140048i
\(405\) 0 0
\(406\) −9.54466 5.11346i −0.473693 0.253777i
\(407\) 5.09425 + 2.94117i 0.252513 + 0.145788i
\(408\) 0 0
\(409\) −8.17716 14.1633i −0.404335 0.700328i 0.589909 0.807470i \(-0.299164\pi\)
−0.994244 + 0.107142i \(0.965830\pi\)
\(410\) −11.0912 18.5361i −0.547753 0.915432i
\(411\) 0 0
\(412\) −15.2821 + 0.972307i −0.752893 + 0.0479021i
\(413\) −30.5957 −1.50551
\(414\) 0 0
\(415\) 10.4601 + 18.8131i 0.513467 + 0.923499i
\(416\) −4.17642 26.0708i −0.204766 1.27822i
\(417\) 0 0
\(418\) −0.161778 5.09057i −0.00791281 0.248988i
\(419\) −12.3846 21.4508i −0.605029 1.04794i −0.992047 0.125869i \(-0.959828\pi\)
0.387018 0.922072i \(-0.373505\pi\)
\(420\) 0 0
\(421\) 8.38623 14.5254i 0.408720 0.707923i −0.586027 0.810292i \(-0.699309\pi\)
0.994747 + 0.102368i \(0.0326420\pi\)
\(422\) −30.3215 16.2445i −1.47603 0.790768i
\(423\) 0 0
\(424\) −4.80799 + 0.459631i −0.233497 + 0.0223217i
\(425\) −13.9064 25.9916i −0.674559 1.26078i
\(426\) 0 0
\(427\) −2.51310 4.35282i −0.121618 0.210648i
\(428\) 24.5723 + 12.1762i 1.18775 + 0.588558i
\(429\) 0 0
\(430\) −32.8930 18.3122i −1.58624 0.883093i
\(431\) 15.2488 0.734510 0.367255 0.930120i \(-0.380298\pi\)
0.367255 + 0.930120i \(0.380298\pi\)
\(432\) 0 0
\(433\) 23.5695i 1.13268i 0.824172 + 0.566340i \(0.191641\pi\)
−0.824172 + 0.566340i \(0.808359\pi\)
\(434\) −9.09684 + 5.64473i −0.436662 + 0.270956i
\(435\) 0 0
\(436\) 11.7806 23.7741i 0.564191 1.13857i
\(437\) −3.03665 5.25964i −0.145263 0.251603i
\(438\) 0 0
\(439\) 12.8688 + 7.42979i 0.614193 + 0.354605i 0.774605 0.632446i \(-0.217949\pi\)
−0.160412 + 0.987050i \(0.551282\pi\)
\(440\) 4.11926 2.83478i 0.196378 0.135143i
\(441\) 0 0
\(442\) −34.3030 18.3775i −1.63163 0.874128i
\(443\) −23.5062 13.5713i −1.11681 0.644791i −0.176226 0.984350i \(-0.556389\pi\)
−0.940585 + 0.339558i \(0.889722\pi\)
\(444\) 0 0
\(445\) −0.00852599 + 0.0142313i −0.000404171 + 0.000674629i
\(446\) 0.479560 0.0152404i 0.0227078 0.000721652i
\(447\) 0 0
\(448\) −7.55568 + 21.8460i −0.356972 + 1.03212i
\(449\) 17.4879i 0.825304i −0.910889 0.412652i \(-0.864602\pi\)
0.910889 0.412652i \(-0.135398\pi\)
\(450\) 0 0
\(451\) 5.40069i 0.254309i
\(452\) 18.4622 1.17464i 0.868386 0.0552503i
\(453\) 0 0
\(454\) 0.386504 + 12.1619i 0.0181395 + 0.570786i
\(455\) 15.4983 25.8693i 0.726573 1.21277i
\(456\) 0 0
\(457\) 5.10627 + 2.94811i 0.238861 + 0.137907i 0.614653 0.788797i \(-0.289296\pi\)
−0.375792 + 0.926704i \(0.622629\pi\)
\(458\) 0.479335 0.894715i 0.0223979 0.0418073i
\(459\) 0 0
\(460\) 2.73346 5.29931i 0.127448 0.247081i
\(461\) −30.5948 17.6639i −1.42494 0.822691i −0.428227 0.903671i \(-0.640862\pi\)
−0.996716 + 0.0809799i \(0.974195\pi\)
\(462\) 0 0
\(463\) 18.6175 + 32.2464i 0.865227 + 1.49862i 0.866822 + 0.498618i \(0.166159\pi\)
−0.00159457 + 0.999999i \(0.500508\pi\)
\(464\) 1.34332 + 10.5139i 0.0623619 + 0.488097i
\(465\) 0 0
\(466\) −10.3183 16.6286i −0.477985 0.770304i
\(467\) 6.98334i 0.323151i 0.986860 + 0.161575i \(0.0516575\pi\)
−0.986860 + 0.161575i \(0.948343\pi\)
\(468\) 0 0
\(469\) −21.7704 −1.00526
\(470\) 4.63484 8.32524i 0.213789 0.384015i
\(471\) 0 0
\(472\) 17.3750 + 24.3942i 0.799749 + 1.12283i
\(473\) −4.70625 8.15147i −0.216394 0.374805i
\(474\) 0 0
\(475\) −20.0816 + 10.7443i −0.921408 + 0.492984i
\(476\) 18.8742 + 28.3644i 0.865097 + 1.30008i
\(477\) 0 0
\(478\) 18.5064 34.5436i 0.846463 1.57999i
\(479\) −10.2090 + 17.6825i −0.466460 + 0.807932i −0.999266 0.0383050i \(-0.987804\pi\)
0.532806 + 0.846237i \(0.321137\pi\)
\(480\) 0 0
\(481\) −17.3630 30.0735i −0.791683 1.37124i
\(482\) 16.1507 0.513269i 0.735646 0.0233788i
\(483\) 0 0
\(484\) −20.7079 + 1.31752i −0.941269 + 0.0598874i
\(485\) 7.21355 + 12.9740i 0.327550 + 0.589117i
\(486\) 0 0
\(487\) 20.8264 0.943735 0.471868 0.881669i \(-0.343580\pi\)
0.471868 + 0.881669i \(0.343580\pi\)
\(488\) −2.04338 + 4.47565i −0.0924993 + 0.202603i
\(489\) 0 0
\(490\) −3.66056 + 2.19031i −0.165367 + 0.0989482i
\(491\) −9.31608 16.1359i −0.420429 0.728204i 0.575552 0.817765i \(-0.304787\pi\)
−0.995981 + 0.0895606i \(0.971454\pi\)
\(492\) 0 0
\(493\) 13.5294 + 7.81122i 0.609335 + 0.351800i
\(494\) −14.1988 + 26.5031i −0.638834 + 1.19243i
\(495\) 0 0
\(496\) 9.66661 + 4.04740i 0.434044 + 0.181734i
\(497\) 4.16900 7.22093i 0.187005 0.323903i
\(498\) 0 0
\(499\) 4.48667 2.59038i 0.200851 0.115961i −0.396201 0.918164i \(-0.629672\pi\)
0.597052 + 0.802202i \(0.296338\pi\)
\(500\) −19.5311 10.8874i −0.873457 0.486901i
\(501\) 0 0
\(502\) 3.76675 + 6.07035i 0.168118 + 0.270933i
\(503\) 27.8846i 1.24331i 0.783290 + 0.621657i \(0.213540\pi\)
−0.783290 + 0.621657i \(0.786460\pi\)
\(504\) 0 0
\(505\) 2.76066 + 4.96521i 0.122848 + 0.220949i
\(506\) 1.26676 0.786042i 0.0563142 0.0349438i
\(507\) 0 0
\(508\) 8.67792 17.5126i 0.385021 0.776997i
\(509\) −18.6724 + 10.7805i −0.827640 + 0.477838i −0.853044 0.521839i \(-0.825246\pi\)
0.0254039 + 0.999677i \(0.491913\pi\)
\(510\) 0 0
\(511\) 16.2864 + 9.40298i 0.720470 + 0.415963i
\(512\) 21.7088 6.38191i 0.959402 0.282043i
\(513\) 0 0
\(514\) 1.76801 3.30013i 0.0779837 0.145562i
\(515\) −0.276640 + 17.1182i −0.0121902 + 0.754317i
\(516\) 0 0
\(517\) 2.06315 1.19116i 0.0907371 0.0523871i
\(518\) 0.965690 + 30.3868i 0.0424300 + 1.33512i
\(519\) 0 0
\(520\) −29.4272 + 2.33399i −1.29047 + 0.102352i
\(521\) 19.9411i 0.873633i 0.899551 + 0.436817i \(0.143894\pi\)
−0.899551 + 0.436817i \(0.856106\pi\)
\(522\) 0 0
\(523\) −18.9360 −0.828013 −0.414006 0.910274i \(-0.635871\pi\)
−0.414006 + 0.910274i \(0.635871\pi\)
\(524\) 26.4197 1.68093i 1.15415 0.0734316i
\(525\) 0 0
\(526\) −0.113705 3.57788i −0.00495776 0.156003i
\(527\) 13.3767 7.72304i 0.582698 0.336421i
\(528\) 0 0
\(529\) −10.6111 + 18.3790i −0.461354 + 0.799088i
\(530\) 0.0842907 + 5.39935i 0.00366135 + 0.234533i
\(531\) 0 0
\(532\) 21.9149 14.5826i 0.950132 0.632234i
\(533\) −15.9413 + 27.6111i −0.690494 + 1.19597i
\(534\) 0 0
\(535\) 15.7574 26.3017i 0.681250 1.13712i
\(536\) 12.3632 + 17.3577i 0.534009 + 0.749740i
\(537\) 0 0
\(538\) 6.32640 3.92563i 0.272751 0.169246i
\(539\) −1.06654 −0.0459393
\(540\) 0 0
\(541\) −13.2697 −0.570511 −0.285255 0.958452i \(-0.592078\pi\)
−0.285255 + 0.958452i \(0.592078\pi\)
\(542\) 20.0039 12.4128i 0.859243 0.533174i
\(543\) 0 0
\(544\) 11.8967 31.1565i 0.510069 1.33582i
\(545\) −25.4473 15.2455i −1.09004 0.653046i
\(546\) 0 0
\(547\) 4.51377 7.81809i 0.192995 0.334277i −0.753246 0.657738i \(-0.771513\pi\)
0.946241 + 0.323461i \(0.104847\pi\)
\(548\) −3.49278 5.24901i −0.149204 0.224227i
\(549\) 0 0
\(550\) −2.79266 4.84318i −0.119080 0.206514i
\(551\) 6.03510 10.4531i 0.257104 0.445317i
\(552\) 0 0
\(553\) −9.55988 + 5.51940i −0.406527 + 0.234709i
\(554\) 1.18558 + 37.3059i 0.0503704 + 1.58498i
\(555\) 0 0
\(556\) −0.326350 5.12935i −0.0138403 0.217533i
\(557\) −30.4174 −1.28883 −0.644414 0.764677i \(-0.722899\pi\)
−0.644414 + 0.764677i \(0.722899\pi\)
\(558\) 0 0
\(559\) 55.5660i 2.35019i
\(560\) 23.6745 + 10.3652i 1.00043 + 0.438010i
\(561\) 0 0
\(562\) −1.02968 32.4004i −0.0434345 1.36673i
\(563\) 39.1934 22.6283i 1.65180 0.953669i 0.675473 0.737385i \(-0.263940\pi\)
0.976330 0.216284i \(-0.0693938\pi\)
\(564\) 0 0
\(565\) 0.334207 20.6803i 0.0140602 0.870029i
\(566\) −4.35080 + 8.12109i −0.182878 + 0.341355i
\(567\) 0 0
\(568\) −8.12485 + 0.776714i −0.340911 + 0.0325902i
\(569\) 4.42750 + 2.55622i 0.185610 + 0.107162i 0.589926 0.807457i \(-0.299157\pi\)
−0.404316 + 0.914620i \(0.632490\pi\)
\(570\) 0 0
\(571\) −30.6553 + 17.6989i −1.28289 + 0.740675i −0.977375 0.211514i \(-0.932161\pi\)
−0.305511 + 0.952189i \(0.598827\pi\)
\(572\) −6.61315 3.27697i −0.276510 0.137017i
\(573\) 0 0
\(574\) 23.7177 14.7172i 0.989958 0.614284i
\(575\) −5.66269 3.51810i −0.236151 0.146715i
\(576\) 0 0
\(577\) 30.4257i 1.26664i −0.773890 0.633320i \(-0.781692\pi\)
0.773890 0.633320i \(-0.218308\pi\)
\(578\) −13.2414 21.3393i −0.550768 0.887597i
\(579\) 0 0
\(580\) 11.8372 0.561257i 0.491512 0.0233049i
\(581\) −24.0888 + 13.9077i −0.999372 + 0.576987i
\(582\) 0 0
\(583\) −0.675058 + 1.16924i −0.0279581 + 0.0484248i
\(584\) −1.75184 18.3252i −0.0724916 0.758302i
\(585\) 0 0
\(586\) 11.1834 20.8747i 0.461982 0.862324i
\(587\) 25.3201 + 14.6186i 1.04507 + 0.603372i 0.921265 0.388934i \(-0.127157\pi\)
0.123806 + 0.992306i \(0.460490\pi\)
\(588\) 0 0
\(589\) −5.96697 10.3351i −0.245865 0.425850i
\(590\) 28.7335 17.1928i 1.18294 0.707818i
\(591\) 0 0
\(592\) 23.6793 18.0264i 0.973213 0.740879i
\(593\) 1.73460 0.0712314 0.0356157 0.999366i \(-0.488661\pi\)
0.0356157 + 0.999366i \(0.488661\pi\)
\(594\) 0 0
\(595\) 33.2917 18.5103i 1.36483 0.758847i
\(596\) −1.25040 19.6530i −0.0512185 0.805017i
\(597\) 0 0
\(598\) −8.79648 + 0.279551i −0.359715 + 0.0114317i
\(599\) −1.94974 3.37704i −0.0796641 0.137982i 0.823441 0.567402i \(-0.192051\pi\)
−0.903105 + 0.429420i \(0.858718\pi\)
\(600\) 0 0
\(601\) 2.16133 3.74354i 0.0881625 0.152702i −0.818572 0.574404i \(-0.805234\pi\)
0.906734 + 0.421702i \(0.138567\pi\)
\(602\) 22.9732 42.8812i 0.936319 1.74771i
\(603\) 0 0
\(604\) −17.7682 + 11.8233i −0.722978 + 0.481082i
\(605\) −0.374861 + 23.1959i −0.0152403 + 0.943049i
\(606\) 0 0
\(607\) −6.33497 10.9725i −0.257128 0.445360i 0.708343 0.705868i \(-0.249443\pi\)
−0.965471 + 0.260509i \(0.916110\pi\)
\(608\) −24.0721 9.19165i −0.976252 0.372771i
\(609\) 0 0
\(610\) 4.80616 + 2.67569i 0.194596 + 0.108336i
\(611\) −14.0638 −0.568961
\(612\) 0 0
\(613\) 47.3059i 1.91067i 0.295527 + 0.955334i \(0.404505\pi\)
−0.295527 + 0.955334i \(0.595495\pi\)
\(614\) −18.1014 29.1715i −0.730512 1.17727i
\(615\) 0 0
\(616\) 3.74865 + 5.26304i 0.151037 + 0.212054i
\(617\) 3.48880 + 6.04277i 0.140454 + 0.243273i 0.927668 0.373407i \(-0.121811\pi\)
−0.787214 + 0.616680i \(0.788477\pi\)
\(618\) 0 0
\(619\) 24.9827 + 14.4238i 1.00414 + 0.579741i 0.909471 0.415768i \(-0.136487\pi\)
0.0946695 + 0.995509i \(0.469821\pi\)
\(620\) 5.37120 10.4130i 0.215713 0.418197i
\(621\) 0 0
\(622\) 5.09786 9.51554i 0.204406 0.381538i
\(623\) −0.0185654 0.0107187i −0.000743807 0.000429437i
\(624\) 0 0
\(625\) −13.8724 + 20.7980i −0.554894 + 0.831921i
\(626\) 0.200134 + 6.29750i 0.00799896 + 0.251699i
\(627\) 0 0
\(628\) 1.90616 + 29.9598i 0.0760643 + 1.19553i
\(629\) 43.8633i 1.74894i
\(630\) 0 0
\(631\) 31.3427i 1.24774i −0.781530 0.623868i \(-0.785560\pi\)
0.781530 0.623868i \(-0.214440\pi\)
\(632\) 9.82964 + 4.48776i 0.391002 + 0.178514i
\(633\) 0 0
\(634\) −7.00517 + 0.222624i −0.278211 + 0.00884151i
\(635\) −18.7451 11.2302i −0.743878 0.445658i
\(636\) 0 0
\(637\) 5.45272 + 3.14813i 0.216045 + 0.124733i
\(638\) 2.61169 + 1.39919i 0.103398 + 0.0553943i
\(639\) 0 0
\(640\) −5.18023 24.7622i −0.204767 0.978811i
\(641\) 17.6686 + 10.2010i 0.697869 + 0.402915i 0.806553 0.591162i \(-0.201330\pi\)
−0.108684 + 0.994076i \(0.534664\pi\)
\(642\) 0 0
\(643\) 14.8702 + 25.7560i 0.586424 + 1.01572i 0.994696 + 0.102856i \(0.0327981\pi\)
−0.408272 + 0.912860i \(0.633869\pi\)
\(644\) 6.90397 + 3.42108i 0.272055 + 0.134810i
\(645\) 0 0
\(646\) −32.2705 + 20.0243i −1.26966 + 0.787846i
\(647\) 7.37854i 0.290081i 0.989426 + 0.145040i \(0.0463312\pi\)
−0.989426 + 0.145040i \(0.953669\pi\)
\(648\) 0 0
\(649\) 8.37183 0.328623
\(650\) −0.0181262 + 33.0039i −0.000710968 + 1.29452i
\(651\) 0 0
\(652\) 3.69297 7.45266i 0.144628 0.291869i
\(653\) 7.32692 + 12.6906i 0.286724 + 0.496621i 0.973026 0.230696i \(-0.0741003\pi\)
−0.686301 + 0.727317i \(0.740767\pi\)
\(654\) 0 0
\(655\) 0.478256 29.5939i 0.0186870 1.15633i
\(656\) −25.2032 10.5526i −0.984021 0.412009i
\(657\) 0 0
\(658\) 10.8533 + 5.81455i 0.423105 + 0.226675i
\(659\) 3.26655 5.65782i 0.127247 0.220398i −0.795362 0.606134i \(-0.792719\pi\)
0.922609 + 0.385737i \(0.126053\pi\)
\(660\) 0 0
\(661\) 13.4007 + 23.2106i 0.521225 + 0.902788i 0.999695 + 0.0246846i \(0.00785816\pi\)
−0.478470 + 0.878104i \(0.658809\pi\)
\(662\) 1.19431 + 37.5807i 0.0464182 + 1.46062i
\(663\) 0 0
\(664\) 24.7685 + 11.3082i 0.961205 + 0.438842i
\(665\) −14.3014 25.7218i −0.554584 0.997450i
\(666\) 0 0
\(667\) 3.53308 0.136801
\(668\) −0.00423568 0.0665735i −0.000163883 0.00257581i
\(669\) 0 0
\(670\) 20.4454 12.2336i 0.789874 0.472625i
\(671\) 0.687656 + 1.19105i 0.0265466 + 0.0459801i
\(672\) 0 0
\(673\) 16.3504 + 9.43992i 0.630262 + 0.363882i 0.780854 0.624714i \(-0.214784\pi\)
−0.150591 + 0.988596i \(0.548118\pi\)
\(674\) 15.5127 + 8.31076i 0.597526 + 0.320119i
\(675\) 0 0
\(676\) 9.73367 + 14.6279i 0.374372 + 0.562612i
\(677\) −10.1163 + 17.5219i −0.388800 + 0.673421i −0.992288 0.123950i \(-0.960444\pi\)
0.603488 + 0.797372i \(0.293777\pi\)
\(678\) 0 0
\(679\) −16.6122 + 9.59106i −0.637518 + 0.368071i
\(680\) −33.6645 16.0320i −1.29097 0.614799i
\(681\) 0 0
\(682\) 2.48915 1.54456i 0.0953145 0.0591441i
\(683\) 15.3795i 0.588481i 0.955731 + 0.294241i \(0.0950667\pi\)
−0.955731 + 0.294241i \(0.904933\pi\)
\(684\) 0 0
\(685\) −6.16084 + 3.42544i −0.235393 + 0.130879i
\(686\) 12.1753 + 19.6213i 0.464856 + 0.749145i
\(687\) 0 0
\(688\) −47.2359 + 6.03511i −1.80085 + 0.230086i
\(689\) 6.90249 3.98516i 0.262964 0.151822i
\(690\) 0 0
\(691\) 13.7773 + 7.95434i 0.524114 + 0.302598i 0.738616 0.674126i \(-0.235480\pi\)
−0.214502 + 0.976724i \(0.568813\pi\)
\(692\) 26.4051 + 39.6819i 1.00377 + 1.50848i
\(693\) 0 0
\(694\) 21.0944 + 11.3011i 0.800731 + 0.428984i
\(695\) −5.74563 0.0928530i −0.217944 0.00352211i
\(696\) 0 0
\(697\) −34.8763 + 20.1359i −1.32104 + 0.762700i
\(698\) 2.70135 0.0858486i 0.102248 0.00324942i
\(699\) 0 0
\(700\) 13.6591 25.4622i 0.516267 0.962381i
\(701\) 38.9767i 1.47213i −0.676912 0.736064i \(-0.736682\pi\)
0.676912 0.736064i \(-0.263318\pi\)
\(702\) 0 0
\(703\) −33.8896 −1.27817
\(704\) 2.06745 5.97767i 0.0779198 0.225292i
\(705\) 0 0
\(706\) 31.2556 0.993301i 1.17632 0.0373834i
\(707\) −6.35758 + 3.67055i −0.239102 + 0.138045i
\(708\) 0 0
\(709\) −6.59388 + 11.4209i −0.247638 + 0.428922i −0.962870 0.269965i \(-0.912988\pi\)
0.715232 + 0.698887i \(0.246321\pi\)
\(710\) 0.142440 + 9.12416i 0.00534567 + 0.342424i
\(711\) 0 0
\(712\) 0.00199697 + 0.0208894i 7.48398e−5 + 0.000782865i
\(713\) 1.74660 3.02519i 0.0654105 0.113294i
\(714\) 0 0
\(715\) −4.24078 + 7.07857i −0.158596 + 0.264724i
\(716\) 22.6697 45.7489i 0.847205 1.70972i
\(717\) 0 0
\(718\) 1.10382 + 1.77888i 0.0411943 + 0.0663872i
\(719\) 43.7650 1.63216 0.816079 0.577940i \(-0.196143\pi\)
0.816079 + 0.577940i \(0.196143\pi\)
\(720\) 0 0
\(721\) −22.1231 −0.823907
\(722\) 1.30377 + 2.10111i 0.0485214 + 0.0781953i
\(723\) 0 0
\(724\) −22.7426 + 45.8960i −0.845221 + 1.70571i
\(725\) 0.428120 13.2423i 0.0159000 0.491808i
\(726\) 0 0
\(727\) −4.95811 + 8.58770i −0.183886 + 0.318500i −0.943201 0.332224i \(-0.892201\pi\)
0.759314 + 0.650724i \(0.225534\pi\)
\(728\) −3.63005 37.9723i −0.134539 1.40735i
\(729\) 0 0
\(730\) −20.5791 + 0.321266i −0.761666 + 0.0118906i
\(731\) −35.0935 + 60.7837i −1.29798 + 2.24816i
\(732\) 0 0
\(733\) 24.2247 13.9862i 0.894761 0.516591i 0.0192642 0.999814i \(-0.493868\pi\)
0.875497 + 0.483224i \(0.160534\pi\)
\(734\) 0.178426 0.00567035i 0.00658581 0.000209297i
\(735\) 0 0
\(736\) −1.19304 7.44740i −0.0439761 0.274515i
\(737\) 5.95699 0.219428
\(738\) 0 0
\(739\) 24.2237i 0.891082i −0.895262 0.445541i \(-0.853011\pi\)
0.895262 0.445541i \(-0.146989\pi\)
\(740\) −17.9824 27.9947i −0.661046 1.02911i
\(741\) 0 0
\(742\) −6.97439 + 0.221646i −0.256038 + 0.00813687i
\(743\) −43.9304 + 25.3632i −1.61165 + 0.930486i −0.622660 + 0.782492i \(0.713948\pi\)
−0.988988 + 0.147993i \(0.952719\pi\)
\(744\) 0 0
\(745\) −22.0142 0.355764i −0.806539 0.0130342i
\(746\) −28.5767 15.3097i −1.04627 0.560528i
\(747\) 0 0
\(748\) −5.16451 7.76131i −0.188833 0.283781i
\(749\) 34.3117 + 19.8099i 1.25372 + 0.723838i
\(750\) 0 0
\(751\) 0.581286 0.335605i 0.0212114 0.0122464i −0.489357 0.872084i \(-0.662768\pi\)
0.510568 + 0.859837i \(0.329435\pi\)
\(752\) −1.52749 11.9555i −0.0557020 0.435971i
\(753\) 0 0
\(754\) −9.22229 14.8623i −0.335856 0.541253i
\(755\) 11.5953 + 20.8548i 0.421996 + 0.758983i
\(756\) 0 0
\(757\) 17.0611i 0.620095i −0.950721 0.310048i \(-0.899655\pi\)
0.950721 0.310048i \(-0.100345\pi\)
\(758\) −33.0606 + 20.5146i −1.20081 + 0.745123i
\(759\) 0 0
\(760\) −12.3866 + 26.0098i −0.449310 + 0.943476i
\(761\) −6.74677 + 3.89525i −0.244570 + 0.141203i −0.617275 0.786747i \(-0.711764\pi\)
0.372705 + 0.927950i \(0.378430\pi\)
\(762\) 0 0
\(763\) 19.1664 33.1972i 0.693870 1.20182i
\(764\) 8.55041 + 12.8497i 0.309343 + 0.464886i
\(765\) 0 0
\(766\) 29.5814 + 15.8479i 1.06882 + 0.572609i
\(767\) −42.8011 24.7112i −1.54546 0.892271i
\(768\) 0 0
\(769\) 4.58773 + 7.94618i 0.165438 + 0.286546i 0.936811 0.349837i \(-0.113763\pi\)
−0.771373 + 0.636383i \(0.780430\pi\)
\(770\) 6.19925 3.70935i 0.223405 0.133676i
\(771\) 0 0
\(772\) 0.656015 + 10.3108i 0.0236105 + 0.371094i
\(773\) 32.0512 1.15280 0.576401 0.817167i \(-0.304457\pi\)
0.576401 + 0.817167i \(0.304457\pi\)
\(774\) 0 0
\(775\) −11.1271 6.91299i −0.399696 0.248322i
\(776\) 17.0810 + 7.79839i 0.613171 + 0.279946i
\(777\) 0 0
\(778\) −0.0820214 2.58092i −0.00294061 0.0925305i
\(779\) 15.5574 + 26.9461i 0.557400 + 0.965445i
\(780\) 0 0
\(781\) −1.14076 + 1.97585i −0.0408195 + 0.0707014i
\(782\) −9.79902 5.24973i −0.350412 0.187730i
\(783\) 0 0
\(784\) −2.08395 + 4.97720i −0.0744269 + 0.177757i
\(785\) 33.5594 + 0.542341i 1.19779 + 0.0193570i
\(786\) 0 0
\(787\) 1.97855 + 3.42695i 0.0705276 + 0.122157i 0.899133 0.437676i \(-0.144198\pi\)
−0.828605 + 0.559834i \(0.810865\pi\)
\(788\) −7.52243 + 15.1808i −0.267975 + 0.540792i
\(789\) 0 0
\(790\) 5.87649 10.5555i 0.209076 0.375549i
\(791\) 26.7267 0.950293
\(792\) 0 0
\(793\) 8.11904i 0.288316i
\(794\) 22.9311 14.2291i 0.813795 0.504972i
\(795\) 0 0
\(796\) −0.996321 0.493701i −0.0353137 0.0174988i
\(797\) −4.99178 8.64602i −0.176818 0.306258i 0.763971 0.645251i \(-0.223247\pi\)
−0.940789 + 0.338993i \(0.889914\pi\)
\(798\) 0 0
\(799\) −15.3844 8.88219i −0.544261 0.314229i
\(800\) −28.0582 + 3.56920i −0.992006 + 0.126190i
\(801\) 0 0
\(802\) −21.7894 11.6735i −0.769412 0.412205i
\(803\) −4.45643 2.57292i −0.157264 0.0907963i
\(804\) 0 0
\(805\) 4.42727 7.38986i 0.156041 0.260458i
\(806\) −17.2849 + 0.549313i −0.608835 + 0.0193487i
\(807\) 0 0
\(808\) 6.53698 + 2.98449i 0.229970 + 0.104994i
\(809\) 37.9989i 1.33597i 0.744174 + 0.667986i \(0.232843\pi\)
−0.744174 + 0.667986i \(0.767157\pi\)
\(810\) 0 0
\(811\) 21.3193i 0.748622i 0.927303 + 0.374311i \(0.122121\pi\)
−0.927303 + 0.374311i \(0.877879\pi\)
\(812\) 0.972326 + 15.2824i 0.0341219 + 0.536306i
\(813\) 0 0
\(814\) −0.264240 8.31469i −0.00926161 0.291430i
\(815\) −7.97717 4.77913i −0.279428 0.167406i
\(816\) 0 0
\(817\) 46.9626 + 27.1139i 1.64301 + 0.948595i
\(818\) −10.9222 + 20.3871i −0.381885 + 0.712818i
\(819\) 0 0
\(820\) −14.0040 + 27.1494i −0.489043 + 0.948096i
\(821\) 4.11744 + 2.37721i 0.143700 + 0.0829651i 0.570126 0.821557i \(-0.306894\pi\)
−0.426426 + 0.904522i \(0.640228\pi\)
\(822\) 0 0
\(823\) 20.4702 + 35.4554i 0.713546 + 1.23590i 0.963518 + 0.267644i \(0.0862452\pi\)
−0.249972 + 0.968253i \(0.580422\pi\)
\(824\) 12.5635 + 17.6389i 0.437670 + 0.614482i
\(825\) 0 0
\(826\) 22.8137 + 36.7658i 0.793792 + 1.27925i
\(827\) 26.4974i 0.921406i −0.887554 0.460703i \(-0.847597\pi\)
0.887554 0.460703i \(-0.152403\pi\)
\(828\) 0 0
\(829\) 38.1524 1.32509 0.662544 0.749023i \(-0.269477\pi\)
0.662544 + 0.749023i \(0.269477\pi\)
\(830\) 14.8075 26.5976i 0.513974 0.923217i
\(831\) 0 0
\(832\) −28.2142 + 24.4584i −0.978151 + 0.847942i
\(833\) 3.97649 + 6.88748i 0.137777 + 0.238637i
\(834\) 0 0
\(835\) −0.0745722 0.00120513i −0.00258068 4.17054e-5i
\(836\) −5.99653 + 3.99020i −0.207394 + 0.138004i
\(837\) 0 0
\(838\) −16.5421 + 30.8771i −0.571437 + 1.06663i
\(839\) 8.60385 14.9023i 0.297038 0.514485i −0.678419 0.734675i \(-0.737335\pi\)
0.975457 + 0.220190i \(0.0706679\pi\)
\(840\) 0 0
\(841\) −10.9891 19.0338i −0.378936 0.656337i
\(842\) −23.7079 + 0.753434i −0.817027 + 0.0259650i
\(843\) 0 0
\(844\) 3.08889 + 48.5490i 0.106324 + 1.67113i
\(845\) 17.1690 9.54600i 0.590631 0.328392i
\(846\) 0 0
\(847\) −29.9778 −1.03005
\(848\) 4.13742 + 5.43488i 0.142079 + 0.186634i
\(849\) 0 0
\(850\) −20.8639 + 36.0916i −0.715626 + 1.23793i
\(851\) −4.95992 8.59084i −0.170024 0.294490i
\(852\) 0 0
\(853\) −37.6416 21.7324i −1.28882 0.744102i −0.310378 0.950613i \(-0.600456\pi\)
−0.978444 + 0.206511i \(0.933789\pi\)
\(854\) −3.35674 + 6.26561i −0.114865 + 0.214405i
\(855\) 0 0
\(856\) −3.69072 38.6069i −0.126146 1.31956i
\(857\) 6.72648 11.6506i 0.229772 0.397977i −0.727968 0.685611i \(-0.759535\pi\)
0.957741 + 0.287634i \(0.0928685\pi\)
\(858\) 0 0
\(859\) −1.00899 + 0.582541i −0.0344263 + 0.0198760i −0.517114 0.855916i \(-0.672994\pi\)
0.482688 + 0.875792i \(0.339660\pi\)
\(860\) 2.52156 + 53.1809i 0.0859844 + 1.81345i
\(861\) 0 0
\(862\) −11.3703 18.3240i −0.387275 0.624118i
\(863\) 0.0600669i 0.00204470i −0.999999 0.00102235i \(-0.999675\pi\)
0.999999 0.00102235i \(-0.000325424\pi\)
\(864\) 0 0
\(865\) 46.5753 25.8959i 1.58361 0.880488i
\(866\) 28.3227 17.5747i 0.962446 0.597212i
\(867\) 0 0
\(868\) 13.5662 + 6.72236i 0.460466 + 0.228172i
\(869\) 2.61585 1.51026i 0.0887367 0.0512321i
\(870\) 0 0
\(871\) −30.4552 17.5833i −1.03193 0.595788i
\(872\) −37.3528 + 3.57083i −1.26493 + 0.120924i
\(873\) 0 0
\(874\) −4.05604 + 7.57091i −0.137198 + 0.256090i
\(875\) −27.1615 17.4893i −0.918225 0.591247i
\(876\) 0 0
\(877\) −5.64252 + 3.25771i −0.190534 + 0.110005i −0.592233 0.805767i \(-0.701753\pi\)
0.401698 + 0.915772i \(0.368420\pi\)
\(878\) −0.667506 21.0040i −0.0225272 0.708851i
\(879\) 0 0
\(880\) −6.47799 2.83621i −0.218373 0.0956087i
\(881\) 12.1468i 0.409237i −0.978842 0.204619i \(-0.934405\pi\)
0.978842 0.204619i \(-0.0655954\pi\)
\(882\) 0 0
\(883\) −30.7337 −1.03427 −0.517135 0.855904i \(-0.673002\pi\)
−0.517135 + 0.855904i \(0.673002\pi\)
\(884\) 3.49448 + 54.9239i 0.117532 + 1.84729i
\(885\) 0 0
\(886\) 1.21927 + 38.3660i 0.0409621 + 1.28893i
\(887\) 48.2108 27.8345i 1.61876 0.934592i 0.631519 0.775361i \(-0.282432\pi\)
0.987241 0.159231i \(-0.0509014\pi\)
\(888\) 0 0
\(889\) 14.1185 24.4539i 0.473518 0.820157i
\(890\) 0.0234587 0.000366221i 0.000786338 1.22757e-5i
\(891\) 0 0
\(892\) −0.375899 0.564907i −0.0125860 0.0189145i
\(893\) −6.86255 + 11.8863i −0.229647 + 0.397760i
\(894\) 0 0
\(895\) −48.9686 29.3371i −1.63684 0.980632i
\(896\) 31.8855 7.21008i 1.06522 0.240872i
\(897\) 0 0
\(898\) −21.0146 + 13.0399i −0.701267 + 0.435147i
\(899\) 6.94243 0.231543
\(900\) 0 0
\(901\) 10.0675 0.335397
\(902\) −6.48983 + 4.02704i −0.216088 + 0.134086i
\(903\) 0 0
\(904\) −15.1779 21.3095i −0.504809 0.708743i
\(905\) 49.1261 + 29.4315i 1.63301 + 0.978336i
\(906\) 0 0
\(907\) −8.31258 + 14.3978i −0.276015 + 0.478072i −0.970391 0.241541i \(-0.922347\pi\)
0.694376 + 0.719612i \(0.255681\pi\)
\(908\) 14.3263 9.53299i 0.475436 0.316363i
\(909\) 0 0
\(910\) −42.6427 + 0.665706i −1.41359 + 0.0220680i
\(911\) −9.29200 + 16.0942i −0.307858 + 0.533225i −0.977893 0.209104i \(-0.932945\pi\)
0.670036 + 0.742329i \(0.266279\pi\)
\(912\) 0 0
\(913\) 6.59137 3.80553i 0.218143 0.125945i
\(914\) −0.264863 8.33430i −0.00876090 0.275674i
\(915\) 0 0
\(916\) −1.43257 + 0.0911458i −0.0473334 + 0.00301154i
\(917\) 38.2464 1.26301
\(918\) 0 0
\(919\) 31.1617i 1.02793i −0.857811 0.513965i \(-0.828176\pi\)
0.857811 0.513965i \(-0.171824\pi\)
\(920\) −8.40621 + 0.666731i −0.277145 + 0.0219815i
\(921\) 0 0
\(922\) 1.58696 + 49.9359i 0.0522637 + 1.64455i
\(923\) 11.6643 6.73437i 0.383934 0.221664i
\(924\) 0 0
\(925\) −32.8003 + 17.5493i −1.07847 + 0.577017i
\(926\) 24.8672 46.4166i 0.817189 1.52534i
\(927\) 0 0
\(928\) 11.6326 9.45396i 0.381858 0.310341i
\(929\) −24.5849 14.1941i −0.806604 0.465693i 0.0391715 0.999233i \(-0.487528\pi\)
−0.845775 + 0.533540i \(0.820861\pi\)
\(930\) 0 0
\(931\) 5.32140 3.07231i 0.174402 0.100691i
\(932\) −12.2881 + 24.7983i −0.402511 + 0.812295i
\(933\) 0 0
\(934\) 8.39165 5.20715i 0.274583 0.170383i
\(935\) −9.10955 + 5.06493i −0.297914 + 0.165641i
\(936\) 0 0
\(937\) 25.1998i 0.823241i −0.911355 0.411620i \(-0.864963\pi\)
0.911355 0.411620i \(-0.135037\pi\)
\(938\) 16.2331 + 26.1607i 0.530031 + 0.854179i
\(939\) 0 0
\(940\) −13.4601 + 0.638209i −0.439022 + 0.0208161i
\(941\) −35.0946 + 20.2619i −1.14405 + 0.660519i −0.947431 0.319960i \(-0.896330\pi\)
−0.196622 + 0.980479i \(0.562997\pi\)
\(942\) 0 0
\(943\) −4.55381 + 7.88742i −0.148292 + 0.256850i
\(944\) 16.3580 39.0686i 0.532407 1.27157i
\(945\) 0 0
\(946\) −6.28612 + 11.7335i −0.204379 + 0.381489i
\(947\) 0.518242 + 0.299207i 0.0168406 + 0.00972293i 0.508397 0.861123i \(-0.330238\pi\)
−0.491556 + 0.870846i \(0.663572\pi\)
\(948\) 0 0
\(949\) 15.1890 + 26.3082i 0.493057 + 0.853999i
\(950\) 27.8850 + 16.1199i 0.904710 + 0.522997i
\(951\) 0 0
\(952\) 20.0110 43.8305i 0.648560 1.42055i
\(953\) 2.50405 0.0811142 0.0405571 0.999177i \(-0.487087\pi\)
0.0405571 + 0.999177i \(0.487087\pi\)
\(954\) 0 0
\(955\) 15.0819 8.38555i 0.488038 0.271350i
\(956\) −55.3092 + 3.51900i −1.78883 + 0.113813i
\(957\) 0 0
\(958\) 28.8608 0.917193i 0.932449 0.0296332i
\(959\) −4.55443 7.88850i −0.147070 0.254733i
\(960\) 0 0
\(961\) −12.0680 + 20.9023i −0.389289 + 0.674269i
\(962\) −23.1916 + 43.2889i −0.747728 + 1.39569i
\(963\) 0 0
\(964\) −12.6596 19.0251i −0.407739 0.612756i
\(965\) 11.5496 + 0.186649i 0.371796 + 0.00600845i
\(966\) 0 0
\(967\) 18.5754 + 32.1736i 0.597346 + 1.03463i 0.993211 + 0.116325i \(0.0371113\pi\)
−0.395866 + 0.918308i \(0.629555\pi\)
\(968\) 17.0241 + 23.9016i 0.547176 + 0.768226i
\(969\) 0 0
\(970\) 10.2116 18.3423i 0.327874 0.588937i
\(971\) 14.7960 0.474826 0.237413 0.971409i \(-0.423701\pi\)
0.237413 + 0.971409i \(0.423701\pi\)
\(972\) 0 0
\(973\) 7.42550i 0.238051i
\(974\) −15.5293 25.0264i −0.497590 0.801898i
\(975\) 0 0
\(976\) 6.90189 0.881822i 0.220924 0.0282264i
\(977\) −16.1759 28.0175i −0.517514 0.896360i −0.999793 0.0203428i \(-0.993524\pi\)
0.482279 0.876018i \(-0.339809\pi\)
\(978\) 0 0
\(979\) 0.00508002 + 0.00293295i 0.000162358 + 9.37374e-5i
\(980\) 5.36153 + 2.76556i 0.171268 + 0.0883425i
\(981\) 0 0
\(982\) −12.4434 + 23.2266i −0.397086 + 0.741191i
\(983\) 2.93257 + 1.69312i 0.0935346 + 0.0540022i 0.546038 0.837761i \(-0.316136\pi\)
−0.452503 + 0.891763i \(0.649469\pi\)
\(984\) 0 0
\(985\) 16.2492 + 9.73488i 0.517741 + 0.310179i
\(986\) −0.701774 22.0823i −0.0223490 0.703245i
\(987\) 0 0
\(988\) 42.4353 2.69991i 1.35005 0.0858954i
\(989\) 15.8731i 0.504734i
\(990\) 0 0
\(991\) 39.7022i 1.26118i 0.776116 + 0.630591i \(0.217187\pi\)
−0.776116 + 0.630591i \(0.782813\pi\)
\(992\) −2.34430 14.6340i −0.0744317 0.464630i
\(993\) 0 0
\(994\) −11.7858 + 0.374551i −0.373822 + 0.0118800i
\(995\) −0.638906 + 1.06644i −0.0202547 + 0.0338085i
\(996\) 0 0
\(997\) 17.8325 + 10.2956i 0.564760 + 0.326064i 0.755054 0.655663i \(-0.227611\pi\)
−0.190294 + 0.981727i \(0.560944\pi\)
\(998\) −6.45827 3.45995i −0.204433 0.109523i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.359.8 48
3.2 odd 2 180.2.n.d.119.17 yes 48
4.3 odd 2 inner 540.2.n.d.359.24 48
5.4 even 2 inner 540.2.n.d.359.17 48
9.4 even 3 180.2.n.d.59.24 yes 48
9.5 odd 6 inner 540.2.n.d.179.1 48
12.11 even 2 180.2.n.d.119.1 yes 48
15.2 even 4 900.2.r.g.551.5 48
15.8 even 4 900.2.r.g.551.20 48
15.14 odd 2 180.2.n.d.119.8 yes 48
20.19 odd 2 inner 540.2.n.d.359.1 48
36.23 even 6 inner 540.2.n.d.179.17 48
36.31 odd 6 180.2.n.d.59.8 yes 48
45.4 even 6 180.2.n.d.59.1 48
45.13 odd 12 900.2.r.g.851.12 48
45.14 odd 6 inner 540.2.n.d.179.24 48
45.22 odd 12 900.2.r.g.851.13 48
60.23 odd 4 900.2.r.g.551.12 48
60.47 odd 4 900.2.r.g.551.13 48
60.59 even 2 180.2.n.d.119.24 yes 48
180.59 even 6 inner 540.2.n.d.179.8 48
180.67 even 12 900.2.r.g.851.5 48
180.103 even 12 900.2.r.g.851.20 48
180.139 odd 6 180.2.n.d.59.17 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.1 48 45.4 even 6
180.2.n.d.59.8 yes 48 36.31 odd 6
180.2.n.d.59.17 yes 48 180.139 odd 6
180.2.n.d.59.24 yes 48 9.4 even 3
180.2.n.d.119.1 yes 48 12.11 even 2
180.2.n.d.119.8 yes 48 15.14 odd 2
180.2.n.d.119.17 yes 48 3.2 odd 2
180.2.n.d.119.24 yes 48 60.59 even 2
540.2.n.d.179.1 48 9.5 odd 6 inner
540.2.n.d.179.8 48 180.59 even 6 inner
540.2.n.d.179.17 48 36.23 even 6 inner
540.2.n.d.179.24 48 45.14 odd 6 inner
540.2.n.d.359.1 48 20.19 odd 2 inner
540.2.n.d.359.8 48 1.1 even 1 trivial
540.2.n.d.359.17 48 5.4 even 2 inner
540.2.n.d.359.24 48 4.3 odd 2 inner
900.2.r.g.551.5 48 15.2 even 4
900.2.r.g.551.12 48 60.23 odd 4
900.2.r.g.551.13 48 60.47 odd 4
900.2.r.g.551.20 48 15.8 even 4
900.2.r.g.851.5 48 180.67 even 12
900.2.r.g.851.12 48 45.13 odd 12
900.2.r.g.851.13 48 45.22 odd 12
900.2.r.g.851.20 48 180.103 even 12