Properties

Label 900.2.r.g.551.13
Level $900$
Weight $2$
Character 900.551
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(551,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.551"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,2,0,0,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 551.13
Character \(\chi\) \(=\) 900.551
Dual form 900.2.r.g.851.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0449209 - 1.41350i) q^{2} +(-0.589100 - 1.62879i) q^{3} +(-1.99596 - 0.126991i) q^{4} +(-2.32876 + 0.759526i) q^{6} +(2.50234 + 1.44473i) q^{7} +(-0.269163 + 2.81559i) q^{8} +(-2.30592 + 1.91904i) q^{9} +(0.395318 - 0.684712i) q^{11} +(0.968981 + 3.32582i) q^{12} +(2.33373 + 4.04214i) q^{13} +(2.15453 - 3.47216i) q^{14} +(3.96775 + 0.506941i) q^{16} +5.89560i q^{17} +(2.60898 + 3.34563i) q^{18} +4.55505i q^{19} +(0.879030 - 4.92689i) q^{21} +(-0.950082 - 0.589540i) q^{22} +(0.666656 + 1.15468i) q^{23} +(4.74457 - 1.22026i) q^{24} +(5.81840 - 3.11715i) q^{26} +(4.48414 + 2.62536i) q^{27} +(-4.81112 - 3.20140i) q^{28} +(-2.29484 - 1.32492i) q^{29} +(2.26893 - 1.30997i) q^{31} +(0.894795 - 5.58564i) q^{32} +(-1.34813 - 0.240527i) q^{33} +(8.33343 + 0.264836i) q^{34} +(4.84624 - 3.53751i) q^{36} -7.44000 q^{37} +(6.43857 + 0.204617i) q^{38} +(5.20900 - 6.18239i) q^{39} +(-5.91566 + 3.41541i) q^{41} +(-6.92467 - 1.46383i) q^{42} +(10.3100 + 5.95249i) q^{43} +(-0.875994 + 1.31646i) q^{44} +(1.66209 - 0.890449i) q^{46} +(-1.50658 + 2.60947i) q^{47} +(-1.51170 - 6.76127i) q^{48} +(0.674484 + 1.16824i) q^{49} +(9.60270 - 3.47310i) q^{51} +(-4.14473 - 8.36434i) q^{52} -1.70763i q^{53} +(3.91237 - 6.22040i) q^{54} +(-4.74130 + 6.65671i) q^{56} +(7.41923 - 2.68338i) q^{57} +(-1.97587 + 3.18423i) q^{58} +(-5.29436 - 9.17010i) q^{59} +(-0.869749 + 1.50645i) q^{61} +(-1.74972 - 3.26598i) q^{62} +(-8.54271 + 1.47067i) q^{63} +(-7.85510 - 1.51570i) q^{64} +(-0.400545 + 1.89478i) q^{66} +(6.52500 - 3.76721i) q^{67} +(0.748690 - 11.7674i) q^{68} +(1.48801 - 1.76607i) q^{69} -2.88566 q^{71} +(-4.78257 - 7.00907i) q^{72} -6.50847 q^{73} +(-0.334212 + 10.5164i) q^{74} +(0.578452 - 9.09172i) q^{76} +(1.97845 - 1.14226i) q^{77} +(-8.50481 - 7.64065i) q^{78} +(3.30854 + 1.91019i) q^{79} +(1.63455 - 8.85032i) q^{81} +(4.56194 + 8.51521i) q^{82} +(4.81325 - 8.33679i) q^{83} +(-2.38019 + 9.72226i) q^{84} +(8.87697 - 14.3058i) q^{86} +(-0.806137 + 4.51832i) q^{87} +(1.82146 + 1.29735i) q^{88} +0.00741921i q^{89} +13.4864i q^{91} +(-1.18399 - 2.38937i) q^{92} +(-3.47029 - 2.92391i) q^{93} +(3.62081 + 2.24677i) q^{94} +(-9.62496 + 1.83307i) q^{96} +(-3.31933 + 5.74925i) q^{97} +(1.68161 - 0.900905i) q^{98} +(0.402417 + 2.33752i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{4} + 12 q^{9} + 42 q^{14} + 30 q^{16} - 12 q^{21} + 6 q^{24} + 4 q^{34} + 96 q^{36} + 96 q^{41} + 4 q^{46} - 32 q^{49} + 30 q^{54} + 6 q^{56} + 8 q^{61} + 20 q^{64} + 36 q^{66} + 96 q^{69} - 72 q^{74}+ \cdots + 54 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0449209 1.41350i 0.0317639 0.999495i
\(3\) −0.589100 1.62879i −0.340117 0.940383i
\(4\) −1.99596 0.126991i −0.997982 0.0634957i
\(5\) 0 0
\(6\) −2.32876 + 0.759526i −0.950712 + 0.310075i
\(7\) 2.50234 + 1.44473i 0.945797 + 0.546056i 0.891773 0.452483i \(-0.149462\pi\)
0.0540243 + 0.998540i \(0.482795\pi\)
\(8\) −0.269163 + 2.81559i −0.0951634 + 0.995462i
\(9\) −2.30592 + 1.91904i −0.768641 + 0.639681i
\(10\) 0 0
\(11\) 0.395318 0.684712i 0.119193 0.206448i −0.800255 0.599660i \(-0.795303\pi\)
0.919448 + 0.393211i \(0.128636\pi\)
\(12\) 0.968981 + 3.32582i 0.279721 + 0.960081i
\(13\) 2.33373 + 4.04214i 0.647261 + 1.12109i 0.983774 + 0.179410i \(0.0574189\pi\)
−0.336514 + 0.941679i \(0.609248\pi\)
\(14\) 2.15453 3.47216i 0.575823 0.927975i
\(15\) 0 0
\(16\) 3.96775 + 0.506941i 0.991937 + 0.126735i
\(17\) 5.89560i 1.42989i 0.699179 + 0.714946i \(0.253549\pi\)
−0.699179 + 0.714946i \(0.746451\pi\)
\(18\) 2.60898 + 3.34563i 0.614943 + 0.788571i
\(19\) 4.55505i 1.04500i 0.852639 + 0.522500i \(0.175001\pi\)
−0.852639 + 0.522500i \(0.824999\pi\)
\(20\) 0 0
\(21\) 0.879030 4.92689i 0.191820 1.07513i
\(22\) −0.950082 0.589540i −0.202558 0.125690i
\(23\) 0.666656 + 1.15468i 0.139007 + 0.240768i 0.927121 0.374762i \(-0.122275\pi\)
−0.788114 + 0.615530i \(0.788942\pi\)
\(24\) 4.74457 1.22026i 0.968482 0.249084i
\(25\) 0 0
\(26\) 5.81840 3.11715i 1.14108 0.611324i
\(27\) 4.48414 + 2.62536i 0.862973 + 0.505250i
\(28\) −4.81112 3.20140i −0.909216 0.605008i
\(29\) −2.29484 1.32492i −0.426140 0.246032i 0.271561 0.962421i \(-0.412460\pi\)
−0.697701 + 0.716389i \(0.745794\pi\)
\(30\) 0 0
\(31\) 2.26893 1.30997i 0.407512 0.235277i −0.282208 0.959353i \(-0.591067\pi\)
0.689720 + 0.724076i \(0.257734\pi\)
\(32\) 0.894795 5.58564i 0.158179 0.987410i
\(33\) −1.34813 0.240527i −0.234680 0.0418704i
\(34\) 8.33343 + 0.264836i 1.42917 + 0.0454189i
\(35\) 0 0
\(36\) 4.84624 3.53751i 0.807707 0.589585i
\(37\) −7.44000 −1.22313 −0.611564 0.791195i \(-0.709459\pi\)
−0.611564 + 0.791195i \(0.709459\pi\)
\(38\) 6.43857 + 0.204617i 1.04447 + 0.0331933i
\(39\) 5.20900 6.18239i 0.834108 0.989975i
\(40\) 0 0
\(41\) −5.91566 + 3.41541i −0.923871 + 0.533397i −0.884868 0.465842i \(-0.845751\pi\)
−0.0390029 + 0.999239i \(0.512418\pi\)
\(42\) −6.92467 1.46383i −1.06850 0.225874i
\(43\) 10.3100 + 5.95249i 1.57226 + 0.907746i 0.995891 + 0.0905567i \(0.0288646\pi\)
0.576370 + 0.817189i \(0.304469\pi\)
\(44\) −0.875994 + 1.31646i −0.132061 + 0.198463i
\(45\) 0 0
\(46\) 1.66209 0.890449i 0.245062 0.131290i
\(47\) −1.50658 + 2.60947i −0.219757 + 0.380631i −0.954734 0.297462i \(-0.903860\pi\)
0.734976 + 0.678093i \(0.237193\pi\)
\(48\) −1.51170 6.76127i −0.218195 0.975905i
\(49\) 0.674484 + 1.16824i 0.0963548 + 0.166891i
\(50\) 0 0
\(51\) 9.60270 3.47310i 1.34465 0.486331i
\(52\) −4.14473 8.36434i −0.574770 1.15992i
\(53\) 1.70763i 0.234561i −0.993099 0.117281i \(-0.962582\pi\)
0.993099 0.117281i \(-0.0374177\pi\)
\(54\) 3.91237 6.22040i 0.532406 0.846489i
\(55\) 0 0
\(56\) −4.74130 + 6.65671i −0.633583 + 0.889540i
\(57\) 7.41923 2.68338i 0.982701 0.355423i
\(58\) −1.97587 + 3.18423i −0.259444 + 0.418111i
\(59\) −5.29436 9.17010i −0.689267 1.19385i −0.972075 0.234669i \(-0.924599\pi\)
0.282808 0.959176i \(-0.408734\pi\)
\(60\) 0 0
\(61\) −0.869749 + 1.50645i −0.111360 + 0.192881i −0.916319 0.400450i \(-0.868854\pi\)
0.804959 + 0.593331i \(0.202187\pi\)
\(62\) −1.74972 3.26598i −0.222214 0.414779i
\(63\) −8.54271 + 1.47067i −1.07628 + 0.185287i
\(64\) −7.85510 1.51570i −0.981888 0.189463i
\(65\) 0 0
\(66\) −0.400545 + 1.89478i −0.0493037 + 0.233232i
\(67\) 6.52500 3.76721i 0.797155 0.460238i −0.0453201 0.998973i \(-0.514431\pi\)
0.842476 + 0.538735i \(0.181097\pi\)
\(68\) 0.748690 11.7674i 0.0907920 1.42701i
\(69\) 1.48801 1.76607i 0.179135 0.212610i
\(70\) 0 0
\(71\) −2.88566 −0.342465 −0.171233 0.985231i \(-0.554775\pi\)
−0.171233 + 0.985231i \(0.554775\pi\)
\(72\) −4.78257 7.00907i −0.563631 0.826026i
\(73\) −6.50847 −0.761759 −0.380880 0.924625i \(-0.624379\pi\)
−0.380880 + 0.924625i \(0.624379\pi\)
\(74\) −0.334212 + 10.5164i −0.0388513 + 1.22251i
\(75\) 0 0
\(76\) 0.578452 9.09172i 0.0663530 1.04289i
\(77\) 1.97845 1.14226i 0.225465 0.130172i
\(78\) −8.50481 7.64065i −0.962981 0.865133i
\(79\) 3.30854 + 1.91019i 0.372240 + 0.214913i 0.674436 0.738333i \(-0.264387\pi\)
−0.302197 + 0.953246i \(0.597720\pi\)
\(80\) 0 0
\(81\) 1.63455 8.85032i 0.181617 0.983369i
\(82\) 4.56194 + 8.51521i 0.503782 + 0.940347i
\(83\) 4.81325 8.33679i 0.528322 0.915081i −0.471132 0.882063i \(-0.656155\pi\)
0.999455 0.0330187i \(-0.0105121\pi\)
\(84\) −2.38019 + 9.72226i −0.259699 + 1.06079i
\(85\) 0 0
\(86\) 8.87697 14.3058i 0.957229 1.54263i
\(87\) −0.806137 + 4.51832i −0.0864269 + 0.484415i
\(88\) 1.82146 + 1.29735i 0.194169 + 0.138298i
\(89\) 0.00741921i 0.000786434i 1.00000 0.000393217i \(0.000125165\pi\)
−1.00000 0.000393217i \(0.999875\pi\)
\(90\) 0 0
\(91\) 13.4864i 1.41376i
\(92\) −1.18399 2.38937i −0.123439 0.249109i
\(93\) −3.47029 2.92391i −0.359852 0.303195i
\(94\) 3.62081 + 2.24677i 0.373459 + 0.231737i
\(95\) 0 0
\(96\) −9.62496 + 1.83307i −0.982343 + 0.187087i
\(97\) −3.31933 + 5.74925i −0.337027 + 0.583748i −0.983872 0.178874i \(-0.942755\pi\)
0.646845 + 0.762621i \(0.276088\pi\)
\(98\) 1.68161 0.900905i 0.169868 0.0910051i
\(99\) 0.402417 + 2.33752i 0.0404445 + 0.234930i
\(100\) 0 0
\(101\) −2.20027 1.27033i −0.218935 0.126402i 0.386522 0.922280i \(-0.373676\pi\)
−0.605457 + 0.795878i \(0.707010\pi\)
\(102\) −4.47786 13.7294i −0.443374 1.35942i
\(103\) −6.63071 + 3.82824i −0.653343 + 0.377208i −0.789736 0.613447i \(-0.789782\pi\)
0.136393 + 0.990655i \(0.456449\pi\)
\(104\) −12.0092 + 5.48284i −1.17760 + 0.537637i
\(105\) 0 0
\(106\) −2.41374 0.0767084i −0.234443 0.00745058i
\(107\) 13.7118 1.32557 0.662787 0.748808i \(-0.269374\pi\)
0.662787 + 0.748808i \(0.269374\pi\)
\(108\) −8.61678 5.80956i −0.829150 0.559026i
\(109\) 13.2664 1.27069 0.635347 0.772227i \(-0.280857\pi\)
0.635347 + 0.772227i \(0.280857\pi\)
\(110\) 0 0
\(111\) 4.38291 + 12.1182i 0.416007 + 1.15021i
\(112\) 9.19627 + 7.00086i 0.868966 + 0.661519i
\(113\) 8.01051 4.62487i 0.753565 0.435071i −0.0734153 0.997301i \(-0.523390\pi\)
0.826981 + 0.562230i \(0.190057\pi\)
\(114\) −3.45968 10.6076i −0.324029 0.993495i
\(115\) 0 0
\(116\) 4.41216 + 2.93593i 0.409659 + 0.272594i
\(117\) −13.1384 4.84233i −1.21465 0.447674i
\(118\) −13.1998 + 7.07165i −1.21514 + 0.650998i
\(119\) −8.51754 + 14.7528i −0.780802 + 1.35239i
\(120\) 0 0
\(121\) 5.18745 + 8.98492i 0.471586 + 0.816811i
\(122\) 2.09030 + 1.29706i 0.189247 + 0.117430i
\(123\) 9.04790 + 7.62336i 0.815822 + 0.687375i
\(124\) −4.69506 + 2.32651i −0.421628 + 0.208927i
\(125\) 0 0
\(126\) 1.69505 + 12.1412i 0.151007 + 1.08162i
\(127\) 9.77239i 0.867159i 0.901115 + 0.433580i \(0.142750\pi\)
−0.901115 + 0.433580i \(0.857250\pi\)
\(128\) −2.49531 + 11.0351i −0.220556 + 0.975374i
\(129\) 3.62173 20.2995i 0.318875 1.78727i
\(130\) 0 0
\(131\) −6.61827 11.4632i −0.578241 1.00154i −0.995681 0.0928382i \(-0.970406\pi\)
0.417440 0.908704i \(-0.362927\pi\)
\(132\) 2.66028 + 0.651285i 0.231548 + 0.0566871i
\(133\) −6.58082 + 11.3983i −0.570629 + 0.988359i
\(134\) −5.03184 9.39231i −0.434685 0.811372i
\(135\) 0 0
\(136\) −16.5996 1.58688i −1.42340 0.136073i
\(137\) 2.73010 + 1.57622i 0.233248 + 0.134666i 0.612069 0.790804i \(-0.290337\pi\)
−0.378822 + 0.925470i \(0.623671\pi\)
\(138\) −2.42949 2.18264i −0.206812 0.185798i
\(139\) −2.22556 + 1.28493i −0.188770 + 0.108986i −0.591407 0.806374i \(-0.701427\pi\)
0.402637 + 0.915360i \(0.368094\pi\)
\(140\) 0 0
\(141\) 5.13782 + 0.916663i 0.432682 + 0.0771970i
\(142\) −0.129627 + 4.07889i −0.0108780 + 0.342293i
\(143\) 3.69027 0.308596
\(144\) −10.1222 + 6.44531i −0.843513 + 0.537109i
\(145\) 0 0
\(146\) −0.292366 + 9.19973i −0.0241964 + 0.761375i
\(147\) 1.50548 1.78680i 0.124170 0.147373i
\(148\) 14.8500 + 0.944816i 1.22066 + 0.0776634i
\(149\) −8.52719 + 4.92318i −0.698575 + 0.403322i −0.806816 0.590802i \(-0.798811\pi\)
0.108242 + 0.994125i \(0.465478\pi\)
\(150\) 0 0
\(151\) −9.24153 5.33560i −0.752065 0.434205i 0.0743744 0.997230i \(-0.476304\pi\)
−0.826440 + 0.563025i \(0.809637\pi\)
\(152\) −12.8252 1.22605i −1.04026 0.0994458i
\(153\) −11.3139 13.5948i −0.914675 1.09907i
\(154\) −1.52571 2.84784i −0.122945 0.229486i
\(155\) 0 0
\(156\) −11.1821 + 11.6783i −0.895284 + 0.935015i
\(157\) 7.50509 + 12.9992i 0.598972 + 1.03745i 0.992973 + 0.118340i \(0.0377572\pi\)
−0.394001 + 0.919110i \(0.628909\pi\)
\(158\) 2.84867 4.59081i 0.226628 0.365225i
\(159\) −2.78138 + 1.00597i −0.220577 + 0.0797783i
\(160\) 0 0
\(161\) 3.85255i 0.303624i
\(162\) −12.4365 2.70800i −0.977104 0.212761i
\(163\) 4.15873i 0.325737i −0.986648 0.162869i \(-0.947925\pi\)
0.986648 0.162869i \(-0.0520746\pi\)
\(164\) 12.2412 6.06579i 0.955875 0.473659i
\(165\) 0 0
\(166\) −11.5678 7.17802i −0.897838 0.557122i
\(167\) −0.0166770 0.0288855i −0.00129051 0.00223522i 0.865379 0.501117i \(-0.167077\pi\)
−0.866670 + 0.498882i \(0.833744\pi\)
\(168\) 13.6355 + 3.80112i 1.05200 + 0.293263i
\(169\) −4.39261 + 7.60822i −0.337893 + 0.585248i
\(170\) 0 0
\(171\) −8.74134 10.5036i −0.668467 0.803230i
\(172\) −19.8225 13.1902i −1.51145 1.00575i
\(173\) 20.6392 + 11.9161i 1.56917 + 0.905962i 0.996266 + 0.0863411i \(0.0275175\pi\)
0.572906 + 0.819621i \(0.305816\pi\)
\(174\) 6.35044 + 1.34244i 0.481425 + 0.101770i
\(175\) 0 0
\(176\) 1.91563 2.51636i 0.144396 0.189678i
\(177\) −11.8173 + 14.0255i −0.888241 + 1.05422i
\(178\) 0.0104870 0.000333277i 0.000786037 2.49802e-5i
\(179\) 25.5288 1.90811 0.954055 0.299631i \(-0.0968635\pi\)
0.954055 + 0.299631i \(0.0968635\pi\)
\(180\) 0 0
\(181\) 25.6109 1.90364 0.951821 0.306653i \(-0.0992092\pi\)
0.951821 + 0.306653i \(0.0992092\pi\)
\(182\) 19.0631 + 0.605823i 1.41305 + 0.0449066i
\(183\) 2.96606 + 0.529190i 0.219258 + 0.0391188i
\(184\) −3.43055 + 1.56623i −0.252904 + 0.115464i
\(185\) 0 0
\(186\) −4.28883 + 4.77391i −0.314473 + 0.350040i
\(187\) 4.03678 + 2.33064i 0.295199 + 0.170433i
\(188\) 3.33846 5.01709i 0.243482 0.365909i
\(189\) 7.42793 + 13.0479i 0.540302 + 0.949096i
\(190\) 0 0
\(191\) 3.85863 6.68334i 0.279200 0.483589i −0.691986 0.721911i \(-0.743264\pi\)
0.971186 + 0.238322i \(0.0765973\pi\)
\(192\) 2.15868 + 13.6872i 0.155789 + 0.987790i
\(193\) −2.58291 4.47373i −0.185922 0.322026i 0.757965 0.652295i \(-0.226194\pi\)
−0.943887 + 0.330269i \(0.892861\pi\)
\(194\) 7.97745 + 4.95013i 0.572748 + 0.355399i
\(195\) 0 0
\(196\) −1.19789 2.41742i −0.0855635 0.172673i
\(197\) 8.47116i 0.603545i −0.953380 0.301773i \(-0.902422\pi\)
0.953380 0.301773i \(-0.0975784\pi\)
\(198\) 3.32217 0.463813i 0.236096 0.0329618i
\(199\) 0.555967i 0.0394115i 0.999806 + 0.0197057i \(0.00627293\pi\)
−0.999806 + 0.0197057i \(0.993727\pi\)
\(200\) 0 0
\(201\) −9.97988 8.40860i −0.703926 0.593097i
\(202\) −1.89444 + 3.05302i −0.133293 + 0.214809i
\(203\) −3.82831 6.63083i −0.268695 0.465393i
\(204\) −19.6077 + 5.71272i −1.37281 + 0.399970i
\(205\) 0 0
\(206\) 5.11336 + 9.54447i 0.356265 + 0.664995i
\(207\) −3.75314 1.38327i −0.260861 0.0961436i
\(208\) 7.21053 + 17.2213i 0.499960 + 1.19408i
\(209\) 3.11890 + 1.80070i 0.215739 + 0.124557i
\(210\) 0 0
\(211\) −21.0649 + 12.1618i −1.45016 + 0.837253i −0.998490 0.0549298i \(-0.982507\pi\)
−0.451675 + 0.892183i \(0.649173\pi\)
\(212\) −0.216855 + 3.40837i −0.0148936 + 0.234088i
\(213\) 1.69995 + 4.70015i 0.116478 + 0.322049i
\(214\) 0.615948 19.3817i 0.0421054 1.32490i
\(215\) 0 0
\(216\) −8.59889 + 11.9189i −0.585081 + 0.810975i
\(217\) 7.57019 0.513898
\(218\) 0.595940 18.7521i 0.0403622 1.27005i
\(219\) 3.83414 + 10.6009i 0.259087 + 0.716345i
\(220\) 0 0
\(221\) −23.8308 + 13.7587i −1.60304 + 0.925513i
\(222\) 17.3260 5.65088i 1.16284 0.379262i
\(223\) −0.293817 0.169636i −0.0196755 0.0113596i 0.490130 0.871649i \(-0.336949\pi\)
−0.509805 + 0.860290i \(0.670283\pi\)
\(224\) 10.3088 12.6844i 0.688787 0.847515i
\(225\) 0 0
\(226\) −6.17741 11.5306i −0.410915 0.767005i
\(227\) 4.30205 7.45137i 0.285537 0.494565i −0.687202 0.726466i \(-0.741161\pi\)
0.972739 + 0.231902i \(0.0744947\pi\)
\(228\) −15.1493 + 4.41376i −1.00329 + 0.292308i
\(229\) −0.358866 0.621574i −0.0237145 0.0410748i 0.853925 0.520397i \(-0.174216\pi\)
−0.877639 + 0.479322i \(0.840883\pi\)
\(230\) 0 0
\(231\) −3.02600 2.54957i −0.199096 0.167749i
\(232\) 4.34813 6.10470i 0.285469 0.400793i
\(233\) 13.8379i 0.906553i 0.891370 + 0.453276i \(0.149745\pi\)
−0.891370 + 0.453276i \(0.850255\pi\)
\(234\) −7.43483 + 18.3537i −0.486030 + 1.19982i
\(235\) 0 0
\(236\) 9.40283 + 18.9755i 0.612072 + 1.23520i
\(237\) 1.16223 6.51421i 0.0754951 0.423143i
\(238\) 20.4705 + 12.7023i 1.32690 + 0.823365i
\(239\) −13.8553 23.9980i −0.896223 1.55230i −0.832284 0.554350i \(-0.812967\pi\)
−0.0639388 0.997954i \(-0.520366\pi\)
\(240\) 0 0
\(241\) −5.71303 + 9.89526i −0.368009 + 0.637410i −0.989254 0.146206i \(-0.953294\pi\)
0.621245 + 0.783616i \(0.286627\pi\)
\(242\) 12.9332 6.92884i 0.831378 0.445403i
\(243\) −15.3782 + 2.55139i −0.986515 + 0.163672i
\(244\) 1.92729 2.89637i 0.123382 0.185421i
\(245\) 0 0
\(246\) 11.1821 12.4468i 0.712942 0.793576i
\(247\) −18.4122 + 10.6303i −1.17154 + 0.676388i
\(248\) 3.07762 + 6.74097i 0.195429 + 0.428052i
\(249\) −16.4144 2.92857i −1.04022 0.185591i
\(250\) 0 0
\(251\) −5.05161 −0.318855 −0.159427 0.987210i \(-0.550965\pi\)
−0.159427 + 0.987210i \(0.550965\pi\)
\(252\) 17.2377 1.85056i 1.08587 0.116574i
\(253\) 1.05417 0.0662749
\(254\) 13.8133 + 0.438985i 0.866722 + 0.0275443i
\(255\) 0 0
\(256\) 15.4860 + 4.02282i 0.967876 + 0.251426i
\(257\) 2.29265 1.32366i 0.143012 0.0825679i −0.426787 0.904352i \(-0.640355\pi\)
0.569799 + 0.821784i \(0.307021\pi\)
\(258\) −28.5306 6.03118i −1.77624 0.375485i
\(259\) −18.6174 10.7488i −1.15683 0.667897i
\(260\) 0 0
\(261\) 7.83430 1.34872i 0.484931 0.0834835i
\(262\) −16.5005 + 8.83999i −1.01940 + 0.546136i
\(263\) 1.26561 2.19210i 0.0780408 0.135171i −0.824364 0.566060i \(-0.808467\pi\)
0.902405 + 0.430890i \(0.141800\pi\)
\(264\) 1.04009 3.73105i 0.0640134 0.229630i
\(265\) 0 0
\(266\) 15.8159 + 9.81401i 0.969734 + 0.601735i
\(267\) 0.0120843 0.00437066i 0.000739549 0.000267480i
\(268\) −13.5021 + 6.69060i −0.824770 + 0.408693i
\(269\) 5.26469i 0.320994i 0.987036 + 0.160497i \(0.0513097\pi\)
−0.987036 + 0.160497i \(0.948690\pi\)
\(270\) 0 0
\(271\) 16.6468i 1.01122i −0.862761 0.505612i \(-0.831267\pi\)
0.862761 0.505612i \(-0.168733\pi\)
\(272\) −2.98872 + 23.3922i −0.181218 + 1.41836i
\(273\) 21.9666 7.94487i 1.32948 0.480845i
\(274\) 2.35063 3.78819i 0.142007 0.228853i
\(275\) 0 0
\(276\) −3.19429 + 3.33604i −0.192274 + 0.200806i
\(277\) 13.1963 22.8566i 0.792888 1.37332i −0.131283 0.991345i \(-0.541910\pi\)
0.924171 0.381978i \(-0.124757\pi\)
\(278\) 1.71627 + 3.20355i 0.102935 + 0.192136i
\(279\) −2.71809 + 7.37485i −0.162728 + 0.441521i
\(280\) 0 0
\(281\) −19.8511 11.4611i −1.18422 0.683710i −0.227233 0.973840i \(-0.572968\pi\)
−0.956987 + 0.290131i \(0.906301\pi\)
\(282\) 1.52650 7.22113i 0.0909017 0.430012i
\(283\) 5.64186 3.25733i 0.335374 0.193628i −0.322851 0.946450i \(-0.604641\pi\)
0.658224 + 0.752822i \(0.271308\pi\)
\(284\) 5.75968 + 0.366455i 0.341774 + 0.0217451i
\(285\) 0 0
\(286\) 0.165770 5.21619i 0.00980220 0.308440i
\(287\) −19.7374 −1.16506
\(288\) 8.65575 + 14.5972i 0.510045 + 0.860148i
\(289\) −17.7581 −1.04459
\(290\) 0 0
\(291\) 11.3197 + 2.01961i 0.663575 + 0.118392i
\(292\) 12.9907 + 0.826520i 0.760222 + 0.0483684i
\(293\) −14.5020 + 8.37272i −0.847215 + 0.489140i −0.859710 0.510782i \(-0.829356\pi\)
0.0124952 + 0.999922i \(0.496023\pi\)
\(294\) −2.45802 2.20826i −0.143355 0.128788i
\(295\) 0 0
\(296\) 2.00257 20.9480i 0.116397 1.21758i
\(297\) 3.57027 2.03249i 0.207168 0.117937i
\(298\) 6.57586 + 12.2743i 0.380929 + 0.711033i
\(299\) −3.11159 + 5.38944i −0.179948 + 0.311679i
\(300\) 0 0
\(301\) 17.1995 + 29.7903i 0.991360 + 1.71709i
\(302\) −7.95701 + 12.8232i −0.457874 + 0.737894i
\(303\) −0.772916 + 4.33213i −0.0444029 + 0.248874i
\(304\) −2.30914 + 18.0733i −0.132438 + 1.03657i
\(305\) 0 0
\(306\) −19.7245 + 15.3815i −1.12757 + 0.879303i
\(307\) 24.2759i 1.38550i −0.721179 0.692749i \(-0.756400\pi\)
0.721179 0.692749i \(-0.243600\pi\)
\(308\) −4.09396 + 2.02866i −0.233275 + 0.115593i
\(309\) 10.1416 + 8.54482i 0.576933 + 0.486098i
\(310\) 0 0
\(311\) 3.81664 + 6.61061i 0.216422 + 0.374853i 0.953711 0.300723i \(-0.0972281\pi\)
−0.737290 + 0.675577i \(0.763895\pi\)
\(312\) 16.0050 + 16.3305i 0.906105 + 0.924532i
\(313\) −2.22762 + 3.85836i −0.125913 + 0.218087i −0.922089 0.386977i \(-0.873519\pi\)
0.796177 + 0.605064i \(0.206853\pi\)
\(314\) 18.7115 10.0245i 1.05595 0.565716i
\(315\) 0 0
\(316\) −6.36115 4.23282i −0.357842 0.238115i
\(317\) −4.29194 2.47795i −0.241059 0.139176i 0.374604 0.927185i \(-0.377779\pi\)
−0.615663 + 0.788009i \(0.711112\pi\)
\(318\) 1.29699 + 3.97666i 0.0727317 + 0.223000i
\(319\) −1.81438 + 1.04753i −0.101586 + 0.0586506i
\(320\) 0 0
\(321\) −8.07765 22.3337i −0.450850 1.24655i
\(322\) 5.44558 + 0.173060i 0.303470 + 0.00964426i
\(323\) −26.8548 −1.49424
\(324\) −4.38642 + 17.4574i −0.243690 + 0.969853i
\(325\) 0 0
\(326\) −5.87837 0.186814i −0.325573 0.0103467i
\(327\) −7.81526 21.6082i −0.432185 1.19494i
\(328\) −8.02411 17.5754i −0.443058 0.970438i
\(329\) −7.53997 + 4.35320i −0.415692 + 0.240000i
\(330\) 0 0
\(331\) 23.0250 + 13.2935i 1.26557 + 0.730676i 0.974146 0.225918i \(-0.0725382\pi\)
0.291422 + 0.956594i \(0.405871\pi\)
\(332\) −10.6658 + 16.0287i −0.585360 + 0.879689i
\(333\) 17.1561 14.2777i 0.940146 0.782412i
\(334\) −0.0415787 + 0.0222754i −0.00227509 + 0.00121886i
\(335\) 0 0
\(336\) 5.98541 19.1030i 0.326531 1.04216i
\(337\) −6.22205 10.7769i −0.338937 0.587056i 0.645296 0.763933i \(-0.276734\pi\)
−0.984233 + 0.176877i \(0.943401\pi\)
\(338\) 10.5569 + 6.55072i 0.574220 + 0.356312i
\(339\) −12.2519 10.3229i −0.665434 0.560665i
\(340\) 0 0
\(341\) 2.07142i 0.112173i
\(342\) −15.2395 + 11.8841i −0.824058 + 0.642616i
\(343\) 16.3284i 0.881652i
\(344\) −19.5348 + 27.4266i −1.05325 + 1.47874i
\(345\) 0 0
\(346\) 17.7705 28.6383i 0.955348 1.53960i
\(347\) −8.46084 14.6546i −0.454202 0.786701i 0.544440 0.838800i \(-0.316742\pi\)
−0.998642 + 0.0520991i \(0.983409\pi\)
\(348\) 2.18281 8.91604i 0.117011 0.477950i
\(349\) 0.955553 1.65507i 0.0511496 0.0885937i −0.839317 0.543642i \(-0.817045\pi\)
0.890467 + 0.455049i \(0.150378\pi\)
\(350\) 0 0
\(351\) −0.147285 + 24.2524i −0.00786147 + 1.29450i
\(352\) −3.47082 2.82078i −0.184995 0.150348i
\(353\) −19.1497 11.0561i −1.01924 0.588457i −0.105355 0.994435i \(-0.533598\pi\)
−0.913883 + 0.405978i \(0.866931\pi\)
\(354\) 19.2942 + 17.3338i 1.02548 + 0.921279i
\(355\) 0 0
\(356\) 0.000942175 0.0148085i 4.99352e−5 0.000784847i
\(357\) 29.0469 + 5.18241i 1.53733 + 0.274282i
\(358\) 1.14678 36.0849i 0.0606090 1.90715i
\(359\) 1.48034 0.0781296 0.0390648 0.999237i \(-0.487562\pi\)
0.0390648 + 0.999237i \(0.487562\pi\)
\(360\) 0 0
\(361\) −1.74850 −0.0920262
\(362\) 1.15046 36.2010i 0.0604671 1.90268i
\(363\) 11.5786 13.7423i 0.607721 0.721283i
\(364\) 1.71266 26.9185i 0.0897679 1.41091i
\(365\) 0 0
\(366\) 0.881248 4.16876i 0.0460636 0.217904i
\(367\) 0.109318 + 0.0631149i 0.00570636 + 0.00329457i 0.502850 0.864373i \(-0.332285\pi\)
−0.497144 + 0.867668i \(0.665618\pi\)
\(368\) 2.05977 + 4.91944i 0.107373 + 0.256444i
\(369\) 7.08673 19.2281i 0.368921 1.00097i
\(370\) 0 0
\(371\) 2.46707 4.27308i 0.128084 0.221847i
\(372\) 6.55526 + 6.27672i 0.339874 + 0.325433i
\(373\) −11.4620 19.8527i −0.593479 1.02794i −0.993760 0.111543i \(-0.964421\pi\)
0.400280 0.916393i \(-0.368913\pi\)
\(374\) 3.47569 5.60130i 0.179724 0.289636i
\(375\) 0 0
\(376\) −6.94170 4.94429i −0.357991 0.254982i
\(377\) 12.3681i 0.636988i
\(378\) 18.7769 9.91326i 0.965779 0.509883i
\(379\) 27.5123i 1.41321i −0.707608 0.706605i \(-0.750226\pi\)
0.707608 0.706605i \(-0.249774\pi\)
\(380\) 0 0
\(381\) 15.9172 5.75692i 0.815462 0.294936i
\(382\) −9.27357 5.75439i −0.474477 0.294420i
\(383\) 11.8649 + 20.5507i 0.606270 + 1.05009i 0.991849 + 0.127416i \(0.0406684\pi\)
−0.385579 + 0.922675i \(0.625998\pi\)
\(384\) 19.4439 2.43645i 0.992240 0.124334i
\(385\) 0 0
\(386\) −6.43965 + 3.44998i −0.327770 + 0.175599i
\(387\) −35.1971 + 6.05938i −1.78917 + 0.308016i
\(388\) 7.35537 11.0538i 0.373412 0.561170i
\(389\) 1.58128 + 0.912954i 0.0801742 + 0.0462886i 0.539551 0.841953i \(-0.318594\pi\)
−0.459377 + 0.888241i \(0.651927\pi\)
\(390\) 0 0
\(391\) −6.80755 + 3.93034i −0.344272 + 0.198766i
\(392\) −3.47083 + 1.58462i −0.175304 + 0.0800356i
\(393\) −14.7723 + 17.5327i −0.745164 + 0.884410i
\(394\) −11.9740 0.380532i −0.603241 0.0191709i
\(395\) 0 0
\(396\) −0.506366 4.71672i −0.0254458 0.237024i
\(397\) −19.0828 −0.957737 −0.478868 0.877887i \(-0.658953\pi\)
−0.478868 + 0.877887i \(0.658953\pi\)
\(398\) 0.785859 + 0.0249745i 0.0393916 + 0.00125186i
\(399\) 22.4422 + 4.00403i 1.12352 + 0.200452i
\(400\) 0 0
\(401\) −15.1375 + 8.73963i −0.755930 + 0.436436i −0.827833 0.560975i \(-0.810426\pi\)
0.0719025 + 0.997412i \(0.477093\pi\)
\(402\) −12.3339 + 13.7288i −0.615157 + 0.684732i
\(403\) 10.5901 + 6.11422i 0.527533 + 0.304571i
\(404\) 4.23034 + 2.81494i 0.210467 + 0.140048i
\(405\) 0 0
\(406\) −9.54466 + 5.11346i −0.473693 + 0.253777i
\(407\) −2.94117 + 5.09425i −0.145788 + 0.252513i
\(408\) 7.19413 + 27.9721i 0.356163 + 1.38483i
\(409\) 8.17716 + 14.1633i 0.404335 + 0.700328i 0.994244 0.107142i \(-0.0341698\pi\)
−0.589909 + 0.807470i \(0.700836\pi\)
\(410\) 0 0
\(411\) 0.959036 5.37531i 0.0473057 0.265144i
\(412\) 13.7208 6.79899i 0.675976 0.334962i
\(413\) 30.5957i 1.50551i
\(414\) −2.12384 + 5.24293i −0.104381 + 0.257676i
\(415\) 0 0
\(416\) 24.6662 9.41849i 1.20936 0.461779i
\(417\) 3.40396 + 2.86803i 0.166693 + 0.140448i
\(418\) 2.68539 4.32767i 0.131347 0.211673i
\(419\) 12.3846 + 21.4508i 0.605029 + 1.04794i 0.992047 + 0.125869i \(0.0401720\pi\)
−0.387018 + 0.922072i \(0.626495\pi\)
\(420\) 0 0
\(421\) 8.38623 14.5254i 0.408720 0.707923i −0.586027 0.810292i \(-0.699309\pi\)
0.994747 + 0.102368i \(0.0326420\pi\)
\(422\) 16.2445 + 30.3215i 0.790768 + 1.47603i
\(423\) −1.53364 8.90844i −0.0745679 0.433143i
\(424\) 4.80799 + 0.459631i 0.233497 + 0.0223217i
\(425\) 0 0
\(426\) 6.72002 2.19174i 0.325586 0.106190i
\(427\) −4.35282 + 2.51310i −0.210648 + 0.121618i
\(428\) −27.3683 1.74129i −1.32290 0.0841682i
\(429\) −2.17394 6.01068i −0.104959 0.290198i
\(430\) 0 0
\(431\) 15.2488 0.734510 0.367255 0.930120i \(-0.380298\pi\)
0.367255 + 0.930120i \(0.380298\pi\)
\(432\) 16.4610 + 12.6899i 0.791982 + 0.610545i
\(433\) 23.5695 1.13268 0.566340 0.824172i \(-0.308359\pi\)
0.566340 + 0.824172i \(0.308359\pi\)
\(434\) 0.340060 10.7005i 0.0163234 0.513639i
\(435\) 0 0
\(436\) −26.4793 1.68472i −1.26813 0.0806836i
\(437\) −5.25964 + 3.03665i −0.251603 + 0.145263i
\(438\) 15.1567 4.94336i 0.724214 0.236203i
\(439\) 12.8688 + 7.42979i 0.614193 + 0.354605i 0.774605 0.632446i \(-0.217949\pi\)
−0.160412 + 0.987050i \(0.551282\pi\)
\(440\) 0 0
\(441\) −3.79721 1.39951i −0.180820 0.0666432i
\(442\) 18.3775 + 34.3030i 0.874128 + 1.63163i
\(443\) −13.5713 + 23.5062i −0.644791 + 1.11681i 0.339558 + 0.940585i \(0.389722\pi\)
−0.984350 + 0.176226i \(0.943611\pi\)
\(444\) −7.20922 24.7441i −0.342134 1.17430i
\(445\) 0 0
\(446\) −0.252978 + 0.407691i −0.0119789 + 0.0193047i
\(447\) 13.0422 + 10.9888i 0.616875 + 0.519751i
\(448\) −17.4664 15.1413i −0.825209 0.715360i
\(449\) 17.4879i 0.825304i −0.910889 0.412652i \(-0.864602\pi\)
0.910889 0.412652i \(-0.135398\pi\)
\(450\) 0 0
\(451\) 5.40069i 0.254309i
\(452\) −16.5760 + 8.21381i −0.779670 + 0.386345i
\(453\) −3.24639 + 18.1957i −0.152529 + 0.854910i
\(454\) −10.3393 6.41567i −0.485245 0.301102i
\(455\) 0 0
\(456\) 5.55833 + 21.6118i 0.260292 + 1.01206i
\(457\) −2.94811 + 5.10627i −0.137907 + 0.238861i −0.926704 0.375792i \(-0.877371\pi\)
0.788797 + 0.614653i \(0.210704\pi\)
\(458\) −0.894715 + 0.479335i −0.0418073 + 0.0223979i
\(459\) −15.4780 + 26.4367i −0.722453 + 1.23396i
\(460\) 0 0
\(461\) 30.5948 + 17.6639i 1.42494 + 0.822691i 0.996716 0.0809799i \(-0.0258050\pi\)
0.428227 + 0.903671i \(0.359138\pi\)
\(462\) −3.73975 + 4.16272i −0.173989 + 0.193667i
\(463\) −32.2464 + 18.6175i −1.49862 + 0.865227i −0.999999 0.00159457i \(-0.999492\pi\)
−0.498618 + 0.866822i \(0.666159\pi\)
\(464\) −8.43367 6.42031i −0.391523 0.298055i
\(465\) 0 0
\(466\) 19.5599 + 0.621612i 0.906095 + 0.0287956i
\(467\) −6.98334 −0.323151 −0.161575 0.986860i \(-0.551657\pi\)
−0.161575 + 0.986860i \(0.551657\pi\)
\(468\) 25.6089 + 11.3336i 1.18377 + 0.523895i
\(469\) 21.7704 1.00526
\(470\) 0 0
\(471\) 16.7517 19.8821i 0.771879 0.916117i
\(472\) 27.2443 12.4385i 1.25402 0.572529i
\(473\) 8.15147 4.70625i 0.374805 0.216394i
\(474\) −9.15562 1.93544i −0.420532 0.0888977i
\(475\) 0 0
\(476\) 18.8742 28.3644i 0.865097 1.30008i
\(477\) 3.27702 + 3.93767i 0.150044 + 0.180293i
\(478\) −34.5436 + 18.5064i −1.57999 + 0.846463i
\(479\) 10.2090 17.6825i 0.466460 0.807932i −0.532806 0.846237i \(-0.678863\pi\)
0.999266 + 0.0383050i \(0.0121958\pi\)
\(480\) 0 0
\(481\) −17.3630 30.0735i −0.791683 1.37124i
\(482\) 13.7303 + 8.51987i 0.625399 + 0.388070i
\(483\) 6.27500 2.26954i 0.285522 0.103268i
\(484\) −9.21295 18.5923i −0.418770 0.845106i
\(485\) 0 0
\(486\) 2.91558 + 21.8518i 0.132254 + 0.991216i
\(487\) 20.8264i 0.943735i −0.881669 0.471868i \(-0.843580\pi\)
0.881669 0.471868i \(-0.156420\pi\)
\(488\) −4.00744 2.85434i −0.181408 0.129210i
\(489\) −6.77371 + 2.44991i −0.306318 + 0.110789i
\(490\) 0 0
\(491\) −9.31608 16.1359i −0.420429 0.728204i 0.575552 0.817765i \(-0.304787\pi\)
−0.995981 + 0.0895606i \(0.971454\pi\)
\(492\) −17.0912 16.3650i −0.770530 0.737789i
\(493\) 7.81122 13.5294i 0.351800 0.609335i
\(494\) 14.1988 + 26.5031i 0.638834 + 1.19243i
\(495\) 0 0
\(496\) 9.66661 4.04740i 0.434044 0.181734i
\(497\) −7.22093 4.16900i −0.323903 0.187005i
\(498\) −4.87688 + 23.0702i −0.218538 + 1.03380i
\(499\) 4.48667 2.59038i 0.200851 0.115961i −0.396201 0.918164i \(-0.629672\pi\)
0.597052 + 0.802202i \(0.296338\pi\)
\(500\) 0 0
\(501\) −0.0372239 + 0.0441798i −0.00166304 + 0.00197381i
\(502\) −0.226923 + 7.14045i −0.0101281 + 0.318694i
\(503\) 27.8846 1.24331 0.621657 0.783290i \(-0.286460\pi\)
0.621657 + 0.783290i \(0.286460\pi\)
\(504\) −1.84144 24.4486i −0.0820241 1.08903i
\(505\) 0 0
\(506\) 0.0473541 1.49006i 0.00210515 0.0662414i
\(507\) 14.9799 + 2.67264i 0.665281 + 0.118696i
\(508\) 1.24101 19.5053i 0.0550609 0.865410i
\(509\) −18.6724 + 10.7805i −0.827640 + 0.477838i −0.853044 0.521839i \(-0.825246\pi\)
0.0254039 + 0.999677i \(0.491913\pi\)
\(510\) 0 0
\(511\) −16.2864 9.40298i −0.720470 0.415963i
\(512\) 6.38191 21.7088i 0.282043 0.959402i
\(513\) −11.9586 + 20.4255i −0.527987 + 0.901807i
\(514\) −1.76801 3.30013i −0.0779837 0.145562i
\(515\) 0 0
\(516\) −9.80670 + 40.0571i −0.431716 + 1.76341i
\(517\) 1.19116 + 2.06315i 0.0523871 + 0.0907371i
\(518\) −16.0297 + 25.8329i −0.704306 + 1.13503i
\(519\) 7.25021 40.6368i 0.318249 1.78376i
\(520\) 0 0
\(521\) 19.9411i 0.873633i −0.899551 0.436817i \(-0.856106\pi\)
0.899551 0.436817i \(-0.143894\pi\)
\(522\) −1.55449 11.1344i −0.0680381 0.487338i
\(523\) 18.9360i 0.828013i −0.910274 0.414006i \(-0.864129\pi\)
0.910274 0.414006i \(-0.135871\pi\)
\(524\) 11.7541 + 23.7206i 0.513480 + 1.03624i
\(525\) 0 0
\(526\) −3.04168 1.88741i −0.132624 0.0822950i
\(527\) 7.72304 + 13.3767i 0.336421 + 0.582698i
\(528\) −5.22712 1.63778i −0.227481 0.0712750i
\(529\) 10.6111 18.3790i 0.461354 0.799088i
\(530\) 0 0
\(531\) 29.8062 + 10.9854i 1.29348 + 0.476727i
\(532\) 14.5826 21.9149i 0.632234 0.950132i
\(533\) −27.6111 15.9413i −1.19597 0.690494i
\(534\) −0.00563508 0.0172775i −0.000243854 0.000747672i
\(535\) 0 0
\(536\) 8.85063 + 19.3857i 0.382289 + 0.837335i
\(537\) −15.0390 41.5810i −0.648981 1.79435i
\(538\) 7.44164 + 0.236495i 0.320832 + 0.0101960i
\(539\) 1.06654 0.0459393
\(540\) 0 0
\(541\) −13.2697 −0.570511 −0.285255 0.958452i \(-0.592078\pi\)
−0.285255 + 0.958452i \(0.592078\pi\)
\(542\) −23.5303 0.747791i −1.01071 0.0321204i
\(543\) −15.0874 41.7148i −0.647462 1.79015i
\(544\) 32.9307 + 5.27535i 1.41189 + 0.226179i
\(545\) 0 0
\(546\) −10.2433 31.4067i −0.438373 1.34408i
\(547\) −7.81809 4.51377i −0.334277 0.192995i 0.323461 0.946241i \(-0.395153\pi\)
−0.657738 + 0.753246i \(0.728487\pi\)
\(548\) −5.24901 3.49278i −0.224227 0.149204i
\(549\) −0.885368 5.14284i −0.0377866 0.219491i
\(550\) 0 0
\(551\) 6.03510 10.4531i 0.257104 0.445317i
\(552\) 4.57201 + 4.66499i 0.194598 + 0.198555i
\(553\) 5.51940 + 9.55988i 0.234709 + 0.406527i
\(554\) −31.7151 19.6797i −1.34744 0.836110i
\(555\) 0 0
\(556\) 4.60532 2.28205i 0.195309 0.0967803i
\(557\) 30.4174i 1.28883i 0.764677 + 0.644414i \(0.222899\pi\)
−0.764677 + 0.644414i \(0.777101\pi\)
\(558\) 10.3023 + 4.17331i 0.436129 + 0.176670i
\(559\) 55.5660i 2.35019i
\(560\) 0 0
\(561\) 1.41805 7.94806i 0.0598702 0.335567i
\(562\) −17.0919 + 27.5448i −0.720980 + 1.16191i
\(563\) −22.6283 39.1934i −0.953669 1.65180i −0.737385 0.675473i \(-0.763940\pi\)
−0.216284 0.976330i \(-0.569394\pi\)
\(564\) −10.1385 2.48209i −0.426907 0.104515i
\(565\) 0 0
\(566\) −4.35080 8.12109i −0.182878 0.341355i
\(567\) 16.8765 19.7851i 0.708747 0.830895i
\(568\) 0.776714 8.12485i 0.0325902 0.340911i
\(569\) 4.42750 + 2.55622i 0.185610 + 0.107162i 0.589926 0.807457i \(-0.299157\pi\)
−0.404316 + 0.914620i \(0.632490\pi\)
\(570\) 0 0
\(571\) 30.6553 17.6989i 1.28289 0.740675i 0.305511 0.952189i \(-0.401173\pi\)
0.977375 + 0.211514i \(0.0678394\pi\)
\(572\) −7.36564 0.468632i −0.307973 0.0195945i
\(573\) −13.1589 2.34774i −0.549720 0.0980783i
\(574\) −0.886620 + 27.8987i −0.0370068 + 1.16447i
\(575\) 0 0
\(576\) 21.0220 11.5792i 0.875915 0.482466i
\(577\) 30.4257 1.26664 0.633320 0.773890i \(-0.281692\pi\)
0.633320 + 0.773890i \(0.281692\pi\)
\(578\) −0.797709 + 25.1010i −0.0331803 + 1.04407i
\(579\) −5.76519 + 6.84250i −0.239593 + 0.284365i
\(580\) 0 0
\(581\) 24.0888 13.9077i 0.999372 0.576987i
\(582\) 3.36321 15.9097i 0.139410 0.659480i
\(583\) −1.16924 0.675058i −0.0484248 0.0279581i
\(584\) 1.75184 18.3252i 0.0724916 0.758302i
\(585\) 0 0
\(586\) 11.1834 + 20.8747i 0.461982 + 0.862324i
\(587\) −14.6186 + 25.3201i −0.603372 + 1.04507i 0.388934 + 0.921265i \(0.372843\pi\)
−0.992306 + 0.123806i \(0.960490\pi\)
\(588\) −3.23179 + 3.37521i −0.133277 + 0.139191i
\(589\) 5.96697 + 10.3351i 0.245865 + 0.425850i
\(590\) 0 0
\(591\) −13.7978 + 4.99036i −0.567564 + 0.205276i
\(592\) −29.5200 3.77164i −1.21327 0.155013i
\(593\) 1.73460i 0.0712314i 0.999366 + 0.0356157i \(0.0113392\pi\)
−0.999366 + 0.0356157i \(0.988661\pi\)
\(594\) −2.71254 5.13788i −0.111297 0.210810i
\(595\) 0 0
\(596\) 17.6452 8.74360i 0.722774 0.358152i
\(597\) 0.905554 0.327520i 0.0370619 0.0134045i
\(598\) 7.47820 + 4.64034i 0.305806 + 0.189758i
\(599\) 1.94974 + 3.37704i 0.0796641 + 0.137982i 0.903105 0.429420i \(-0.141282\pi\)
−0.823441 + 0.567402i \(0.807949\pi\)
\(600\) 0 0
\(601\) 2.16133 3.74354i 0.0881625 0.152702i −0.818572 0.574404i \(-0.805234\pi\)
0.906734 + 0.421702i \(0.138567\pi\)
\(602\) 42.8812 22.9732i 1.74771 0.936319i
\(603\) −7.81670 + 21.2086i −0.318321 + 0.863683i
\(604\) 17.7682 + 11.8233i 0.722978 + 0.481082i
\(605\) 0 0
\(606\) 6.08874 + 1.28712i 0.247338 + 0.0522857i
\(607\) −10.9725 + 6.33497i −0.445360 + 0.257128i −0.705868 0.708343i \(-0.749443\pi\)
0.260509 + 0.965471i \(0.416110\pi\)
\(608\) 25.4429 + 4.07584i 1.03184 + 0.165297i
\(609\) −8.54498 + 10.1418i −0.346260 + 0.410964i
\(610\) 0 0
\(611\) −14.0638 −0.568961
\(612\) 20.8557 + 28.5715i 0.843043 + 1.15493i
\(613\) 47.3059 1.91067 0.955334 0.295527i \(-0.0954952\pi\)
0.955334 + 0.295527i \(0.0954952\pi\)
\(614\) −34.3139 1.09049i −1.38480 0.0440088i
\(615\) 0 0
\(616\) 2.68360 + 5.87794i 0.108125 + 0.236829i
\(617\) 6.04277 3.48880i 0.243273 0.140454i −0.373407 0.927668i \(-0.621811\pi\)
0.616680 + 0.787214i \(0.288477\pi\)
\(618\) 12.5337 13.9512i 0.504178 0.561202i
\(619\) 24.9827 + 14.4238i 1.00414 + 0.579741i 0.909471 0.415768i \(-0.136487\pi\)
0.0946695 + 0.995509i \(0.469821\pi\)
\(620\) 0 0
\(621\) −0.0420735 + 6.92797i −0.00168835 + 0.278010i
\(622\) 9.51554 5.09786i 0.381538 0.204406i
\(623\) −0.0107187 + 0.0185654i −0.000429437 + 0.000743807i
\(624\) 23.8021 21.8895i 0.952847 0.876281i
\(625\) 0 0
\(626\) 5.35372 + 3.32207i 0.213978 + 0.132777i
\(627\) 1.09561 6.14082i 0.0437546 0.245241i
\(628\) −13.3291 26.8990i −0.531890 1.07339i
\(629\) 43.8633i 1.74894i
\(630\) 0 0
\(631\) 31.3427i 1.24774i 0.781530 + 0.623868i \(0.214440\pi\)
−0.781530 + 0.623868i \(0.785560\pi\)
\(632\) −6.26884 + 8.80134i −0.249361 + 0.350098i
\(633\) 32.2184 + 27.1457i 1.28056 + 1.07895i
\(634\) −3.69538 + 5.95534i −0.146762 + 0.236517i
\(635\) 0 0
\(636\) 5.67928 1.65466i 0.225198 0.0656116i
\(637\) −3.14813 + 5.45272i −0.124733 + 0.216045i
\(638\) 1.39919 + 2.61169i 0.0553943 + 0.103398i
\(639\) 6.65412 5.53771i 0.263233 0.219069i
\(640\) 0 0
\(641\) −17.6686 10.2010i −0.697869 0.402915i 0.108684 0.994076i \(-0.465336\pi\)
−0.806553 + 0.591162i \(0.798670\pi\)
\(642\) −31.9316 + 10.4145i −1.26024 + 0.411028i
\(643\) −25.7560 + 14.8702i −1.01572 + 0.586424i −0.912860 0.408272i \(-0.866131\pi\)
−0.102856 + 0.994696i \(0.532798\pi\)
\(644\) 0.489241 7.68956i 0.0192788 0.303011i
\(645\) 0 0
\(646\) −1.20634 + 37.9592i −0.0474628 + 1.49348i
\(647\) −7.37854 −0.290081 −0.145040 0.989426i \(-0.546331\pi\)
−0.145040 + 0.989426i \(0.546331\pi\)
\(648\) 24.4789 + 6.98440i 0.961623 + 0.274373i
\(649\) −8.37183 −0.328623
\(650\) 0 0
\(651\) −4.45960 12.3303i −0.174786 0.483261i
\(652\) −0.528123 + 8.30068i −0.0206829 + 0.325080i
\(653\) −12.6906 + 7.32692i −0.496621 + 0.286724i −0.727317 0.686301i \(-0.759233\pi\)
0.230696 + 0.973026i \(0.425900\pi\)
\(654\) −30.8943 + 10.0762i −1.20806 + 0.394011i
\(655\) 0 0
\(656\) −25.2032 + 10.5526i −0.984021 + 0.412009i
\(657\) 15.0080 12.4900i 0.585519 0.487283i
\(658\) 5.81455 + 10.8533i 0.226675 + 0.423105i
\(659\) −3.26655 + 5.65782i −0.127247 + 0.220398i −0.922609 0.385737i \(-0.873947\pi\)
0.795362 + 0.606134i \(0.207281\pi\)
\(660\) 0 0
\(661\) 13.4007 + 23.2106i 0.521225 + 0.902788i 0.999695 + 0.0246846i \(0.00785816\pi\)
−0.478470 + 0.878104i \(0.658809\pi\)
\(662\) 19.8247 31.9487i 0.770507 1.24172i
\(663\) 36.4489 + 30.7102i 1.41556 + 1.19269i
\(664\) 22.1774 + 15.7961i 0.860651 + 0.613007i
\(665\) 0 0
\(666\) −19.4108 24.8915i −0.752155 0.964524i
\(667\) 3.53308i 0.136801i
\(668\) 0.0296185 + 0.0597722i 0.00114598 + 0.00231266i
\(669\) −0.103213 + 0.578500i −0.00399044 + 0.0223661i
\(670\) 0 0
\(671\) 0.687656 + 1.19105i 0.0265466 + 0.0459801i
\(672\) −26.7332 9.31850i −1.03126 0.359469i
\(673\) 9.43992 16.3504i 0.363882 0.630262i −0.624714 0.780854i \(-0.714784\pi\)
0.988596 + 0.150591i \(0.0481177\pi\)
\(674\) −15.5127 + 8.31076i −0.597526 + 0.320119i
\(675\) 0 0
\(676\) 9.73367 14.6279i 0.374372 0.562612i
\(677\) 17.5219 + 10.1163i 0.673421 + 0.388800i 0.797372 0.603488i \(-0.206223\pi\)
−0.123950 + 0.992288i \(0.539556\pi\)
\(678\) −15.1418 + 16.8544i −0.581519 + 0.647289i
\(679\) −16.6122 + 9.59106i −0.637518 + 0.368071i
\(680\) 0 0
\(681\) −14.6711 2.61754i −0.562196 0.100304i
\(682\) −2.92795 0.0930499i −0.112117 0.00356306i
\(683\) 15.3795 0.588481 0.294241 0.955731i \(-0.404933\pi\)
0.294241 + 0.955731i \(0.404933\pi\)
\(684\) 16.1135 + 22.0749i 0.616116 + 0.844054i
\(685\) 0 0
\(686\) −23.0802 0.733487i −0.881207 0.0280047i
\(687\) −0.801006 + 0.950687i −0.0305603 + 0.0362710i
\(688\) 37.8899 + 28.8445i 1.44454 + 1.09969i
\(689\) 6.90249 3.98516i 0.262964 0.151822i
\(690\) 0 0
\(691\) −13.7773 7.95434i −0.524114 0.302598i 0.214502 0.976724i \(-0.431187\pi\)
−0.738616 + 0.674126i \(0.764520\pi\)
\(692\) −39.6819 26.4051i −1.50848 1.00377i
\(693\) −2.37010 + 6.43067i −0.0900327 + 0.244281i
\(694\) −21.0944 + 11.3011i −0.800731 + 0.428984i
\(695\) 0 0
\(696\) −12.5048 3.48592i −0.473992 0.132133i
\(697\) −20.1359 34.8763i −0.762700 1.32104i
\(698\) −2.29651 1.42502i −0.0869242 0.0539378i
\(699\) 22.5391 8.15193i 0.852507 0.308334i
\(700\) 0 0
\(701\) 38.9767i 1.47213i 0.676912 + 0.736064i \(0.263318\pi\)
−0.676912 + 0.736064i \(0.736682\pi\)
\(702\) 34.2742 + 1.29763i 1.29359 + 0.0489758i
\(703\) 33.8896i 1.27817i
\(704\) −4.14309 + 4.77929i −0.156148 + 0.180126i
\(705\) 0 0
\(706\) −16.4880 + 26.5715i −0.620535 + 1.00003i
\(707\) −3.67055 6.35758i −0.138045 0.239102i
\(708\) 25.3680 26.4937i 0.953387 0.995696i
\(709\) 6.59388 11.4209i 0.247638 0.428922i −0.715232 0.698887i \(-0.753679\pi\)
0.962870 + 0.269965i \(0.0870121\pi\)
\(710\) 0 0
\(711\) −11.2950 + 1.94449i −0.423594 + 0.0729240i
\(712\) −0.0208894 0.00199697i −0.000782865 7.48398e-5i
\(713\) 3.02519 + 1.74660i 0.113294 + 0.0654105i
\(714\) 8.63015 40.8251i 0.322975 1.52784i
\(715\) 0 0
\(716\) −50.9545 3.24193i −1.90426 0.121157i
\(717\) −30.9256 + 36.7046i −1.15494 + 1.37076i
\(718\) 0.0664984 2.09247i 0.00248170 0.0780902i
\(719\) −43.7650 −1.63216 −0.816079 0.577940i \(-0.803857\pi\)
−0.816079 + 0.577940i \(0.803857\pi\)
\(720\) 0 0
\(721\) −22.1231 −0.823907
\(722\) −0.0785441 + 2.47150i −0.00292311 + 0.0919798i
\(723\) 19.4829 + 3.47603i 0.724575 + 0.129275i
\(724\) −51.1184 3.25236i −1.89980 0.120873i
\(725\) 0 0
\(726\) −18.9046 16.9837i −0.701616 0.630325i
\(727\) 8.58770 + 4.95811i 0.318500 + 0.183886i 0.650724 0.759314i \(-0.274466\pi\)
−0.332224 + 0.943201i \(0.607799\pi\)
\(728\) −37.9723 3.63005i −1.40735 0.134539i
\(729\) 13.2150 + 23.5449i 0.489445 + 0.872034i
\(730\) 0 0
\(731\) −35.0935 + 60.7837i −1.29798 + 2.24816i
\(732\) −5.85295 1.43291i −0.216331 0.0529618i
\(733\) −13.9862 24.2247i −0.516591 0.894761i −0.999814 0.0192642i \(-0.993868\pi\)
0.483224 0.875497i \(-0.339466\pi\)
\(734\) 0.0941235 0.151686i 0.00347416 0.00559883i
\(735\) 0 0
\(736\) 7.04616 2.69050i 0.259725 0.0991730i
\(737\) 5.95699i 0.219428i
\(738\) −26.8605 10.8808i −0.988750 0.400529i
\(739\) 24.2237i 0.891082i −0.895262 0.445541i \(-0.853011\pi\)
0.895262 0.445541i \(-0.146989\pi\)
\(740\) 0 0
\(741\) 28.1611 + 23.7273i 1.03452 + 0.871644i
\(742\) −5.92918 3.67915i −0.217667 0.135066i
\(743\) 25.3632 + 43.9304i 0.930486 + 1.61165i 0.782492 + 0.622660i \(0.213948\pi\)
0.147993 + 0.988988i \(0.452719\pi\)
\(744\) 9.16661 8.98391i 0.336064 0.329366i
\(745\) 0 0
\(746\) −28.5767 + 15.3097i −1.04627 + 0.560528i
\(747\) 4.89968 + 28.4608i 0.179270 + 1.04133i
\(748\) −7.76131 5.16451i −0.283781 0.188833i
\(749\) 34.3117 + 19.8099i 1.25372 + 0.723838i
\(750\) 0 0
\(751\) −0.581286 + 0.335605i −0.0212114 + 0.0122464i −0.510568 0.859837i \(-0.670565\pi\)
0.489357 + 0.872084i \(0.337232\pi\)
\(752\) −7.30058 + 9.58999i −0.266225 + 0.349711i
\(753\) 2.97591 + 8.22802i 0.108448 + 0.299846i
\(754\) −17.4823 0.555585i −0.636667 0.0202332i
\(755\) 0 0
\(756\) −13.1689 26.9864i −0.478949 0.981488i
\(757\) 17.0611 0.620095 0.310048 0.950721i \(-0.399655\pi\)
0.310048 + 0.950721i \(0.399655\pi\)
\(758\) −38.8886 1.23588i −1.41250 0.0448890i
\(759\) −0.621010 1.71702i −0.0225412 0.0623238i
\(760\) 0 0
\(761\) 6.74677 3.89525i 0.244570 0.141203i −0.372705 0.927950i \(-0.621570\pi\)
0.617275 + 0.786747i \(0.288236\pi\)
\(762\) −7.42239 22.7575i −0.268885 0.824419i
\(763\) 33.1972 + 19.1664i 1.20182 + 0.693870i
\(764\) −8.55041 + 12.8497i −0.309343 + 0.464886i
\(765\) 0 0
\(766\) 29.5814 15.8479i 1.06882 0.572609i
\(767\) 24.7112 42.8011i 0.892271 1.54546i
\(768\) −2.57048 27.5933i −0.0927543 0.995689i
\(769\) −4.58773 7.94618i −0.165438 0.286546i 0.771373 0.636383i \(-0.219570\pi\)
−0.936811 + 0.349837i \(0.886237\pi\)
\(770\) 0 0
\(771\) −3.50658 2.95448i −0.126286 0.106403i
\(772\) 4.58727 + 9.25742i 0.165100 + 0.333182i
\(773\) 32.0512i 1.15280i 0.817167 + 0.576401i \(0.195543\pi\)
−0.817167 + 0.576401i \(0.804457\pi\)
\(774\) 6.98385 + 50.0234i 0.251029 + 1.79805i
\(775\) 0 0
\(776\) −15.2941 10.8934i −0.549026 0.391049i
\(777\) −6.53999 + 36.6560i −0.234621 + 1.31503i
\(778\) 1.36149 2.19413i 0.0488119 0.0786634i
\(779\) −15.5574 26.9461i −0.557400 0.965445i
\(780\) 0 0
\(781\) −1.14076 + 1.97585i −0.0408195 + 0.0707014i
\(782\) 5.24973 + 9.79902i 0.187730 + 0.350412i
\(783\) −6.81197 11.9659i −0.243440 0.427627i
\(784\) 2.08395 + 4.97720i 0.0744269 + 0.177757i
\(785\) 0 0
\(786\) 24.1189 + 21.6682i 0.860294 + 0.772880i
\(787\) 3.42695 1.97855i 0.122157 0.0705276i −0.437676 0.899133i \(-0.644198\pi\)
0.559834 + 0.828605i \(0.310865\pi\)
\(788\) −1.07576 + 16.9081i −0.0383225 + 0.602327i
\(789\) −4.31604 0.770047i −0.153655 0.0274144i
\(790\) 0 0
\(791\) 26.7267 0.950293
\(792\) −6.68983 + 0.503868i −0.237713 + 0.0179042i
\(793\) −8.11904 −0.288316
\(794\) −0.857215 + 26.9735i −0.0304214 + 0.957253i
\(795\) 0 0
\(796\) 0.0706030 1.10969i 0.00250246 0.0393319i
\(797\) −8.64602 + 4.99178i −0.306258 + 0.176818i −0.645251 0.763971i \(-0.723247\pi\)
0.338993 + 0.940789i \(0.389914\pi\)
\(798\) 6.66782 31.5422i 0.236038 1.11658i
\(799\) −15.3844 8.88219i −0.544261 0.314229i
\(800\) 0 0
\(801\) −0.0142378 0.0171081i −0.000503067 0.000604485i
\(802\) 11.6735 + 21.7894i 0.412205 + 0.769412i
\(803\) −2.57292 + 4.45643i −0.0907963 + 0.157264i
\(804\) 18.8517 + 18.0506i 0.664847 + 0.636596i
\(805\) 0 0
\(806\) 9.11817 14.6945i 0.321174 0.517592i
\(807\) 8.57508 3.10143i 0.301857 0.109176i
\(808\) 4.16895 5.85313i 0.146663 0.205912i
\(809\) 37.9989i 1.33597i 0.744174 + 0.667986i \(0.232843\pi\)
−0.744174 + 0.667986i \(0.767157\pi\)
\(810\) 0 0
\(811\) 21.3193i 0.748622i −0.927303 0.374311i \(-0.877879\pi\)
0.927303 0.374311i \(-0.122121\pi\)
\(812\) 6.79912 + 13.7211i 0.238602 + 0.481515i
\(813\) −27.1142 + 9.80666i −0.950937 + 0.343934i
\(814\) 7.06861 + 4.38618i 0.247755 + 0.153736i
\(815\) 0 0
\(816\) 39.8617 8.91238i 1.39544 0.311996i
\(817\) −27.1139 + 46.9626i −0.948595 + 1.64301i
\(818\) 20.3871 10.9222i 0.712818 0.381885i
\(819\) −25.8811 31.0987i −0.904357 1.08668i
\(820\) 0 0
\(821\) −4.11744 2.37721i −0.143700 0.0829651i 0.426426 0.904522i \(-0.359772\pi\)
−0.570126 + 0.821557i \(0.693106\pi\)
\(822\) −7.55492 1.59706i −0.263508 0.0557039i
\(823\) −35.4554 + 20.4702i −1.23590 + 0.713546i −0.968253 0.249972i \(-0.919578\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(824\) −8.99402 19.6998i −0.313322 0.686274i
\(825\) 0 0
\(826\) −43.2470 1.37438i −1.50475 0.0478210i
\(827\) 26.4974 0.921406 0.460703 0.887554i \(-0.347597\pi\)
0.460703 + 0.887554i \(0.347597\pi\)
\(828\) 7.31548 + 3.23757i 0.254230 + 0.112513i
\(829\) −38.1524 −1.32509 −0.662544 0.749023i \(-0.730523\pi\)
−0.662544 + 0.749023i \(0.730523\pi\)
\(830\) 0 0
\(831\) −45.0026 8.02915i −1.56112 0.278528i
\(832\) −12.2050 35.2887i −0.423133 1.22342i
\(833\) −6.88748 + 3.97649i −0.238637 + 0.137777i
\(834\) 4.20686 4.68267i 0.145672 0.162147i
\(835\) 0 0
\(836\) −5.99653 3.99020i −0.207394 0.138004i
\(837\) 13.6133 + 0.0826736i 0.470545 + 0.00285762i
\(838\) 30.8771 16.5421i 1.06663 0.571437i
\(839\) −8.60385 + 14.9023i −0.297038 + 0.514485i −0.975457 0.220190i \(-0.929332\pi\)
0.678419 + 0.734675i \(0.262665\pi\)
\(840\) 0 0
\(841\) −10.9891 19.0338i −0.378936 0.656337i
\(842\) −20.1549 12.5064i −0.694584 0.431000i
\(843\) −6.97337 + 39.0851i −0.240175 + 1.34616i
\(844\) 43.5892 21.5995i 1.50040 0.743484i
\(845\) 0 0
\(846\) −12.6610 + 1.76762i −0.435293 + 0.0607720i
\(847\) 29.9778i 1.03005i
\(848\) 0.865668 6.77545i 0.0297272 0.232670i
\(849\) −8.62913 7.27052i −0.296151 0.249524i
\(850\) 0 0
\(851\) −4.95992 8.59084i −0.170024 0.294490i
\(852\) −2.79615 9.59720i −0.0957946 0.328795i
\(853\) −21.7324 + 37.6416i −0.744102 + 1.28882i 0.206511 + 0.978444i \(0.433789\pi\)
−0.950613 + 0.310378i \(0.899544\pi\)
\(854\) 3.35674 + 6.26561i 0.114865 + 0.214405i
\(855\) 0 0
\(856\) −3.69072 + 38.6069i −0.126146 + 1.31956i
\(857\) −11.6506 6.72648i −0.397977 0.229772i 0.287634 0.957741i \(-0.407131\pi\)
−0.685611 + 0.727968i \(0.740465\pi\)
\(858\) −8.59375 + 2.80286i −0.293386 + 0.0956879i
\(859\) −1.00899 + 0.582541i −0.0344263 + 0.0198760i −0.517114 0.855916i \(-0.672994\pi\)
0.482688 + 0.875792i \(0.339660\pi\)
\(860\) 0 0
\(861\) 11.6273 + 32.1480i 0.396257 + 1.09560i
\(862\) 0.684991 21.5542i 0.0233309 0.734139i
\(863\) −0.0600669 −0.00204470 −0.00102235 0.999999i \(-0.500325\pi\)
−0.00102235 + 0.999999i \(0.500325\pi\)
\(864\) 18.6767 22.6976i 0.635393 0.772189i
\(865\) 0 0
\(866\) 1.05877 33.3156i 0.0359783 1.13211i
\(867\) 10.4613 + 28.9242i 0.355284 + 0.982317i
\(868\) −15.1098 0.961349i −0.512861 0.0326303i
\(869\) 2.61585 1.51026i 0.0887367 0.0512321i
\(870\) 0 0
\(871\) 30.4552 + 17.5833i 1.03193 + 0.595788i
\(872\) −3.57083 + 37.3528i −0.120924 + 1.26493i
\(873\) −3.37894 19.6273i −0.114360 0.664282i
\(874\) 4.05604 + 7.57091i 0.137198 + 0.256090i
\(875\) 0 0
\(876\) −6.30658 21.6460i −0.213080 0.731351i
\(877\) −3.25771 5.64252i −0.110005 0.190534i 0.805767 0.592233i \(-0.201753\pi\)
−0.915772 + 0.401698i \(0.868420\pi\)
\(878\) 11.0801 17.8563i 0.373935 0.602620i
\(879\) 22.1805 + 18.6883i 0.748131 + 0.630342i
\(880\) 0 0
\(881\) 12.1468i 0.409237i 0.978842 + 0.204619i \(0.0655954\pi\)
−0.978842 + 0.204619i \(0.934405\pi\)
\(882\) −2.14878 + 5.30449i −0.0723531 + 0.178611i
\(883\) 30.7337i 1.03427i −0.855904 0.517135i \(-0.826998\pi\)
0.855904 0.517135i \(-0.173002\pi\)
\(884\) 49.3128 24.4357i 1.65857 0.821860i
\(885\) 0 0
\(886\) 32.6163 + 20.2389i 1.09577 + 0.679940i
\(887\) 27.8345 + 48.2108i 0.934592 + 1.61876i 0.775361 + 0.631519i \(0.217568\pi\)
0.159231 + 0.987241i \(0.449099\pi\)
\(888\) −35.2996 + 9.07870i −1.18458 + 0.304661i
\(889\) −14.1185 + 24.4539i −0.473518 + 0.820157i
\(890\) 0 0
\(891\) −5.41375 4.61789i −0.181368 0.154705i
\(892\) 0.564907 + 0.375899i 0.0189145 + 0.0125860i
\(893\) −11.8863 6.86255i −0.397760 0.229647i
\(894\) 16.1185 17.9415i 0.539083 0.600054i
\(895\) 0 0
\(896\) −22.1868 + 24.0086i −0.741211 + 0.802070i
\(897\) 10.6113 + 1.89322i 0.354301 + 0.0632127i
\(898\) −24.7191 0.785572i −0.824888 0.0262149i
\(899\) −6.94243 −0.231543
\(900\) 0 0
\(901\) 10.0675 0.335397
\(902\) 7.63388 + 0.242604i 0.254180 + 0.00807783i
\(903\) 38.3900 45.5638i 1.27754 1.51627i
\(904\) 10.8656 + 23.7992i 0.361385 + 0.791548i
\(905\) 0 0
\(906\) 25.5738 + 5.40614i 0.849634 + 0.179607i
\(907\) 14.3978 + 8.31258i 0.478072 + 0.276015i 0.719612 0.694376i \(-0.244319\pi\)
−0.241541 + 0.970391i \(0.577653\pi\)
\(908\) −9.53299 + 14.3263i −0.316363 + 0.475436i
\(909\) 7.51146 1.29314i 0.249139 0.0428907i
\(910\) 0 0
\(911\) −9.29200 + 16.0942i −0.307858 + 0.533225i −0.977893 0.209104i \(-0.932945\pi\)
0.670036 + 0.742329i \(0.266279\pi\)
\(912\) 30.7979 6.88587i 1.01982 0.228014i
\(913\) −3.80553 6.59137i −0.125945 0.218143i
\(914\) 7.08529 + 4.39653i 0.234360 + 0.145424i
\(915\) 0 0
\(916\) 0.637349 + 1.28621i 0.0210586 + 0.0424977i
\(917\) 38.2464i 1.26301i
\(918\) 36.6730 + 23.0658i 1.21039 + 0.761284i
\(919\) 31.1617i 1.02793i −0.857811 0.513965i \(-0.828176\pi\)
0.857811 0.513965i \(-0.171824\pi\)
\(920\) 0 0
\(921\) −39.5403 + 14.3009i −1.30290 + 0.471231i
\(922\) 26.3423 42.4523i 0.867538 1.39809i
\(923\) −6.73437 11.6643i −0.221664 0.383934i
\(924\) 5.71601 + 5.47313i 0.188043 + 0.180053i
\(925\) 0 0
\(926\) 24.8672 + 46.4166i 0.817189 + 1.52534i
\(927\) 7.94333 21.5522i 0.260893 0.707868i
\(928\) −9.45396 + 11.6326i −0.310341 + 0.381858i
\(929\) −24.5849 14.1941i −0.806604 0.465693i 0.0391715 0.999233i \(-0.487528\pi\)
−0.845775 + 0.533540i \(0.820861\pi\)
\(930\) 0 0
\(931\) −5.32140 + 3.07231i −0.174402 + 0.100691i
\(932\) 1.75730 27.6200i 0.0575622 0.904723i
\(933\) 8.51892 10.1108i 0.278897 0.331013i
\(934\) −0.313698 + 9.87095i −0.0102645 + 0.322988i
\(935\) 0 0
\(936\) 17.1704 35.6891i 0.561232 1.16654i
\(937\) 25.1998 0.823241 0.411620 0.911355i \(-0.364963\pi\)
0.411620 + 0.911355i \(0.364963\pi\)
\(938\) 0.977945 30.7724i 0.0319311 1.00476i
\(939\) 7.59676 + 1.35538i 0.247911 + 0.0442310i
\(940\) 0 0
\(941\) 35.0946 20.2619i 1.14405 0.660519i 0.196622 0.980479i \(-0.437003\pi\)
0.947431 + 0.319960i \(0.103670\pi\)
\(942\) −27.3508 24.5717i −0.891137 0.800589i
\(943\) −7.88742 4.55381i −0.256850 0.148292i
\(944\) −16.3580 39.0686i −0.532407 1.27157i
\(945\) 0 0
\(946\) −6.28612 11.7335i −0.204379 0.381489i
\(947\) −0.299207 + 0.518242i −0.00972293 + 0.0168406i −0.870846 0.491556i \(-0.836428\pi\)
0.861123 + 0.508397i \(0.169762\pi\)
\(948\) −3.14702 + 12.8545i −0.102211 + 0.417496i
\(949\) −15.1890 26.3082i −0.493057 0.853999i
\(950\) 0 0
\(951\) −1.50768 + 8.45043i −0.0488900 + 0.274024i
\(952\) −39.2453 27.9528i −1.27195 0.905956i
\(953\) 2.50405i 0.0811142i 0.999177 + 0.0405571i \(0.0129133\pi\)
−0.999177 + 0.0405571i \(0.987087\pi\)
\(954\) 5.71310 4.45518i 0.184968 0.144242i
\(955\) 0 0
\(956\) 24.6071 + 49.6587i 0.795850 + 1.60608i
\(957\) 2.77507 + 2.33815i 0.0897052 + 0.0755816i
\(958\) −24.5356 15.2247i −0.792708 0.491888i
\(959\) 4.55443 + 7.88850i 0.147070 + 0.254733i
\(960\) 0 0
\(961\) −12.0680 + 20.9023i −0.389289 + 0.674269i
\(962\) −43.2889 + 23.1916i −1.39569 + 0.747728i
\(963\) −31.6184 + 26.3136i −1.01889 + 0.847944i
\(964\) 12.6596 19.0251i 0.407739 0.612756i
\(965\) 0 0
\(966\) −2.92612 8.97167i −0.0941462 0.288659i
\(967\) 32.1736 18.5754i 1.03463 0.597346i 0.116325 0.993211i \(-0.462889\pi\)
0.918308 + 0.395866i \(0.129555\pi\)
\(968\) −26.6941 + 12.1873i −0.857982 + 0.391715i
\(969\) 15.8201 + 43.7408i 0.508216 + 1.40516i
\(970\) 0 0
\(971\) 14.7960 0.474826 0.237413 0.971409i \(-0.423701\pi\)
0.237413 + 0.971409i \(0.423701\pi\)
\(972\) 31.0184 3.13958i 0.994917 0.100702i
\(973\) −7.42550 −0.238051
\(974\) −29.4381 0.935542i −0.943259 0.0299767i
\(975\) 0 0
\(976\) −4.21462 + 5.53630i −0.134907 + 0.177213i
\(977\) −28.0175 + 16.1759i −0.896360 + 0.517514i −0.876018 0.482279i \(-0.839809\pi\)
−0.0203428 + 0.999793i \(0.506476\pi\)
\(978\) 3.15867 + 9.68469i 0.101003 + 0.309682i
\(979\) 0.00508002 + 0.00293295i 0.000162358 + 9.37374e-5i
\(980\) 0 0
\(981\) −30.5913 + 25.4588i −0.976707 + 0.812838i
\(982\) −23.2266 + 12.4434i −0.741191 + 0.397086i
\(983\) 1.69312 2.93257i 0.0540022 0.0935346i −0.837761 0.546038i \(-0.816136\pi\)
0.891763 + 0.452503i \(0.149469\pi\)
\(984\) −23.8996 + 23.4233i −0.761892 + 0.746706i
\(985\) 0 0
\(986\) −18.7730 11.6489i −0.597853 0.370977i
\(987\) 11.5323 + 9.71656i 0.367076 + 0.309281i
\(988\) 38.1000 18.8795i 1.21212 0.600635i
\(989\) 15.8731i 0.504734i
\(990\) 0 0
\(991\) 39.7022i 1.26118i −0.776116 0.630591i \(-0.782813\pi\)
0.776116 0.630591i \(-0.217187\pi\)
\(992\) −5.28677 13.8456i −0.167855 0.439597i
\(993\) 8.08829 45.3341i 0.256674 1.43864i
\(994\) −6.21726 + 10.0195i −0.197199 + 0.317799i
\(995\) 0 0
\(996\) 32.3906 + 7.92980i 1.02634 + 0.251265i
\(997\) −10.2956 + 17.8325i −0.326064 + 0.564760i −0.981727 0.190294i \(-0.939056\pi\)
0.655663 + 0.755054i \(0.272389\pi\)
\(998\) −3.45995 6.45827i −0.109523 0.204433i
\(999\) −33.3620 19.5327i −1.05553 0.617986i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.r.g.551.13 48
4.3 odd 2 inner 900.2.r.g.551.5 48
5.2 odd 4 180.2.n.d.119.24 yes 48
5.3 odd 4 180.2.n.d.119.1 yes 48
5.4 even 2 inner 900.2.r.g.551.12 48
9.5 odd 6 inner 900.2.r.g.851.5 48
15.2 even 4 540.2.n.d.359.1 48
15.8 even 4 540.2.n.d.359.24 48
20.3 even 4 180.2.n.d.119.17 yes 48
20.7 even 4 180.2.n.d.119.8 yes 48
20.19 odd 2 inner 900.2.r.g.551.20 48
36.23 even 6 inner 900.2.r.g.851.13 48
45.13 odd 12 540.2.n.d.179.17 48
45.14 odd 6 inner 900.2.r.g.851.20 48
45.22 odd 12 540.2.n.d.179.8 48
45.23 even 12 180.2.n.d.59.8 yes 48
45.32 even 12 180.2.n.d.59.17 yes 48
60.23 odd 4 540.2.n.d.359.8 48
60.47 odd 4 540.2.n.d.359.17 48
180.23 odd 12 180.2.n.d.59.24 yes 48
180.59 even 6 inner 900.2.r.g.851.12 48
180.67 even 12 540.2.n.d.179.24 48
180.103 even 12 540.2.n.d.179.1 48
180.167 odd 12 180.2.n.d.59.1 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.1 48 180.167 odd 12
180.2.n.d.59.8 yes 48 45.23 even 12
180.2.n.d.59.17 yes 48 45.32 even 12
180.2.n.d.59.24 yes 48 180.23 odd 12
180.2.n.d.119.1 yes 48 5.3 odd 4
180.2.n.d.119.8 yes 48 20.7 even 4
180.2.n.d.119.17 yes 48 20.3 even 4
180.2.n.d.119.24 yes 48 5.2 odd 4
540.2.n.d.179.1 48 180.103 even 12
540.2.n.d.179.8 48 45.22 odd 12
540.2.n.d.179.17 48 45.13 odd 12
540.2.n.d.179.24 48 180.67 even 12
540.2.n.d.359.1 48 15.2 even 4
540.2.n.d.359.8 48 60.23 odd 4
540.2.n.d.359.17 48 60.47 odd 4
540.2.n.d.359.24 48 15.8 even 4
900.2.r.g.551.5 48 4.3 odd 2 inner
900.2.r.g.551.12 48 5.4 even 2 inner
900.2.r.g.551.13 48 1.1 even 1 trivial
900.2.r.g.551.20 48 20.19 odd 2 inner
900.2.r.g.851.5 48 9.5 odd 6 inner
900.2.r.g.851.12 48 180.59 even 6 inner
900.2.r.g.851.13 48 36.23 even 6 inner
900.2.r.g.851.20 48 45.14 odd 6 inner