Properties

Label 540.2.n.d.179.17
Level $540$
Weight $2$
Character 540.179
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.17
Character \(\chi\) \(=\) 540.179
Dual form 540.2.n.d.359.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.745653 - 1.20167i) q^{2} +(-0.888004 - 1.79205i) q^{4} +(-0.0361315 + 2.23578i) q^{5} +(1.44473 + 2.50234i) q^{7} +(-2.81559 - 0.269163i) q^{8} +(2.65972 + 1.71053i) q^{10} +(0.395318 + 0.684712i) q^{11} +(4.04214 + 2.33373i) q^{13} +(4.08425 + 0.129797i) q^{14} +(-2.42290 + 3.18270i) q^{16} +5.89560 q^{17} -4.55505i q^{19} +(4.03871 - 1.92063i) q^{20} +(1.11756 + 0.0355161i) q^{22} +(1.15468 + 0.666656i) q^{23} +(-4.99739 - 0.161564i) q^{25} +(5.81840 - 3.11715i) q^{26} +(3.20140 - 4.81112i) q^{28} +(-2.29484 + 1.32492i) q^{29} +(-2.26893 - 1.30997i) q^{31} +(2.01790 + 5.28470i) q^{32} +(4.39607 - 7.08454i) q^{34} +(-5.64688 + 3.13968i) q^{35} +7.44000i q^{37} +(-5.47365 - 3.39649i) q^{38} +(0.703519 - 6.28531i) q^{40} +(5.91566 + 3.41541i) q^{41} +(-5.95249 - 10.3100i) q^{43} +(0.875994 - 1.31646i) q^{44} +(1.66209 - 0.890449i) q^{46} +(-2.60947 + 1.50658i) q^{47} +(-0.674484 + 1.16824i) q^{49} +(-3.92046 + 5.88472i) q^{50} +(0.592728 - 9.31609i) q^{52} +1.70763 q^{53} +(-1.54515 + 0.859104i) q^{55} +(-3.39423 - 7.43444i) q^{56} +(-0.119034 + 3.74556i) q^{58} +(5.29436 - 9.17010i) q^{59} +(-0.869749 - 1.50645i) q^{61} +(-3.26598 + 1.74972i) q^{62} +(7.85510 + 1.51570i) q^{64} +(-5.36375 + 8.95300i) q^{65} +(-3.76721 + 6.52500i) q^{67} +(-5.23532 - 10.5652i) q^{68} +(-0.437767 + 9.12678i) q^{70} -2.88566 q^{71} -6.50847i q^{73} +(8.94040 + 5.54766i) q^{74} +(-8.16289 + 4.04491i) q^{76} +(-1.14226 + 1.97845i) q^{77} +(3.30854 - 1.91019i) q^{79} +(-7.02826 - 5.53205i) q^{80} +(8.51521 - 4.56194i) q^{82} +(-8.33679 + 4.81325i) q^{83} +(-0.213017 + 13.1812i) q^{85} +(-16.8277 - 0.534782i) q^{86} +(-0.928756 - 2.03427i) q^{88} -0.00741921i q^{89} +13.4864i q^{91} +(0.169319 - 2.66124i) q^{92} +(-0.135354 + 4.25910i) q^{94} +(10.1841 + 0.164581i) q^{95} +(-5.74925 + 3.31933i) q^{97} +(0.900905 + 1.68161i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.745653 1.20167i 0.527256 0.849706i
\(3\) 0 0
\(4\) −0.888004 1.79205i −0.444002 0.896026i
\(5\) −0.0361315 + 2.23578i −0.0161585 + 0.999869i
\(6\) 0 0
\(7\) 1.44473 + 2.50234i 0.546056 + 0.945797i 0.998540 + 0.0540243i \(0.0172049\pi\)
−0.452483 + 0.891773i \(0.649462\pi\)
\(8\) −2.81559 0.269163i −0.995462 0.0951634i
\(9\) 0 0
\(10\) 2.65972 + 1.71053i 0.841076 + 0.540917i
\(11\) 0.395318 + 0.684712i 0.119193 + 0.206448i 0.919448 0.393211i \(-0.128636\pi\)
−0.800255 + 0.599660i \(0.795303\pi\)
\(12\) 0 0
\(13\) 4.04214 + 2.33373i 1.12109 + 0.647261i 0.941679 0.336514i \(-0.109248\pi\)
0.179410 + 0.983774i \(0.442581\pi\)
\(14\) 4.08425 + 0.129797i 1.09156 + 0.0346897i
\(15\) 0 0
\(16\) −2.42290 + 3.18270i −0.605724 + 0.795675i
\(17\) 5.89560 1.42989 0.714946 0.699179i \(-0.246451\pi\)
0.714946 + 0.699179i \(0.246451\pi\)
\(18\) 0 0
\(19\) 4.55505i 1.04500i −0.852639 0.522500i \(-0.824999\pi\)
0.852639 0.522500i \(-0.175001\pi\)
\(20\) 4.03871 1.92063i 0.903083 0.429466i
\(21\) 0 0
\(22\) 1.11756 + 0.0355161i 0.238266 + 0.00757206i
\(23\) 1.15468 + 0.666656i 0.240768 + 0.139007i 0.615530 0.788114i \(-0.288942\pi\)
−0.374762 + 0.927121i \(0.622275\pi\)
\(24\) 0 0
\(25\) −4.99739 0.161564i −0.999478 0.0323128i
\(26\) 5.81840 3.11715i 1.14108 0.611324i
\(27\) 0 0
\(28\) 3.20140 4.81112i 0.605008 0.909216i
\(29\) −2.29484 + 1.32492i −0.426140 + 0.246032i −0.697701 0.716389i \(-0.745794\pi\)
0.271561 + 0.962421i \(0.412460\pi\)
\(30\) 0 0
\(31\) −2.26893 1.30997i −0.407512 0.235277i 0.282208 0.959353i \(-0.408933\pi\)
−0.689720 + 0.724076i \(0.742266\pi\)
\(32\) 2.01790 + 5.28470i 0.356718 + 0.934212i
\(33\) 0 0
\(34\) 4.39607 7.08454i 0.753919 1.21499i
\(35\) −5.64688 + 3.13968i −0.954497 + 0.530702i
\(36\) 0 0
\(37\) 7.44000i 1.22313i 0.791195 + 0.611564i \(0.209459\pi\)
−0.791195 + 0.611564i \(0.790541\pi\)
\(38\) −5.47365 3.39649i −0.887944 0.550983i
\(39\) 0 0
\(40\) 0.703519 6.28531i 0.111236 0.993794i
\(41\) 5.91566 + 3.41541i 0.923871 + 0.533397i 0.884868 0.465842i \(-0.154249\pi\)
0.0390029 + 0.999239i \(0.487582\pi\)
\(42\) 0 0
\(43\) −5.95249 10.3100i −0.907746 1.57226i −0.817189 0.576370i \(-0.804469\pi\)
−0.0905567 0.995891i \(-0.528865\pi\)
\(44\) 0.875994 1.31646i 0.132061 0.198463i
\(45\) 0 0
\(46\) 1.66209 0.890449i 0.245062 0.131290i
\(47\) −2.60947 + 1.50658i −0.380631 + 0.219757i −0.678093 0.734976i \(-0.737193\pi\)
0.297462 + 0.954734i \(0.403860\pi\)
\(48\) 0 0
\(49\) −0.674484 + 1.16824i −0.0963548 + 0.166891i
\(50\) −3.92046 + 5.88472i −0.554437 + 0.832226i
\(51\) 0 0
\(52\) 0.592728 9.31609i 0.0821965 1.29191i
\(53\) 1.70763 0.234561 0.117281 0.993099i \(-0.462582\pi\)
0.117281 + 0.993099i \(0.462582\pi\)
\(54\) 0 0
\(55\) −1.54515 + 0.859104i −0.208347 + 0.115842i
\(56\) −3.39423 7.43444i −0.453573 0.993469i
\(57\) 0 0
\(58\) −0.119034 + 3.74556i −0.0156299 + 0.491816i
\(59\) 5.29436 9.17010i 0.689267 1.19385i −0.282808 0.959176i \(-0.591266\pi\)
0.972075 0.234669i \(-0.0754007\pi\)
\(60\) 0 0
\(61\) −0.869749 1.50645i −0.111360 0.192881i 0.804959 0.593331i \(-0.202187\pi\)
−0.916319 + 0.400450i \(0.868854\pi\)
\(62\) −3.26598 + 1.74972i −0.414779 + 0.222214i
\(63\) 0 0
\(64\) 7.85510 + 1.51570i 0.981888 + 0.189463i
\(65\) −5.36375 + 8.95300i −0.665291 + 1.11048i
\(66\) 0 0
\(67\) −3.76721 + 6.52500i −0.460238 + 0.797155i −0.998973 0.0453201i \(-0.985569\pi\)
0.538735 + 0.842476i \(0.318903\pi\)
\(68\) −5.23532 10.5652i −0.634875 1.28122i
\(69\) 0 0
\(70\) −0.437767 + 9.12678i −0.0523232 + 1.09086i
\(71\) −2.88566 −0.342465 −0.171233 0.985231i \(-0.554775\pi\)
−0.171233 + 0.985231i \(0.554775\pi\)
\(72\) 0 0
\(73\) 6.50847i 0.761759i −0.924625 0.380880i \(-0.875621\pi\)
0.924625 0.380880i \(-0.124379\pi\)
\(74\) 8.94040 + 5.54766i 1.03930 + 0.644902i
\(75\) 0 0
\(76\) −8.16289 + 4.04491i −0.936347 + 0.463983i
\(77\) −1.14226 + 1.97845i −0.130172 + 0.225465i
\(78\) 0 0
\(79\) 3.30854 1.91019i 0.372240 0.214913i −0.302197 0.953246i \(-0.597720\pi\)
0.674436 + 0.738333i \(0.264387\pi\)
\(80\) −7.02826 5.53205i −0.785783 0.618502i
\(81\) 0 0
\(82\) 8.51521 4.56194i 0.940347 0.503782i
\(83\) −8.33679 + 4.81325i −0.915081 + 0.528322i −0.882063 0.471132i \(-0.843845\pi\)
−0.0330187 + 0.999455i \(0.510512\pi\)
\(84\) 0 0
\(85\) −0.213017 + 13.1812i −0.0231049 + 1.42971i
\(86\) −16.8277 0.534782i −1.81457 0.0576670i
\(87\) 0 0
\(88\) −0.928756 2.03427i −0.0990057 0.216854i
\(89\) 0.00741921i 0.000786434i −1.00000 0.000393217i \(-0.999875\pi\)
1.00000 0.000393217i \(-0.000125165\pi\)
\(90\) 0 0
\(91\) 13.4864i 1.41376i
\(92\) 0.169319 2.66124i 0.0176528 0.277454i
\(93\) 0 0
\(94\) −0.135354 + 4.25910i −0.0139607 + 0.439293i
\(95\) 10.1841 + 0.164581i 1.04486 + 0.0168857i
\(96\) 0 0
\(97\) −5.74925 + 3.31933i −0.583748 + 0.337027i −0.762621 0.646845i \(-0.776088\pi\)
0.178874 + 0.983872i \(0.442755\pi\)
\(98\) 0.900905 + 1.68161i 0.0910051 + 0.169868i
\(99\) 0 0
\(100\) 4.14817 + 9.09905i 0.414817 + 0.909905i
\(101\) 2.20027 1.27033i 0.218935 0.126402i −0.386522 0.922280i \(-0.626324\pi\)
0.605457 + 0.795878i \(0.292990\pi\)
\(102\) 0 0
\(103\) −3.82824 + 6.63071i −0.377208 + 0.653343i −0.990655 0.136393i \(-0.956449\pi\)
0.613447 + 0.789736i \(0.289782\pi\)
\(104\) −10.7529 7.65883i −1.05441 0.751010i
\(105\) 0 0
\(106\) 1.27330 2.05200i 0.123674 0.199308i
\(107\) 13.7118i 1.32557i −0.748808 0.662787i \(-0.769374\pi\)
0.748808 0.662787i \(-0.230626\pi\)
\(108\) 0 0
\(109\) −13.2664 −1.27069 −0.635347 0.772227i \(-0.719143\pi\)
−0.635347 + 0.772227i \(0.719143\pi\)
\(110\) −0.119785 + 2.49734i −0.0114211 + 0.238112i
\(111\) 0 0
\(112\) −11.4646 1.46478i −1.08331 0.138409i
\(113\) 4.62487 8.01051i 0.435071 0.753565i −0.562230 0.826981i \(-0.690057\pi\)
0.997301 + 0.0734153i \(0.0233899\pi\)
\(114\) 0 0
\(115\) −1.53221 + 2.55752i −0.142880 + 0.238490i
\(116\) 4.41216 + 2.93593i 0.409659 + 0.272594i
\(117\) 0 0
\(118\) −7.07165 13.1998i −0.650998 1.21514i
\(119\) 8.51754 + 14.7528i 0.780802 + 1.35239i
\(120\) 0 0
\(121\) 5.18745 8.98492i 0.471586 0.816811i
\(122\) −2.45878 0.0781398i −0.222608 0.00707445i
\(123\) 0 0
\(124\) −0.332709 + 5.22929i −0.0298781 + 0.469604i
\(125\) 0.541784 11.1672i 0.0484587 0.998825i
\(126\) 0 0
\(127\) 9.77239 0.867159 0.433580 0.901115i \(-0.357250\pi\)
0.433580 + 0.901115i \(0.357250\pi\)
\(128\) 7.67855 8.30902i 0.678694 0.734421i
\(129\) 0 0
\(130\) 6.75903 + 13.1213i 0.592806 + 1.15081i
\(131\) −6.61827 + 11.4632i −0.578241 + 1.00154i 0.417440 + 0.908704i \(0.362927\pi\)
−0.995681 + 0.0928382i \(0.970406\pi\)
\(132\) 0 0
\(133\) 11.3983 6.58082i 0.988359 0.570629i
\(134\) 5.03184 + 9.39231i 0.434685 + 0.811372i
\(135\) 0 0
\(136\) −16.5996 1.58688i −1.42340 0.136073i
\(137\) 1.57622 + 2.73010i 0.134666 + 0.233248i 0.925470 0.378822i \(-0.123671\pi\)
−0.790804 + 0.612069i \(0.790337\pi\)
\(138\) 0 0
\(139\) −2.22556 1.28493i −0.188770 0.108986i 0.402637 0.915360i \(-0.368094\pi\)
−0.591407 + 0.806374i \(0.701427\pi\)
\(140\) 10.6409 + 7.33145i 0.899322 + 0.619621i
\(141\) 0 0
\(142\) −2.15170 + 3.46761i −0.180567 + 0.290995i
\(143\) 3.69027i 0.308596i
\(144\) 0 0
\(145\) −2.87932 5.17861i −0.239114 0.430060i
\(146\) −7.82101 4.85306i −0.647272 0.401642i
\(147\) 0 0
\(148\) 13.3329 6.60675i 1.09595 0.543072i
\(149\) −8.52719 4.92318i −0.698575 0.403322i 0.108242 0.994125i \(-0.465478\pi\)
−0.806816 + 0.590802i \(0.798811\pi\)
\(150\) 0 0
\(151\) 9.24153 5.33560i 0.752065 0.434205i −0.0743744 0.997230i \(-0.523696\pi\)
0.826440 + 0.563025i \(0.190363\pi\)
\(152\) −1.22605 + 12.8252i −0.0994458 + 1.04026i
\(153\) 0 0
\(154\) 1.52571 + 2.84784i 0.122945 + 0.229486i
\(155\) 3.01077 5.02549i 0.241831 0.403657i
\(156\) 0 0
\(157\) −12.9992 7.50509i −1.03745 0.598972i −0.118340 0.992973i \(-0.537757\pi\)
−0.919110 + 0.394001i \(0.871091\pi\)
\(158\) 0.171614 5.40009i 0.0136529 0.429608i
\(159\) 0 0
\(160\) −11.8883 + 4.32064i −0.939854 + 0.341576i
\(161\) 3.85255i 0.303624i
\(162\) 0 0
\(163\) 4.15873 0.325737 0.162869 0.986648i \(-0.447925\pi\)
0.162869 + 0.986648i \(0.447925\pi\)
\(164\) 0.867455 13.6341i 0.0677368 1.06464i
\(165\) 0 0
\(166\) −0.432431 + 13.6070i −0.0335631 + 1.05611i
\(167\) 0.0288855 + 0.0166770i 0.00223522 + 0.00129051i 0.501117 0.865379i \(-0.332923\pi\)
−0.498882 + 0.866670i \(0.666256\pi\)
\(168\) 0 0
\(169\) 4.39261 + 7.60822i 0.337893 + 0.585248i
\(170\) 15.6806 + 10.0846i 1.20265 + 0.773453i
\(171\) 0 0
\(172\) −13.1902 + 19.8225i −1.00575 + 1.51145i
\(173\) −11.9161 20.6392i −0.905962 1.56917i −0.819621 0.572906i \(-0.805816\pi\)
−0.0863411 0.996266i \(-0.527517\pi\)
\(174\) 0 0
\(175\) −6.81558 12.7386i −0.515210 0.962948i
\(176\) −3.13705 0.400806i −0.236464 0.0302119i
\(177\) 0 0
\(178\) −0.00891541 0.00553215i −0.000668238 0.000414652i
\(179\) −25.5288 −1.90811 −0.954055 0.299631i \(-0.903136\pi\)
−0.954055 + 0.299631i \(0.903136\pi\)
\(180\) 0 0
\(181\) 25.6109 1.90364 0.951821 0.306653i \(-0.0992092\pi\)
0.951821 + 0.306653i \(0.0992092\pi\)
\(182\) 16.2062 + 10.0562i 1.20128 + 0.745415i
\(183\) 0 0
\(184\) −3.07168 2.18783i −0.226447 0.161289i
\(185\) −16.6342 0.268819i −1.22297 0.0197639i
\(186\) 0 0
\(187\) 2.33064 + 4.03678i 0.170433 + 0.295199i
\(188\) 5.01709 + 3.33846i 0.365909 + 0.243482i
\(189\) 0 0
\(190\) 7.79155 12.1151i 0.565259 0.878925i
\(191\) 3.85863 + 6.68334i 0.279200 + 0.483589i 0.971186 0.238322i \(-0.0765973\pi\)
−0.691986 + 0.721911i \(0.743264\pi\)
\(192\) 0 0
\(193\) −4.47373 2.58291i −0.322026 0.185922i 0.330269 0.943887i \(-0.392861\pi\)
−0.652295 + 0.757965i \(0.726194\pi\)
\(194\) −0.298215 + 9.38374i −0.0214106 + 0.673714i
\(195\) 0 0
\(196\) 2.69249 + 0.171307i 0.192321 + 0.0122362i
\(197\) −8.47116 −0.603545 −0.301773 0.953380i \(-0.597578\pi\)
−0.301773 + 0.953380i \(0.597578\pi\)
\(198\) 0 0
\(199\) 0.555967i 0.0394115i −0.999806 0.0197057i \(-0.993727\pi\)
0.999806 0.0197057i \(-0.00627293\pi\)
\(200\) 14.0271 + 1.80001i 0.991867 + 0.127280i
\(201\) 0 0
\(202\) 0.114128 3.59121i 0.00803004 0.252677i
\(203\) −6.63083 3.82831i −0.465393 0.268695i
\(204\) 0 0
\(205\) −7.84983 + 13.1027i −0.548256 + 0.915131i
\(206\) 5.11336 + 9.54447i 0.356265 + 0.664995i
\(207\) 0 0
\(208\) −17.2213 + 7.21053i −1.19408 + 0.499960i
\(209\) 3.11890 1.80070i 0.215739 0.124557i
\(210\) 0 0
\(211\) 21.0649 + 12.1618i 1.45016 + 0.837253i 0.998490 0.0549298i \(-0.0174935\pi\)
0.451675 + 0.892183i \(0.350827\pi\)
\(212\) −1.51638 3.06016i −0.104146 0.210173i
\(213\) 0 0
\(214\) −16.4771 10.2243i −1.12635 0.698917i
\(215\) 23.2659 12.9359i 1.58672 0.882222i
\(216\) 0 0
\(217\) 7.57019i 0.513898i
\(218\) −9.89215 + 15.9418i −0.669981 + 1.07972i
\(219\) 0 0
\(220\) 2.91165 + 2.00609i 0.196304 + 0.135251i
\(221\) 23.8308 + 13.7587i 1.60304 + 0.925513i
\(222\) 0 0
\(223\) 0.169636 + 0.293817i 0.0113596 + 0.0196755i 0.871649 0.490130i \(-0.163051\pi\)
−0.860290 + 0.509805i \(0.829717\pi\)
\(224\) −10.3088 + 12.6844i −0.688787 + 0.847515i
\(225\) 0 0
\(226\) −6.17741 11.5306i −0.410915 0.767005i
\(227\) 7.45137 4.30205i 0.494565 0.285537i −0.231902 0.972739i \(-0.574495\pi\)
0.726466 + 0.687202i \(0.241161\pi\)
\(228\) 0 0
\(229\) 0.358866 0.621574i 0.0237145 0.0410748i −0.853925 0.520397i \(-0.825784\pi\)
0.877639 + 0.479322i \(0.159117\pi\)
\(230\) 1.93079 + 3.74824i 0.127313 + 0.247151i
\(231\) 0 0
\(232\) 6.81794 3.11276i 0.447620 0.204363i
\(233\) −13.8379 −0.906553 −0.453276 0.891370i \(-0.649745\pi\)
−0.453276 + 0.891370i \(0.649745\pi\)
\(234\) 0 0
\(235\) −3.27409 5.88864i −0.213578 0.384132i
\(236\) −21.1347 1.34468i −1.37575 0.0875310i
\(237\) 0 0
\(238\) 24.0791 + 0.765231i 1.56082 + 0.0496026i
\(239\) 13.8553 23.9980i 0.896223 1.55230i 0.0639388 0.997954i \(-0.479634\pi\)
0.832284 0.554350i \(-0.187033\pi\)
\(240\) 0 0
\(241\) −5.71303 9.89526i −0.368009 0.637410i 0.621245 0.783616i \(-0.286627\pi\)
−0.989254 + 0.146206i \(0.953294\pi\)
\(242\) −6.92884 12.9332i −0.445403 0.831378i
\(243\) 0 0
\(244\) −1.92729 + 2.89637i −0.123382 + 0.185421i
\(245\) −2.58755 1.55021i −0.165313 0.0990390i
\(246\) 0 0
\(247\) 10.6303 18.4122i 0.676388 1.17154i
\(248\) 6.03578 + 4.29904i 0.383272 + 0.272989i
\(249\) 0 0
\(250\) −13.0153 8.97790i −0.823158 0.567812i
\(251\) −5.05161 −0.318855 −0.159427 0.987210i \(-0.550965\pi\)
−0.159427 + 0.987210i \(0.550965\pi\)
\(252\) 0 0
\(253\) 1.05417i 0.0662749i
\(254\) 7.28681 11.7432i 0.457215 0.736831i
\(255\) 0 0
\(256\) −4.25914 15.4227i −0.266197 0.963919i
\(257\) −1.32366 + 2.29265i −0.0825679 + 0.143012i −0.904352 0.426787i \(-0.859645\pi\)
0.821784 + 0.569799i \(0.192979\pi\)
\(258\) 0 0
\(259\) −18.6174 + 10.7488i −1.15683 + 0.667897i
\(260\) 20.8073 + 1.66181i 1.29041 + 0.103061i
\(261\) 0 0
\(262\) 8.83999 + 16.5005i 0.546136 + 1.01940i
\(263\) −2.19210 + 1.26561i −0.135171 + 0.0780408i −0.566060 0.824364i \(-0.691533\pi\)
0.430890 + 0.902405i \(0.358200\pi\)
\(264\) 0 0
\(265\) −0.0616994 + 3.81788i −0.00379016 + 0.234531i
\(266\) 0.591232 18.6040i 0.0362508 1.14068i
\(267\) 0 0
\(268\) 15.0384 + 0.956806i 0.918618 + 0.0584462i
\(269\) 5.26469i 0.320994i −0.987036 0.160497i \(-0.948690\pi\)
0.987036 0.160497i \(-0.0513097\pi\)
\(270\) 0 0
\(271\) 16.6468i 1.01122i −0.862761 0.505612i \(-0.831267\pi\)
0.862761 0.505612i \(-0.168733\pi\)
\(272\) −14.2844 + 18.7639i −0.866120 + 1.13773i
\(273\) 0 0
\(274\) 4.45598 + 0.141611i 0.269196 + 0.00855501i
\(275\) −1.86493 3.48564i −0.112460 0.210192i
\(276\) 0 0
\(277\) 22.8566 13.1963i 1.37332 0.792888i 0.381978 0.924171i \(-0.375243\pi\)
0.991345 + 0.131283i \(0.0419097\pi\)
\(278\) −3.20355 + 1.71627i −0.192136 + 0.102935i
\(279\) 0 0
\(280\) 16.7444 7.32012i 1.00067 0.437461i
\(281\) 19.8511 11.4611i 1.18422 0.683710i 0.227233 0.973840i \(-0.427032\pi\)
0.956987 + 0.290131i \(0.0936987\pi\)
\(282\) 0 0
\(283\) 3.25733 5.64186i 0.193628 0.335374i −0.752822 0.658224i \(-0.771308\pi\)
0.946450 + 0.322851i \(0.104641\pi\)
\(284\) 2.56248 + 5.17126i 0.152055 + 0.306858i
\(285\) 0 0
\(286\) 4.43447 + 2.75166i 0.262216 + 0.162709i
\(287\) 19.7374i 1.16506i
\(288\) 0 0
\(289\) 17.7581 1.04459
\(290\) −8.36994 0.401465i −0.491500 0.0235749i
\(291\) 0 0
\(292\) −11.6635 + 5.77955i −0.682556 + 0.338223i
\(293\) −8.37272 + 14.5020i −0.489140 + 0.847215i −0.999922 0.0124952i \(-0.996023\pi\)
0.510782 + 0.859710i \(0.329356\pi\)
\(294\) 0 0
\(295\) 20.3110 + 12.1683i 1.18255 + 0.708468i
\(296\) 2.00257 20.9480i 0.116397 1.21758i
\(297\) 0 0
\(298\) −12.2743 + 6.57586i −0.711033 + 0.380929i
\(299\) 3.11159 + 5.38944i 0.179948 + 0.311679i
\(300\) 0 0
\(301\) 17.1995 29.7903i 0.991360 1.71709i
\(302\) 0.479360 15.0837i 0.0275841 0.867972i
\(303\) 0 0
\(304\) 14.4974 + 11.0364i 0.831481 + 0.632982i
\(305\) 3.39951 1.89013i 0.194655 0.108229i
\(306\) 0 0
\(307\) −24.2759 −1.38550 −0.692749 0.721179i \(-0.743600\pi\)
−0.692749 + 0.721179i \(0.743600\pi\)
\(308\) 4.55980 + 0.290113i 0.259819 + 0.0165307i
\(309\) 0 0
\(310\) −3.79397 7.36521i −0.215483 0.418316i
\(311\) 3.81664 6.61061i 0.216422 0.374853i −0.737290 0.675577i \(-0.763895\pi\)
0.953711 + 0.300723i \(0.0972281\pi\)
\(312\) 0 0
\(313\) 3.85836 2.22762i 0.218087 0.125913i −0.386977 0.922089i \(-0.626481\pi\)
0.605064 + 0.796177i \(0.293147\pi\)
\(314\) −18.7115 + 10.0245i −1.05595 + 0.565716i
\(315\) 0 0
\(316\) −6.36115 4.23282i −0.357842 0.238115i
\(317\) −2.47795 4.29194i −0.139176 0.241059i 0.788009 0.615663i \(-0.211112\pi\)
−0.927185 + 0.374604i \(0.877779\pi\)
\(318\) 0 0
\(319\) −1.81438 1.04753i −0.101586 0.0586506i
\(320\) −3.67259 + 17.5075i −0.205304 + 0.978698i
\(321\) 0 0
\(322\) 4.62948 + 2.87267i 0.257991 + 0.160087i
\(323\) 26.8548i 1.49424i
\(324\) 0 0
\(325\) −19.8231 12.3156i −1.09959 0.683148i
\(326\) 3.10097 4.99741i 0.171747 0.276781i
\(327\) 0 0
\(328\) −15.7368 11.2087i −0.868918 0.618895i
\(329\) −7.53997 4.35320i −0.415692 0.240000i
\(330\) 0 0
\(331\) −23.0250 + 13.2935i −1.26557 + 0.730676i −0.974146 0.225918i \(-0.927462\pi\)
−0.291422 + 0.956594i \(0.594129\pi\)
\(332\) 16.0287 + 10.6658i 0.879689 + 0.585360i
\(333\) 0 0
\(334\) 0.0415787 0.0222754i 0.00227509 0.00121886i
\(335\) −14.4523 8.65839i −0.789615 0.473059i
\(336\) 0 0
\(337\) 10.7769 + 6.22205i 0.587056 + 0.338937i 0.763933 0.645296i \(-0.223266\pi\)
−0.176877 + 0.984233i \(0.556599\pi\)
\(338\) 12.4179 + 0.394640i 0.675445 + 0.0214656i
\(339\) 0 0
\(340\) 23.8106 11.3233i 1.29131 0.614090i
\(341\) 2.07142i 0.112173i
\(342\) 0 0
\(343\) 16.3284 0.881652
\(344\) 13.9847 + 30.6309i 0.754004 + 1.65151i
\(345\) 0 0
\(346\) −33.6867 1.07056i −1.81101 0.0575537i
\(347\) 14.6546 + 8.46084i 0.786701 + 0.454202i 0.838800 0.544440i \(-0.183258\pi\)
−0.0520991 + 0.998642i \(0.516591\pi\)
\(348\) 0 0
\(349\) −0.955553 1.65507i −0.0511496 0.0885937i 0.839317 0.543642i \(-0.182955\pi\)
−0.890467 + 0.455049i \(0.849622\pi\)
\(350\) −20.3896 1.30851i −1.08987 0.0699430i
\(351\) 0 0
\(352\) −2.82078 + 3.47082i −0.150348 + 0.184995i
\(353\) 11.0561 + 19.1497i 0.588457 + 1.01924i 0.994435 + 0.105355i \(0.0335978\pi\)
−0.405978 + 0.913883i \(0.633069\pi\)
\(354\) 0 0
\(355\) 0.104263 6.45170i 0.00553373 0.342421i
\(356\) −0.0132956 + 0.00658829i −0.000704665 + 0.000349178i
\(357\) 0 0
\(358\) −19.0356 + 30.6771i −1.00606 + 1.62133i
\(359\) −1.48034 −0.0781296 −0.0390648 0.999237i \(-0.512438\pi\)
−0.0390648 + 0.999237i \(0.512438\pi\)
\(360\) 0 0
\(361\) −1.74850 −0.0920262
\(362\) 19.0968 30.7757i 1.00371 1.61754i
\(363\) 0 0
\(364\) 24.1684 11.9760i 1.26677 0.627714i
\(365\) 14.5515 + 0.235161i 0.761660 + 0.0123089i
\(366\) 0 0
\(367\) 0.0631149 + 0.109318i 0.00329457 + 0.00570636i 0.867668 0.497144i \(-0.165618\pi\)
−0.864373 + 0.502850i \(0.832285\pi\)
\(368\) −4.91944 + 2.05977i −0.256444 + 0.107373i
\(369\) 0 0
\(370\) −12.7263 + 19.7883i −0.661611 + 1.02874i
\(371\) 2.46707 + 4.27308i 0.128084 + 0.221847i
\(372\) 0 0
\(373\) −19.8527 11.4620i −1.02794 0.593479i −0.111543 0.993760i \(-0.535579\pi\)
−0.916393 + 0.400280i \(0.868913\pi\)
\(374\) 6.58871 + 0.209389i 0.340694 + 0.0108272i
\(375\) 0 0
\(376\) 7.75273 3.53954i 0.399816 0.182538i
\(377\) −12.3681 −0.636988
\(378\) 0 0
\(379\) 27.5123i 1.41321i 0.707608 + 0.706605i \(0.249774\pi\)
−0.707608 + 0.706605i \(0.750226\pi\)
\(380\) −8.74857 18.3965i −0.448792 0.943722i
\(381\) 0 0
\(382\) 10.9083 + 0.346666i 0.558119 + 0.0177370i
\(383\) 20.5507 + 11.8649i 1.05009 + 0.606270i 0.922675 0.385579i \(-0.125998\pi\)
0.127416 + 0.991849i \(0.459332\pi\)
\(384\) 0 0
\(385\) −4.38209 2.62531i −0.223332 0.133798i
\(386\) −6.43965 + 3.44998i −0.327770 + 0.175599i
\(387\) 0 0
\(388\) 11.0538 + 7.35537i 0.561170 + 0.373412i
\(389\) 1.58128 0.912954i 0.0801742 0.0462886i −0.459377 0.888241i \(-0.651927\pi\)
0.539551 + 0.841953i \(0.318594\pi\)
\(390\) 0 0
\(391\) 6.80755 + 3.93034i 0.344272 + 0.198766i
\(392\) 2.21352 3.10774i 0.111800 0.156965i
\(393\) 0 0
\(394\) −6.31654 + 10.1795i −0.318223 + 0.512836i
\(395\) 4.15120 + 7.46617i 0.208870 + 0.375664i
\(396\) 0 0
\(397\) 19.0828i 0.957737i 0.877887 + 0.478868i \(0.158953\pi\)
−0.877887 + 0.478868i \(0.841047\pi\)
\(398\) −0.668087 0.414558i −0.0334882 0.0207799i
\(399\) 0 0
\(400\) 12.6224 15.5137i 0.631118 0.775687i
\(401\) 15.1375 + 8.73963i 0.755930 + 0.436436i 0.827833 0.560975i \(-0.189574\pi\)
−0.0719025 + 0.997412i \(0.522907\pi\)
\(402\) 0 0
\(403\) −6.11422 10.5901i −0.304571 0.527533i
\(404\) −4.23034 2.81494i −0.210467 0.140048i
\(405\) 0 0
\(406\) −9.54466 + 5.11346i −0.473693 + 0.253777i
\(407\) −5.09425 + 2.94117i −0.252513 + 0.145788i
\(408\) 0 0
\(409\) −8.17716 + 14.1633i −0.404335 + 0.700328i −0.994244 0.107142i \(-0.965830\pi\)
0.589909 + 0.807470i \(0.299164\pi\)
\(410\) 9.89181 + 19.2029i 0.488522 + 0.948365i
\(411\) 0 0
\(412\) 15.2821 + 0.972307i 0.752893 + 0.0479021i
\(413\) 30.5957 1.50551
\(414\) 0 0
\(415\) −10.4601 18.8131i −0.513467 0.923499i
\(416\) −4.17642 + 26.0708i −0.204766 + 1.27822i
\(417\) 0 0
\(418\) 0.161778 5.09057i 0.00791281 0.248988i
\(419\) −12.3846 + 21.4508i −0.605029 + 1.04794i 0.387018 + 0.922072i \(0.373505\pi\)
−0.992047 + 0.125869i \(0.959828\pi\)
\(420\) 0 0
\(421\) 8.38623 + 14.5254i 0.408720 + 0.707923i 0.994747 0.102368i \(-0.0326420\pi\)
−0.586027 + 0.810292i \(0.699309\pi\)
\(422\) 30.3215 16.2445i 1.47603 0.790768i
\(423\) 0 0
\(424\) −4.80799 0.459631i −0.233497 0.0223217i
\(425\) −29.4626 0.952517i −1.42915 0.0462038i
\(426\) 0 0
\(427\) 2.51310 4.35282i 0.121618 0.210648i
\(428\) −24.5723 + 12.1762i −1.18775 + 0.588558i
\(429\) 0 0
\(430\) 1.80366 37.6036i 0.0869803 1.81341i
\(431\) 15.2488 0.734510 0.367255 0.930120i \(-0.380298\pi\)
0.367255 + 0.930120i \(0.380298\pi\)
\(432\) 0 0
\(433\) 23.5695i 1.13268i 0.824172 + 0.566340i \(0.191641\pi\)
−0.824172 + 0.566340i \(0.808359\pi\)
\(434\) −9.09684 5.64473i −0.436662 0.270956i
\(435\) 0 0
\(436\) 11.7806 + 23.7741i 0.564191 + 1.13857i
\(437\) 3.03665 5.25964i 0.145263 0.251603i
\(438\) 0 0
\(439\) 12.8688 7.42979i 0.614193 0.354605i −0.160412 0.987050i \(-0.551282\pi\)
0.774605 + 0.632446i \(0.217949\pi\)
\(440\) 4.58173 2.00299i 0.218426 0.0954887i
\(441\) 0 0
\(442\) 34.3030 18.3775i 1.63163 0.874128i
\(443\) 23.5062 13.5713i 1.11681 0.644791i 0.176226 0.984350i \(-0.443611\pi\)
0.940585 + 0.339558i \(0.110278\pi\)
\(444\) 0 0
\(445\) 0.0165877 0.000268067i 0.000786332 1.27076e-5i
\(446\) 0.479560 + 0.0152404i 0.0227078 + 0.000721652i
\(447\) 0 0
\(448\) 7.55568 + 21.8460i 0.356972 + 1.03212i
\(449\) 17.4879i 0.825304i 0.910889 + 0.412652i \(0.135398\pi\)
−0.910889 + 0.412652i \(0.864602\pi\)
\(450\) 0 0
\(451\) 5.40069i 0.254309i
\(452\) −18.4622 1.17464i −0.868386 0.0552503i
\(453\) 0 0
\(454\) 0.386504 12.1619i 0.0181395 0.570786i
\(455\) −30.1527 0.487286i −1.41358 0.0228443i
\(456\) 0 0
\(457\) −5.10627 + 2.94811i −0.238861 + 0.137907i −0.614653 0.788797i \(-0.710704\pi\)
0.375792 + 0.926704i \(0.377371\pi\)
\(458\) −0.479335 0.894715i −0.0223979 0.0418073i
\(459\) 0 0
\(460\) 5.94383 + 0.474715i 0.277132 + 0.0221337i
\(461\) −30.5948 + 17.6639i −1.42494 + 0.822691i −0.996716 0.0809799i \(-0.974195\pi\)
−0.428227 + 0.903671i \(0.640862\pi\)
\(462\) 0 0
\(463\) −18.6175 + 32.2464i −0.865227 + 1.49862i 0.00159457 + 0.999999i \(0.499492\pi\)
−0.866822 + 0.498618i \(0.833841\pi\)
\(464\) 1.34332 10.5139i 0.0623619 0.488097i
\(465\) 0 0
\(466\) −10.3183 + 16.6286i −0.477985 + 0.770304i
\(467\) 6.98334i 0.323151i 0.986860 + 0.161575i \(0.0516575\pi\)
−0.986860 + 0.161575i \(0.948343\pi\)
\(468\) 0 0
\(469\) −21.7704 −1.00526
\(470\) −9.51751 0.456509i −0.439010 0.0210572i
\(471\) 0 0
\(472\) −17.3750 + 24.3942i −0.799749 + 1.12283i
\(473\) 4.70625 8.15147i 0.216394 0.374805i
\(474\) 0 0
\(475\) −0.735933 + 22.7634i −0.0337669 + 1.04445i
\(476\) 18.8742 28.3644i 0.865097 1.30008i
\(477\) 0 0
\(478\) −18.5064 34.5436i −0.846463 1.57999i
\(479\) −10.2090 17.6825i −0.466460 0.807932i 0.532806 0.846237i \(-0.321137\pi\)
−0.999266 + 0.0383050i \(0.987804\pi\)
\(480\) 0 0
\(481\) −17.3630 + 30.0735i −0.791683 + 1.37124i
\(482\) −16.1507 0.513269i −0.735646 0.0233788i
\(483\) 0 0
\(484\) −20.7079 1.31752i −0.941269 0.0598874i
\(485\) −7.21355 12.9740i −0.327550 0.589117i
\(486\) 0 0
\(487\) −20.8264 −0.943735 −0.471868 0.881669i \(-0.656420\pi\)
−0.471868 + 0.881669i \(0.656420\pi\)
\(488\) 2.04338 + 4.47565i 0.0924993 + 0.202603i
\(489\) 0 0
\(490\) −3.79225 + 1.95346i −0.171316 + 0.0882484i
\(491\) −9.31608 + 16.1359i −0.420429 + 0.728204i −0.995981 0.0895606i \(-0.971454\pi\)
0.575552 + 0.817765i \(0.304787\pi\)
\(492\) 0 0
\(493\) −13.5294 + 7.81122i −0.609335 + 0.351800i
\(494\) −14.1988 26.5031i −0.638834 1.19243i
\(495\) 0 0
\(496\) 9.66661 4.04740i 0.434044 0.181734i
\(497\) −4.16900 7.22093i −0.187005 0.323903i
\(498\) 0 0
\(499\) 4.48667 + 2.59038i 0.200851 + 0.115961i 0.597052 0.802202i \(-0.296338\pi\)
−0.396201 + 0.918164i \(0.629672\pi\)
\(500\) −20.4933 + 8.94562i −0.916489 + 0.400060i
\(501\) 0 0
\(502\) −3.76675 + 6.07035i −0.168118 + 0.270933i
\(503\) 27.8846i 1.24331i 0.783290 + 0.621657i \(0.213540\pi\)
−0.783290 + 0.621657i \(0.786460\pi\)
\(504\) 0 0
\(505\) 2.76066 + 4.96521i 0.122848 + 0.220949i
\(506\) 1.26676 + 0.786042i 0.0563142 + 0.0349438i
\(507\) 0 0
\(508\) −8.67792 17.5126i −0.385021 0.776997i
\(509\) −18.6724 10.7805i −0.827640 0.477838i 0.0254039 0.999677i \(-0.491913\pi\)
−0.853044 + 0.521839i \(0.825246\pi\)
\(510\) 0 0
\(511\) 16.2864 9.40298i 0.720470 0.415963i
\(512\) −21.7088 6.38191i −0.959402 0.282043i
\(513\) 0 0
\(514\) 1.76801 + 3.30013i 0.0779837 + 0.145562i
\(515\) −14.6865 8.79867i −0.647163 0.387716i
\(516\) 0 0
\(517\) −2.06315 1.19116i −0.0907371 0.0523871i
\(518\) −0.965690 + 30.3868i −0.0424300 + 1.33512i
\(519\) 0 0
\(520\) 17.5119 23.7643i 0.767950 1.04213i
\(521\) 19.9411i 0.873633i −0.899551 0.436817i \(-0.856106\pi\)
0.899551 0.436817i \(-0.143894\pi\)
\(522\) 0 0
\(523\) 18.9360 0.828013 0.414006 0.910274i \(-0.364129\pi\)
0.414006 + 0.910274i \(0.364129\pi\)
\(524\) 26.4197 + 1.68093i 1.15415 + 0.0734316i
\(525\) 0 0
\(526\) −0.113705 + 3.57788i −0.00495776 + 0.156003i
\(527\) −13.3767 7.72304i −0.582698 0.336421i
\(528\) 0 0
\(529\) −10.6111 18.3790i −0.461354 0.799088i
\(530\) 4.54182 + 2.92096i 0.197284 + 0.126878i
\(531\) 0 0
\(532\) −21.9149 14.5826i −0.950132 0.632234i
\(533\) 15.9413 + 27.6111i 0.690494 + 1.19597i
\(534\) 0 0
\(535\) 30.6566 + 0.495430i 1.32540 + 0.0214193i
\(536\) 12.3632 17.3577i 0.534009 0.749740i
\(537\) 0 0
\(538\) −6.32640 3.92563i −0.272751 0.169246i
\(539\) −1.06654 −0.0459393
\(540\) 0 0
\(541\) −13.2697 −0.570511 −0.285255 0.958452i \(-0.592078\pi\)
−0.285255 + 0.958452i \(0.592078\pi\)
\(542\) −20.0039 12.4128i −0.859243 0.533174i
\(543\) 0 0
\(544\) 11.8967 + 31.1565i 0.510069 + 1.33582i
\(545\) 0.479336 29.6608i 0.0205325 1.27053i
\(546\) 0 0
\(547\) −4.51377 7.81809i −0.192995 0.334277i 0.753246 0.657738i \(-0.228487\pi\)
−0.946241 + 0.323461i \(0.895153\pi\)
\(548\) 3.49278 5.24901i 0.149204 0.224227i
\(549\) 0 0
\(550\) −5.57917 0.358046i −0.237897 0.0152671i
\(551\) 6.03510 + 10.4531i 0.257104 + 0.445317i
\(552\) 0 0
\(553\) 9.55988 + 5.51940i 0.406527 + 0.234709i
\(554\) 1.18558 37.3059i 0.0503704 1.58498i
\(555\) 0 0
\(556\) −0.326350 + 5.12935i −0.0138403 + 0.217533i
\(557\) 30.4174 1.28883 0.644414 0.764677i \(-0.277101\pi\)
0.644414 + 0.764677i \(0.277101\pi\)
\(558\) 0 0
\(559\) 55.5660i 2.35019i
\(560\) 3.68916 25.5794i 0.155896 1.08093i
\(561\) 0 0
\(562\) 1.02968 32.4004i 0.0434345 1.36673i
\(563\) −39.1934 22.6283i −1.65180 0.953669i −0.976330 0.216284i \(-0.930606\pi\)
−0.675473 0.737385i \(-0.736060\pi\)
\(564\) 0 0
\(565\) 17.7426 + 10.6296i 0.746437 + 0.447191i
\(566\) −4.35080 8.12109i −0.182878 0.341355i
\(567\) 0 0
\(568\) 8.12485 + 0.776714i 0.340911 + 0.0325902i
\(569\) 4.42750 2.55622i 0.185610 0.107162i −0.404316 0.914620i \(-0.632490\pi\)
0.589926 + 0.807457i \(0.299157\pi\)
\(570\) 0 0
\(571\) −30.6553 17.6989i −1.28289 0.740675i −0.305511 0.952189i \(-0.598827\pi\)
−0.977375 + 0.211514i \(0.932161\pi\)
\(572\) 6.61315 3.27697i 0.276510 0.137017i
\(573\) 0 0
\(574\) 23.7177 + 14.7172i 0.989958 + 0.614284i
\(575\) −5.66269 3.51810i −0.236151 0.146715i
\(576\) 0 0
\(577\) 30.4257i 1.26664i −0.773890 0.633320i \(-0.781692\pi\)
0.773890 0.633320i \(-0.218308\pi\)
\(578\) 13.2414 21.3393i 0.550768 0.887597i
\(579\) 0 0
\(580\) −6.72349 + 9.75852i −0.279178 + 0.405200i
\(581\) −24.0888 13.9077i −0.999372 0.576987i
\(582\) 0 0
\(583\) 0.675058 + 1.16924i 0.0279581 + 0.0484248i
\(584\) −1.75184 + 18.3252i −0.0724916 + 0.758302i
\(585\) 0 0
\(586\) 11.1834 + 20.8747i 0.461982 + 0.862324i
\(587\) −25.3201 + 14.6186i −1.04507 + 0.603372i −0.921265 0.388934i \(-0.872843\pi\)
−0.123806 + 0.992306i \(0.539510\pi\)
\(588\) 0 0
\(589\) −5.96697 + 10.3351i −0.245865 + 0.425850i
\(590\) 29.7672 15.3337i 1.22550 0.631278i
\(591\) 0 0
\(592\) −23.6793 18.0264i −0.973213 0.740879i
\(593\) −1.73460 −0.0712314 −0.0356157 0.999366i \(-0.511339\pi\)
−0.0356157 + 0.999366i \(0.511339\pi\)
\(594\) 0 0
\(595\) −33.2917 + 18.5103i −1.36483 + 0.758847i
\(596\) −1.25040 + 19.6530i −0.0512185 + 0.805017i
\(597\) 0 0
\(598\) 8.79648 + 0.279551i 0.359715 + 0.0114317i
\(599\) −1.94974 + 3.37704i −0.0796641 + 0.137982i −0.903105 0.429420i \(-0.858718\pi\)
0.823441 + 0.567402i \(0.192051\pi\)
\(600\) 0 0
\(601\) 2.16133 + 3.74354i 0.0881625 + 0.152702i 0.906734 0.421702i \(-0.138567\pi\)
−0.818572 + 0.574404i \(0.805234\pi\)
\(602\) −22.9732 42.8812i −0.936319 1.74771i
\(603\) 0 0
\(604\) −17.7682 11.8233i −0.722978 0.481082i
\(605\) 19.9008 + 11.9226i 0.809084 + 0.484723i
\(606\) 0 0
\(607\) 6.33497 10.9725i 0.257128 0.445360i −0.708343 0.705868i \(-0.750557\pi\)
0.965471 + 0.260509i \(0.0838903\pi\)
\(608\) 24.0721 9.19165i 0.976252 0.372771i
\(609\) 0 0
\(610\) 0.263543 5.49446i 0.0106705 0.222464i
\(611\) −14.0638 −0.568961
\(612\) 0 0
\(613\) 47.3059i 1.91067i 0.295527 + 0.955334i \(0.404505\pi\)
−0.295527 + 0.955334i \(0.595495\pi\)
\(614\) −18.1014 + 29.1715i −0.730512 + 1.17727i
\(615\) 0 0
\(616\) 3.74865 5.26304i 0.151037 0.212054i
\(617\) −3.48880 + 6.04277i −0.140454 + 0.243273i −0.927668 0.373407i \(-0.878189\pi\)
0.787214 + 0.616680i \(0.211523\pi\)
\(618\) 0 0
\(619\) 24.9827 14.4238i 1.00414 0.579741i 0.0946695 0.995509i \(-0.469821\pi\)
0.909471 + 0.415768i \(0.136487\pi\)
\(620\) −11.6795 0.932805i −0.469060 0.0374624i
\(621\) 0 0
\(622\) −5.09786 9.51554i −0.204406 0.381538i
\(623\) 0.0185654 0.0107187i 0.000743807 0.000429437i
\(624\) 0 0
\(625\) 24.9478 + 1.61480i 0.997912 + 0.0645919i
\(626\) 0.200134 6.29750i 0.00799896 0.251699i
\(627\) 0 0
\(628\) −1.90616 + 29.9598i −0.0760643 + 1.19553i
\(629\) 43.8633i 1.74894i
\(630\) 0 0
\(631\) 31.3427i 1.24774i 0.781530 + 0.623868i \(0.214440\pi\)
−0.781530 + 0.623868i \(0.785560\pi\)
\(632\) −9.82964 + 4.48776i −0.391002 + 0.178514i
\(633\) 0 0
\(634\) −7.00517 0.222624i −0.278211 0.00884151i
\(635\) −0.353091 + 21.8489i −0.0140120 + 0.867046i
\(636\) 0 0
\(637\) −5.45272 + 3.14813i −0.216045 + 0.124733i
\(638\) −2.61169 + 1.39919i −0.103398 + 0.0553943i
\(639\) 0 0
\(640\) 18.2997 + 17.4677i 0.723358 + 0.690473i
\(641\) 17.6686 10.2010i 0.697869 0.402915i −0.108684 0.994076i \(-0.534664\pi\)
0.806553 + 0.591162i \(0.201330\pi\)
\(642\) 0 0
\(643\) −14.8702 + 25.7560i −0.586424 + 1.01572i 0.408272 + 0.912860i \(0.366131\pi\)
−0.994696 + 0.102856i \(0.967202\pi\)
\(644\) 6.90397 3.42108i 0.272055 0.134810i
\(645\) 0 0
\(646\) −32.2705 20.0243i −1.26966 0.787846i
\(647\) 7.37854i 0.290081i 0.989426 + 0.145040i \(0.0463312\pi\)
−0.989426 + 0.145040i \(0.953669\pi\)
\(648\) 0 0
\(649\) 8.37183 0.328623
\(650\) −29.5804 + 14.6376i −1.16024 + 0.574133i
\(651\) 0 0
\(652\) −3.69297 7.45266i −0.144628 0.291869i
\(653\) −7.32692 + 12.6906i −0.286724 + 0.496621i −0.973026 0.230696i \(-0.925900\pi\)
0.686301 + 0.727317i \(0.259233\pi\)
\(654\) 0 0
\(655\) −25.3900 15.2112i −0.992068 0.594349i
\(656\) −25.2032 + 10.5526i −0.984021 + 0.412009i
\(657\) 0 0
\(658\) −10.8533 + 5.81455i −0.423105 + 0.226675i
\(659\) 3.26655 + 5.65782i 0.127247 + 0.220398i 0.922609 0.385737i \(-0.126053\pi\)
−0.795362 + 0.606134i \(0.792719\pi\)
\(660\) 0 0
\(661\) 13.4007 23.2106i 0.521225 0.902788i −0.478470 0.878104i \(-0.658809\pi\)
0.999695 0.0246846i \(-0.00785816\pi\)
\(662\) −1.19431 + 37.5807i −0.0464182 + 1.46062i
\(663\) 0 0
\(664\) 24.7685 11.3082i 0.961205 0.438842i
\(665\) 14.3014 + 25.7218i 0.554584 + 0.997450i
\(666\) 0 0
\(667\) −3.53308 −0.136801
\(668\) 0.00423568 0.0665735i 0.000163883 0.00257581i
\(669\) 0 0
\(670\) −21.1809 + 10.9107i −0.818290 + 0.421518i
\(671\) 0.687656 1.19105i 0.0265466 0.0459801i
\(672\) 0 0
\(673\) −16.3504 + 9.43992i −0.630262 + 0.363882i −0.780854 0.624714i \(-0.785216\pi\)
0.150591 + 0.988596i \(0.451882\pi\)
\(674\) 15.5127 8.31076i 0.597526 0.320119i
\(675\) 0 0
\(676\) 9.73367 14.6279i 0.374372 0.562612i
\(677\) 10.1163 + 17.5219i 0.388800 + 0.673421i 0.992288 0.123950i \(-0.0395564\pi\)
−0.603488 + 0.797372i \(0.706223\pi\)
\(678\) 0 0
\(679\) −16.6122 9.59106i −0.637518 0.368071i
\(680\) 4.14767 37.0556i 0.159056 1.42102i
\(681\) 0 0
\(682\) −2.48915 1.54456i −0.0953145 0.0591441i
\(683\) 15.3795i 0.588481i 0.955731 + 0.294241i \(0.0950667\pi\)
−0.955731 + 0.294241i \(0.904933\pi\)
\(684\) 0 0
\(685\) −6.16084 + 3.42544i −0.235393 + 0.130879i
\(686\) 12.1753 19.6213i 0.464856 0.749145i
\(687\) 0 0
\(688\) 47.2359 + 6.03511i 1.80085 + 0.230086i
\(689\) 6.90249 + 3.98516i 0.262964 + 0.151822i
\(690\) 0 0
\(691\) 13.7773 7.95434i 0.524114 0.302598i −0.214502 0.976724i \(-0.568813\pi\)
0.738616 + 0.674126i \(0.235480\pi\)
\(692\) −26.4051 + 39.6819i −1.00377 + 1.50848i
\(693\) 0 0
\(694\) 21.0944 11.3011i 0.800731 0.428984i
\(695\) 2.95323 4.92944i 0.112022 0.186984i
\(696\) 0 0
\(697\) 34.8763 + 20.1359i 1.32104 + 0.762700i
\(698\) −2.70135 0.0858486i −0.102248 0.00324942i
\(699\) 0 0
\(700\) −16.7760 + 23.5258i −0.634072 + 0.889192i
\(701\) 38.9767i 1.47213i 0.676912 + 0.736064i \(0.263318\pi\)
−0.676912 + 0.736064i \(0.736682\pi\)
\(702\) 0 0
\(703\) 33.8896 1.27817
\(704\) 2.06745 + 5.97767i 0.0779198 + 0.225292i
\(705\) 0 0
\(706\) 31.2556 + 0.993301i 1.17632 + 0.0373834i
\(707\) 6.35758 + 3.67055i 0.239102 + 0.138045i
\(708\) 0 0
\(709\) −6.59388 11.4209i −0.247638 0.428922i 0.715232 0.698887i \(-0.246321\pi\)
−0.962870 + 0.269965i \(0.912988\pi\)
\(710\) −7.67505 4.93602i −0.288039 0.185245i
\(711\) 0 0
\(712\) −0.00199697 + 0.0208894i −7.48398e−5 + 0.000782865i
\(713\) −1.74660 3.02519i −0.0654105 0.113294i
\(714\) 0 0
\(715\) −8.25061 0.133335i −0.308555 0.00498645i
\(716\) 22.6697 + 45.7489i 0.847205 + 1.70972i
\(717\) 0 0
\(718\) −1.10382 + 1.77888i −0.0411943 + 0.0663872i
\(719\) 43.7650 1.63216 0.816079 0.577940i \(-0.196143\pi\)
0.816079 + 0.577940i \(0.196143\pi\)
\(720\) 0 0
\(721\) −22.1231 −0.823907
\(722\) −1.30377 + 2.10111i −0.0485214 + 0.0781953i
\(723\) 0 0
\(724\) −22.7426 45.8960i −0.845221 1.70571i
\(725\) 11.6823 6.25040i 0.433868 0.232134i
\(726\) 0 0
\(727\) 4.95811 + 8.58770i 0.183886 + 0.318500i 0.943201 0.332224i \(-0.107799\pi\)
−0.759314 + 0.650724i \(0.774466\pi\)
\(728\) 3.63005 37.9723i 0.134539 1.40735i
\(729\) 0 0
\(730\) 11.1329 17.3107i 0.412049 0.640697i
\(731\) −35.0935 60.7837i −1.29798 2.24816i
\(732\) 0 0
\(733\) −24.2247 13.9862i −0.894761 0.516591i −0.0192642 0.999814i \(-0.506132\pi\)
−0.875497 + 0.483224i \(0.839466\pi\)
\(734\) 0.178426 + 0.00567035i 0.00658581 + 0.000209297i
\(735\) 0 0
\(736\) −1.19304 + 7.44740i −0.0439761 + 0.274515i
\(737\) −5.95699 −0.219428
\(738\) 0 0
\(739\) 24.2237i 0.891082i 0.895262 + 0.445541i \(0.146989\pi\)
−0.895262 + 0.445541i \(0.853011\pi\)
\(740\) 14.2895 + 30.0480i 0.525292 + 1.10459i
\(741\) 0 0
\(742\) 6.97439 + 0.221646i 0.256038 + 0.00813687i
\(743\) 43.9304 + 25.3632i 1.61165 + 0.930486i 0.988988 + 0.147993i \(0.0472814\pi\)
0.622660 + 0.782492i \(0.286052\pi\)
\(744\) 0 0
\(745\) 11.3152 18.8870i 0.414558 0.691967i
\(746\) −28.5767 + 15.3097i −1.04627 + 0.560528i
\(747\) 0 0
\(748\) 5.16451 7.76131i 0.188833 0.283781i
\(749\) 34.3117 19.8099i 1.25372 0.723838i
\(750\) 0 0
\(751\) 0.581286 + 0.335605i 0.0212114 + 0.0122464i 0.510568 0.859837i \(-0.329435\pi\)
−0.489357 + 0.872084i \(0.662768\pi\)
\(752\) 1.52749 11.9555i 0.0557020 0.435971i
\(753\) 0 0
\(754\) −9.22229 + 14.8623i −0.335856 + 0.541253i
\(755\) 11.5953 + 20.8548i 0.421996 + 0.758983i
\(756\) 0 0
\(757\) 17.0611i 0.620095i −0.950721 0.310048i \(-0.899655\pi\)
0.950721 0.310048i \(-0.100345\pi\)
\(758\) 33.0606 + 20.5146i 1.20081 + 0.745123i
\(759\) 0 0
\(760\) −28.6299 3.20457i −1.03852 0.116242i
\(761\) −6.74677 3.89525i −0.244570 0.141203i 0.372705 0.927950i \(-0.378430\pi\)
−0.617275 + 0.786747i \(0.711764\pi\)
\(762\) 0 0
\(763\) −19.1664 33.1972i −0.693870 1.20182i
\(764\) 8.55041 12.8497i 0.309343 0.464886i
\(765\) 0 0
\(766\) 29.5814 15.8479i 1.06882 0.572609i
\(767\) 42.8011 24.7112i 1.54546 0.892271i
\(768\) 0 0
\(769\) 4.58773 7.94618i 0.165438 0.286546i −0.771373 0.636383i \(-0.780430\pi\)
0.936811 + 0.349837i \(0.113763\pi\)
\(770\) −6.42227 + 3.30824i −0.231442 + 0.119221i
\(771\) 0 0
\(772\) −0.656015 + 10.3108i −0.0236105 + 0.371094i
\(773\) −32.0512 −1.15280 −0.576401 0.817167i \(-0.695543\pi\)
−0.576401 + 0.817167i \(0.695543\pi\)
\(774\) 0 0
\(775\) 11.1271 + 6.91299i 0.399696 + 0.248322i
\(776\) 17.0810 7.79839i 0.613171 0.279946i
\(777\) 0 0
\(778\) 0.0820214 2.58092i 0.00294061 0.0925305i
\(779\) 15.5574 26.9461i 0.557400 0.965445i
\(780\) 0 0
\(781\) −1.14076 1.97585i −0.0408195 0.0707014i
\(782\) 9.79902 5.24973i 0.350412 0.187730i
\(783\) 0 0
\(784\) −2.08395 4.97720i −0.0744269 0.177757i
\(785\) 17.2494 28.7921i 0.615657 1.02764i
\(786\) 0 0
\(787\) −1.97855 + 3.42695i −0.0705276 + 0.122157i −0.899133 0.437676i \(-0.855802\pi\)
0.828605 + 0.559834i \(0.189135\pi\)
\(788\) 7.52243 + 15.1808i 0.267975 + 0.540792i
\(789\) 0 0
\(790\) 12.0672 + 0.578805i 0.429332 + 0.0205930i
\(791\) 26.7267 0.950293
\(792\) 0 0
\(793\) 8.11904i 0.288316i
\(794\) 22.9311 + 14.2291i 0.813795 + 0.504972i
\(795\) 0 0
\(796\) −0.996321 + 0.493701i −0.0353137 + 0.0174988i
\(797\) 4.99178 8.64602i 0.176818 0.306258i −0.763971 0.645251i \(-0.776753\pi\)
0.940789 + 0.338993i \(0.110086\pi\)
\(798\) 0 0
\(799\) −15.3844 + 8.88219i −0.544261 + 0.314229i
\(800\) −9.23043 26.7357i −0.326345 0.945251i
\(801\) 0 0
\(802\) 21.7894 11.6735i 0.769412 0.412205i
\(803\) 4.45643 2.57292i 0.157264 0.0907963i
\(804\) 0 0
\(805\) −8.61344 0.139199i −0.303584 0.00490611i
\(806\) −17.2849 0.549313i −0.608835 0.0193487i
\(807\) 0 0
\(808\) −6.53698 + 2.98449i −0.229970 + 0.104994i
\(809\) 37.9989i 1.33597i −0.744174 0.667986i \(-0.767157\pi\)
0.744174 0.667986i \(-0.232843\pi\)
\(810\) 0 0
\(811\) 21.3193i 0.748622i −0.927303 0.374311i \(-0.877879\pi\)
0.927303 0.374311i \(-0.122121\pi\)
\(812\) −0.972326 + 15.2824i −0.0341219 + 0.536306i
\(813\) 0 0
\(814\) −0.264240 + 8.31469i −0.00926161 + 0.291430i
\(815\) −0.150261 + 9.29799i −0.00526343 + 0.325695i
\(816\) 0 0
\(817\) −46.9626 + 27.1139i −1.64301 + 0.948595i
\(818\) 10.9222 + 20.3871i 0.381885 + 0.712818i
\(819\) 0 0
\(820\) 30.4514 + 2.43205i 1.06341 + 0.0849310i
\(821\) 4.11744 2.37721i 0.143700 0.0829651i −0.426426 0.904522i \(-0.640228\pi\)
0.570126 + 0.821557i \(0.306894\pi\)
\(822\) 0 0
\(823\) −20.4702 + 35.4554i −0.713546 + 1.23590i 0.249972 + 0.968253i \(0.419578\pi\)
−0.963518 + 0.267644i \(0.913755\pi\)
\(824\) 12.5635 17.6389i 0.437670 0.614482i
\(825\) 0 0
\(826\) 22.8137 36.7658i 0.793792 1.27925i
\(827\) 26.4974i 0.921406i −0.887554 0.460703i \(-0.847597\pi\)
0.887554 0.460703i \(-0.152403\pi\)
\(828\) 0 0
\(829\) 38.1524 1.32509 0.662544 0.749023i \(-0.269477\pi\)
0.662544 + 0.749023i \(0.269477\pi\)
\(830\) −30.4067 1.45846i −1.05543 0.0506239i
\(831\) 0 0
\(832\) 28.2142 + 24.4584i 0.978151 + 0.847942i
\(833\) −3.97649 + 6.88748i −0.137777 + 0.238637i
\(834\) 0 0
\(835\) −0.0383298 + 0.0639789i −0.00132646 + 0.00221408i
\(836\) −5.99653 3.99020i −0.207394 0.138004i
\(837\) 0 0
\(838\) 16.5421 + 30.8771i 0.571437 + 1.06663i
\(839\) 8.60385 + 14.9023i 0.297038 + 0.514485i 0.975457 0.220190i \(-0.0706679\pi\)
−0.678419 + 0.734675i \(0.737335\pi\)
\(840\) 0 0
\(841\) −10.9891 + 19.0338i −0.378936 + 0.656337i
\(842\) 23.7079 + 0.753434i 0.817027 + 0.0259650i
\(843\) 0 0
\(844\) 3.08889 48.5490i 0.106324 1.67113i
\(845\) −17.1690 + 9.54600i −0.590631 + 0.328392i
\(846\) 0 0
\(847\) 29.9778 1.03005
\(848\) −4.13742 + 5.43488i −0.142079 + 0.186634i
\(849\) 0 0
\(850\) −23.1135 + 34.6940i −0.792785 + 1.18999i
\(851\) −4.95992 + 8.59084i −0.170024 + 0.294490i
\(852\) 0 0
\(853\) 37.6416 21.7324i 1.28882 0.744102i 0.310378 0.950613i \(-0.399544\pi\)
0.978444 + 0.206511i \(0.0662109\pi\)
\(854\) −3.35674 6.26561i −0.114865 0.214405i
\(855\) 0 0
\(856\) −3.69072 + 38.6069i −0.126146 + 1.31956i
\(857\) −6.72648 11.6506i −0.229772 0.397977i 0.727968 0.685611i \(-0.240465\pi\)
−0.957741 + 0.287634i \(0.907131\pi\)
\(858\) 0 0
\(859\) −1.00899 0.582541i −0.0344263 0.0198760i 0.482688 0.875792i \(-0.339660\pi\)
−0.517114 + 0.855916i \(0.672994\pi\)
\(860\) −43.8421 30.2066i −1.49500 1.03004i
\(861\) 0 0
\(862\) 11.3703 18.3240i 0.387275 0.624118i
\(863\) 0.0600669i 0.00204470i −0.999999 0.00102235i \(-0.999675\pi\)
0.999999 0.00102235i \(-0.000325424\pi\)
\(864\) 0 0
\(865\) 46.5753 25.8959i 1.58361 0.880488i
\(866\) 28.3227 + 17.5747i 0.962446 + 0.597212i
\(867\) 0 0
\(868\) −13.5662 + 6.72236i −0.460466 + 0.228172i
\(869\) 2.61585 + 1.51026i 0.0887367 + 0.0512321i
\(870\) 0 0
\(871\) −30.4552 + 17.5833i −1.03193 + 0.595788i
\(872\) 37.3528 + 3.57083i 1.26493 + 0.120924i
\(873\) 0 0
\(874\) −4.05604 7.57091i −0.137198 0.256090i
\(875\) 28.7269 14.7779i 0.971147 0.499583i
\(876\) 0 0
\(877\) 5.64252 + 3.25771i 0.190534 + 0.110005i 0.592233 0.805767i \(-0.298247\pi\)
−0.401698 + 0.915772i \(0.631580\pi\)
\(878\) 0.667506 21.0040i 0.0225272 0.708851i
\(879\) 0 0
\(880\) 1.00946 6.99925i 0.0340288 0.235945i
\(881\) 12.1468i 0.409237i 0.978842 + 0.204619i \(0.0655954\pi\)
−0.978842 + 0.204619i \(0.934405\pi\)
\(882\) 0 0
\(883\) 30.7337 1.03427 0.517135 0.855904i \(-0.326998\pi\)
0.517135 + 0.855904i \(0.326998\pi\)
\(884\) 3.49448 54.9239i 0.117532 1.84729i
\(885\) 0 0
\(886\) 1.21927 38.3660i 0.0409621 1.28893i
\(887\) −48.2108 27.8345i −1.61876 0.934592i −0.987241 0.159231i \(-0.949099\pi\)
−0.631519 0.775361i \(-0.717568\pi\)
\(888\) 0 0
\(889\) 14.1185 + 24.4539i 0.473518 + 0.820157i
\(890\) 0.0126908 0.0197330i 0.000425396 0.000661451i
\(891\) 0 0
\(892\) 0.375899 0.564907i 0.0125860 0.0189145i
\(893\) 6.86255 + 11.8863i 0.229647 + 0.397760i
\(894\) 0 0
\(895\) 0.922394 57.0766i 0.0308322 1.90786i
\(896\) 31.8855 + 7.21008i 1.06522 + 0.240872i
\(897\) 0 0
\(898\) 21.0146 + 13.0399i 0.701267 + 0.435147i
\(899\) 6.94243 0.231543
\(900\) 0 0
\(901\) 10.0675 0.335397
\(902\) 6.48983 + 4.02704i 0.216088 + 0.134086i
\(903\) 0 0
\(904\) −15.1779 + 21.3095i −0.504809 + 0.708743i
\(905\) −0.925361 + 57.2602i −0.0307600 + 1.90339i
\(906\) 0 0
\(907\) 8.31258 + 14.3978i 0.276015 + 0.478072i 0.970391 0.241541i \(-0.0776528\pi\)
−0.694376 + 0.719612i \(0.744319\pi\)
\(908\) −14.3263 9.53299i −0.475436 0.316363i
\(909\) 0 0
\(910\) −23.0690 + 35.8701i −0.764729 + 1.18908i
\(911\) −9.29200 16.0942i −0.307858 0.533225i 0.670036 0.742329i \(-0.266279\pi\)
−0.977893 + 0.209104i \(0.932945\pi\)
\(912\) 0 0
\(913\) −6.59137 3.80553i −0.218143 0.125945i
\(914\) −0.264863 + 8.33430i −0.00876090 + 0.275674i
\(915\) 0 0
\(916\) −1.43257 0.0911458i −0.0473334 0.00301154i
\(917\) −38.2464 −1.26301
\(918\) 0 0
\(919\) 31.1617i 1.02793i 0.857811 + 0.513965i \(0.171824\pi\)
−0.857811 + 0.513965i \(0.828176\pi\)
\(920\) 5.00248 6.78853i 0.164927 0.223811i
\(921\) 0 0
\(922\) −1.58696 + 49.9359i −0.0522637 + 1.64455i
\(923\) −11.6643 6.73437i −0.383934 0.221664i
\(924\) 0 0
\(925\) 1.20204 37.1806i 0.0395227 1.22249i
\(926\) 24.8672 + 46.4166i 0.817189 + 1.52534i
\(927\) 0 0
\(928\) −11.6326 9.45396i −0.381858 0.310341i
\(929\) −24.5849 + 14.1941i −0.806604 + 0.465693i −0.845775 0.533540i \(-0.820861\pi\)
0.0391715 + 0.999233i \(0.487528\pi\)
\(930\) 0 0
\(931\) 5.32140 + 3.07231i 0.174402 + 0.100691i
\(932\) 12.2881 + 24.7983i 0.402511 + 0.812295i
\(933\) 0 0
\(934\) 8.39165 + 5.20715i 0.274583 + 0.170383i
\(935\) −9.10955 + 5.06493i −0.297914 + 0.165641i
\(936\) 0 0
\(937\) 25.1998i 0.823241i −0.911355 0.411620i \(-0.864963\pi\)
0.911355 0.411620i \(-0.135037\pi\)
\(938\) −16.2331 + 26.1607i −0.530031 + 0.854179i
\(939\) 0 0
\(940\) −7.64533 + 11.0965i −0.249363 + 0.361927i
\(941\) −35.0946 20.2619i −1.14405 0.660519i −0.196622 0.980479i \(-0.562997\pi\)
−0.947431 + 0.319960i \(0.896330\pi\)
\(942\) 0 0
\(943\) 4.55381 + 7.88742i 0.148292 + 0.256850i
\(944\) 16.3580 + 39.0686i 0.532407 + 1.27157i
\(945\) 0 0
\(946\) −6.28612 11.7335i −0.204379 0.381489i
\(947\) −0.518242 + 0.299207i −0.0168406 + 0.00972293i −0.508397 0.861123i \(-0.669762\pi\)
0.491556 + 0.870846i \(0.336428\pi\)
\(948\) 0 0
\(949\) 15.1890 26.3082i 0.493057 0.853999i
\(950\) 26.8052 + 17.8579i 0.869676 + 0.579387i
\(951\) 0 0
\(952\) −20.0110 43.8305i −0.648560 1.42055i
\(953\) −2.50405 −0.0811142 −0.0405571 0.999177i \(-0.512913\pi\)
−0.0405571 + 0.999177i \(0.512913\pi\)
\(954\) 0 0
\(955\) −15.0819 + 8.38555i −0.488038 + 0.271350i
\(956\) −55.3092 3.51900i −1.78883 0.113813i
\(957\) 0 0
\(958\) −28.8608 0.917193i −0.932449 0.0296332i
\(959\) −4.55443 + 7.88850i −0.147070 + 0.254733i
\(960\) 0 0
\(961\) −12.0680 20.9023i −0.389289 0.674269i
\(962\) 23.1916 + 43.2889i 0.747728 + 1.39569i
\(963\) 0 0
\(964\) −12.6596 + 19.0251i −0.407739 + 0.612756i
\(965\) 5.93646 9.90894i 0.191101 0.318980i
\(966\) 0 0
\(967\) −18.5754 + 32.1736i −0.597346 + 1.03463i 0.395866 + 0.918308i \(0.370445\pi\)
−0.993211 + 0.116325i \(0.962889\pi\)
\(968\) −17.0241 + 23.9016i −0.547176 + 0.768226i
\(969\) 0 0
\(970\) −20.9692 1.00579i −0.673280 0.0322940i
\(971\) 14.7960 0.474826 0.237413 0.971409i \(-0.423701\pi\)
0.237413 + 0.971409i \(0.423701\pi\)
\(972\) 0 0
\(973\) 7.42550i 0.238051i
\(974\) −15.5293 + 25.0264i −0.497590 + 0.801898i
\(975\) 0 0
\(976\) 6.90189 + 0.881822i 0.220924 + 0.0282264i
\(977\) 16.1759 28.0175i 0.517514 0.896360i −0.482279 0.876018i \(-0.660191\pi\)
0.999793 0.0203428i \(-0.00647578\pi\)
\(978\) 0 0
\(979\) 0.00508002 0.00293295i 0.000162358 9.37374e-5i
\(980\) −0.480289 + 6.01362i −0.0153423 + 0.192098i
\(981\) 0 0
\(982\) 12.4434 + 23.2266i 0.397086 + 0.741191i
\(983\) −2.93257 + 1.69312i −0.0935346 + 0.0540022i −0.546038 0.837761i \(-0.683864\pi\)
0.452503 + 0.891763i \(0.350531\pi\)
\(984\) 0 0
\(985\) 0.306076 18.9396i 0.00975239 0.603467i
\(986\) −0.701774 + 22.0823i −0.0223490 + 0.703245i
\(987\) 0 0
\(988\) −42.4353 2.69991i −1.35005 0.0858954i
\(989\) 15.8731i 0.504734i
\(990\) 0 0
\(991\) 39.7022i 1.26118i −0.776116 0.630591i \(-0.782813\pi\)
0.776116 0.630591i \(-0.217187\pi\)
\(992\) 2.34430 14.6340i 0.0744317 0.464630i
\(993\) 0 0
\(994\) −11.7858 0.374551i −0.373822 0.0118800i
\(995\) 1.24302 + 0.0200879i 0.0394063 + 0.000636830i
\(996\) 0 0
\(997\) −17.8325 + 10.2956i −0.564760 + 0.326064i −0.755054 0.655663i \(-0.772389\pi\)
0.190294 + 0.981727i \(0.439056\pi\)
\(998\) 6.45827 3.45995i 0.204433 0.109523i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.179.17 48
3.2 odd 2 180.2.n.d.59.8 yes 48
4.3 odd 2 inner 540.2.n.d.179.1 48
5.4 even 2 inner 540.2.n.d.179.8 48
9.2 odd 6 inner 540.2.n.d.359.24 48
9.7 even 3 180.2.n.d.119.1 yes 48
12.11 even 2 180.2.n.d.59.24 yes 48
15.2 even 4 900.2.r.g.851.5 48
15.8 even 4 900.2.r.g.851.20 48
15.14 odd 2 180.2.n.d.59.17 yes 48
20.19 odd 2 inner 540.2.n.d.179.24 48
36.7 odd 6 180.2.n.d.119.17 yes 48
36.11 even 6 inner 540.2.n.d.359.8 48
45.7 odd 12 900.2.r.g.551.13 48
45.29 odd 6 inner 540.2.n.d.359.1 48
45.34 even 6 180.2.n.d.119.24 yes 48
45.43 odd 12 900.2.r.g.551.12 48
60.23 odd 4 900.2.r.g.851.12 48
60.47 odd 4 900.2.r.g.851.13 48
60.59 even 2 180.2.n.d.59.1 48
180.7 even 12 900.2.r.g.551.5 48
180.43 even 12 900.2.r.g.551.20 48
180.79 odd 6 180.2.n.d.119.8 yes 48
180.119 even 6 inner 540.2.n.d.359.17 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.1 48 60.59 even 2
180.2.n.d.59.8 yes 48 3.2 odd 2
180.2.n.d.59.17 yes 48 15.14 odd 2
180.2.n.d.59.24 yes 48 12.11 even 2
180.2.n.d.119.1 yes 48 9.7 even 3
180.2.n.d.119.8 yes 48 180.79 odd 6
180.2.n.d.119.17 yes 48 36.7 odd 6
180.2.n.d.119.24 yes 48 45.34 even 6
540.2.n.d.179.1 48 4.3 odd 2 inner
540.2.n.d.179.8 48 5.4 even 2 inner
540.2.n.d.179.17 48 1.1 even 1 trivial
540.2.n.d.179.24 48 20.19 odd 2 inner
540.2.n.d.359.1 48 45.29 odd 6 inner
540.2.n.d.359.8 48 36.11 even 6 inner
540.2.n.d.359.17 48 180.119 even 6 inner
540.2.n.d.359.24 48 9.2 odd 6 inner
900.2.r.g.551.5 48 180.7 even 12
900.2.r.g.551.12 48 45.43 odd 12
900.2.r.g.551.13 48 45.7 odd 12
900.2.r.g.551.20 48 180.43 even 12
900.2.r.g.851.5 48 15.2 even 4
900.2.r.g.851.12 48 60.23 odd 4
900.2.r.g.851.13 48 60.47 odd 4
900.2.r.g.851.20 48 15.8 even 4