Properties

Label 540.2.n.d.179.8
Level $540$
Weight $2$
Character 540.179
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.8
Character \(\chi\) \(=\) 540.179
Dual form 540.2.n.d.359.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.745653 + 1.20167i) q^{2} +(-0.888004 - 1.79205i) q^{4} +(1.91817 - 1.14918i) q^{5} +(-1.44473 - 2.50234i) q^{7} +(2.81559 + 0.269163i) q^{8} +(-0.0493612 + 3.16189i) q^{10} +(0.395318 + 0.684712i) q^{11} +(-4.04214 - 2.33373i) q^{13} +(4.08425 + 0.129797i) q^{14} +(-2.42290 + 3.18270i) q^{16} -5.89560 q^{17} -4.55505i q^{19} +(-3.76273 - 2.41699i) q^{20} +(-1.11756 - 0.0355161i) q^{22} +(-1.15468 - 0.666656i) q^{23} +(2.35878 - 4.40865i) q^{25} +(5.81840 - 3.11715i) q^{26} +(-3.20140 + 4.81112i) q^{28} +(-2.29484 + 1.32492i) q^{29} +(-2.26893 - 1.30997i) q^{31} +(-2.01790 - 5.28470i) q^{32} +(4.39607 - 7.08454i) q^{34} +(-5.64688 - 3.13968i) q^{35} -7.44000i q^{37} +(5.47365 + 3.39649i) q^{38} +(5.71011 - 2.71932i) q^{40} +(5.91566 + 3.41541i) q^{41} +(5.95249 + 10.3100i) q^{43} +(0.875994 - 1.31646i) q^{44} +(1.66209 - 0.890449i) q^{46} +(2.60947 - 1.50658i) q^{47} +(-0.674484 + 1.16824i) q^{49} +(3.53890 + 6.12178i) q^{50} +(-0.592728 + 9.31609i) q^{52} -1.70763 q^{53} +(1.54515 + 0.859104i) q^{55} +(-3.39423 - 7.43444i) q^{56} +(0.119034 - 3.74556i) q^{58} +(5.29436 - 9.17010i) q^{59} +(-0.869749 - 1.50645i) q^{61} +(3.26598 - 1.74972i) q^{62} +(7.85510 + 1.51570i) q^{64} +(-10.4354 + 0.168643i) q^{65} +(3.76721 - 6.52500i) q^{67} +(5.23532 + 10.5652i) q^{68} +(7.98346 - 4.44456i) q^{70} -2.88566 q^{71} +6.50847i q^{73} +(8.94040 + 5.54766i) q^{74} +(-8.16289 + 4.04491i) q^{76} +(1.14226 - 1.97845i) q^{77} +(3.30854 - 1.91019i) q^{79} +(-0.990045 + 8.88931i) q^{80} +(-8.51521 + 4.56194i) q^{82} +(8.33679 - 4.81325i) q^{83} +(-11.3088 + 6.77510i) q^{85} +(-16.8277 - 0.534782i) q^{86} +(0.928756 + 2.03427i) q^{88} -0.00741921i q^{89} +13.4864i q^{91} +(-0.169319 + 2.66124i) q^{92} +(-0.135354 + 4.25910i) q^{94} +(-5.23457 - 8.73738i) q^{95} +(5.74925 - 3.31933i) q^{97} +(-0.900905 - 1.68161i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.745653 + 1.20167i −0.527256 + 0.849706i
\(3\) 0 0
\(4\) −0.888004 1.79205i −0.444002 0.896026i
\(5\) 1.91817 1.14918i 0.857833 0.513928i
\(6\) 0 0
\(7\) −1.44473 2.50234i −0.546056 0.945797i −0.998540 0.0540243i \(-0.982795\pi\)
0.452483 0.891773i \(-0.350538\pi\)
\(8\) 2.81559 + 0.269163i 0.995462 + 0.0951634i
\(9\) 0 0
\(10\) −0.0493612 + 3.16189i −0.0156094 + 0.999878i
\(11\) 0.395318 + 0.684712i 0.119193 + 0.206448i 0.919448 0.393211i \(-0.128636\pi\)
−0.800255 + 0.599660i \(0.795303\pi\)
\(12\) 0 0
\(13\) −4.04214 2.33373i −1.12109 0.647261i −0.179410 0.983774i \(-0.557419\pi\)
−0.941679 + 0.336514i \(0.890752\pi\)
\(14\) 4.08425 + 0.129797i 1.09156 + 0.0346897i
\(15\) 0 0
\(16\) −2.42290 + 3.18270i −0.605724 + 0.795675i
\(17\) −5.89560 −1.42989 −0.714946 0.699179i \(-0.753549\pi\)
−0.714946 + 0.699179i \(0.753549\pi\)
\(18\) 0 0
\(19\) 4.55505i 1.04500i −0.852639 0.522500i \(-0.824999\pi\)
0.852639 0.522500i \(-0.175001\pi\)
\(20\) −3.76273 2.41699i −0.841373 0.540455i
\(21\) 0 0
\(22\) −1.11756 0.0355161i −0.238266 0.00757206i
\(23\) −1.15468 0.666656i −0.240768 0.139007i 0.374762 0.927121i \(-0.377725\pi\)
−0.615530 + 0.788114i \(0.711058\pi\)
\(24\) 0 0
\(25\) 2.35878 4.40865i 0.471755 0.881730i
\(26\) 5.81840 3.11715i 1.14108 0.611324i
\(27\) 0 0
\(28\) −3.20140 + 4.81112i −0.605008 + 0.909216i
\(29\) −2.29484 + 1.32492i −0.426140 + 0.246032i −0.697701 0.716389i \(-0.745794\pi\)
0.271561 + 0.962421i \(0.412460\pi\)
\(30\) 0 0
\(31\) −2.26893 1.30997i −0.407512 0.235277i 0.282208 0.959353i \(-0.408933\pi\)
−0.689720 + 0.724076i \(0.742266\pi\)
\(32\) −2.01790 5.28470i −0.356718 0.934212i
\(33\) 0 0
\(34\) 4.39607 7.08454i 0.753919 1.21499i
\(35\) −5.64688 3.13968i −0.954497 0.530702i
\(36\) 0 0
\(37\) 7.44000i 1.22313i −0.791195 0.611564i \(-0.790541\pi\)
0.791195 0.611564i \(-0.209459\pi\)
\(38\) 5.47365 + 3.39649i 0.887944 + 0.550983i
\(39\) 0 0
\(40\) 5.71011 2.71932i 0.902847 0.429962i
\(41\) 5.91566 + 3.41541i 0.923871 + 0.533397i 0.884868 0.465842i \(-0.154249\pi\)
0.0390029 + 0.999239i \(0.487582\pi\)
\(42\) 0 0
\(43\) 5.95249 + 10.3100i 0.907746 + 1.57226i 0.817189 + 0.576370i \(0.195531\pi\)
0.0905567 + 0.995891i \(0.471135\pi\)
\(44\) 0.875994 1.31646i 0.132061 0.198463i
\(45\) 0 0
\(46\) 1.66209 0.890449i 0.245062 0.131290i
\(47\) 2.60947 1.50658i 0.380631 0.219757i −0.297462 0.954734i \(-0.596140\pi\)
0.678093 + 0.734976i \(0.262807\pi\)
\(48\) 0 0
\(49\) −0.674484 + 1.16824i −0.0963548 + 0.166891i
\(50\) 3.53890 + 6.12178i 0.500476 + 0.865751i
\(51\) 0 0
\(52\) −0.592728 + 9.31609i −0.0821965 + 1.29191i
\(53\) −1.70763 −0.234561 −0.117281 0.993099i \(-0.537418\pi\)
−0.117281 + 0.993099i \(0.537418\pi\)
\(54\) 0 0
\(55\) 1.54515 + 0.859104i 0.208347 + 0.115842i
\(56\) −3.39423 7.43444i −0.453573 0.993469i
\(57\) 0 0
\(58\) 0.119034 3.74556i 0.0156299 0.491816i
\(59\) 5.29436 9.17010i 0.689267 1.19385i −0.282808 0.959176i \(-0.591266\pi\)
0.972075 0.234669i \(-0.0754007\pi\)
\(60\) 0 0
\(61\) −0.869749 1.50645i −0.111360 0.192881i 0.804959 0.593331i \(-0.202187\pi\)
−0.916319 + 0.400450i \(0.868854\pi\)
\(62\) 3.26598 1.74972i 0.414779 0.222214i
\(63\) 0 0
\(64\) 7.85510 + 1.51570i 0.981888 + 0.189463i
\(65\) −10.4354 + 0.168643i −1.29435 + 0.0209175i
\(66\) 0 0
\(67\) 3.76721 6.52500i 0.460238 0.797155i −0.538735 0.842476i \(-0.681097\pi\)
0.998973 + 0.0453201i \(0.0144308\pi\)
\(68\) 5.23532 + 10.5652i 0.634875 + 1.28122i
\(69\) 0 0
\(70\) 7.98346 4.44456i 0.954206 0.531226i
\(71\) −2.88566 −0.342465 −0.171233 0.985231i \(-0.554775\pi\)
−0.171233 + 0.985231i \(0.554775\pi\)
\(72\) 0 0
\(73\) 6.50847i 0.761759i 0.924625 + 0.380880i \(0.124379\pi\)
−0.924625 + 0.380880i \(0.875621\pi\)
\(74\) 8.94040 + 5.54766i 1.03930 + 0.644902i
\(75\) 0 0
\(76\) −8.16289 + 4.04491i −0.936347 + 0.463983i
\(77\) 1.14226 1.97845i 0.130172 0.225465i
\(78\) 0 0
\(79\) 3.30854 1.91019i 0.372240 0.214913i −0.302197 0.953246i \(-0.597720\pi\)
0.674436 + 0.738333i \(0.264387\pi\)
\(80\) −0.990045 + 8.88931i −0.110690 + 0.993855i
\(81\) 0 0
\(82\) −8.51521 + 4.56194i −0.940347 + 0.503782i
\(83\) 8.33679 4.81325i 0.915081 0.528322i 0.0330187 0.999455i \(-0.489488\pi\)
0.882063 + 0.471132i \(0.156155\pi\)
\(84\) 0 0
\(85\) −11.3088 + 6.77510i −1.22661 + 0.734862i
\(86\) −16.8277 0.534782i −1.81457 0.0576670i
\(87\) 0 0
\(88\) 0.928756 + 2.03427i 0.0990057 + 0.216854i
\(89\) 0.00741921i 0.000786434i −1.00000 0.000393217i \(-0.999875\pi\)
1.00000 0.000393217i \(-0.000125165\pi\)
\(90\) 0 0
\(91\) 13.4864i 1.41376i
\(92\) −0.169319 + 2.66124i −0.0176528 + 0.277454i
\(93\) 0 0
\(94\) −0.135354 + 4.25910i −0.0139607 + 0.439293i
\(95\) −5.23457 8.73738i −0.537055 0.896436i
\(96\) 0 0
\(97\) 5.74925 3.31933i 0.583748 0.337027i −0.178874 0.983872i \(-0.557245\pi\)
0.762621 + 0.646845i \(0.223912\pi\)
\(98\) −0.900905 1.68161i −0.0910051 0.169868i
\(99\) 0 0
\(100\) −9.99513 0.312149i −0.999513 0.0312149i
\(101\) 2.20027 1.27033i 0.218935 0.126402i −0.386522 0.922280i \(-0.626324\pi\)
0.605457 + 0.795878i \(0.292990\pi\)
\(102\) 0 0
\(103\) 3.82824 6.63071i 0.377208 0.653343i −0.613447 0.789736i \(-0.710218\pi\)
0.990655 + 0.136393i \(0.0435509\pi\)
\(104\) −10.7529 7.65883i −1.05441 0.751010i
\(105\) 0 0
\(106\) 1.27330 2.05200i 0.123674 0.199308i
\(107\) 13.7118i 1.32557i 0.748808 + 0.662787i \(0.230626\pi\)
−0.748808 + 0.662787i \(0.769374\pi\)
\(108\) 0 0
\(109\) −13.2664 −1.27069 −0.635347 0.772227i \(-0.719143\pi\)
−0.635347 + 0.772227i \(0.719143\pi\)
\(110\) −2.18450 + 1.21616i −0.208284 + 0.115956i
\(111\) 0 0
\(112\) 11.4646 + 1.46478i 1.08331 + 0.138409i
\(113\) −4.62487 + 8.01051i −0.435071 + 0.753565i −0.997301 0.0734153i \(-0.976610\pi\)
0.562230 + 0.826981i \(0.309943\pi\)
\(114\) 0 0
\(115\) −2.98099 + 0.0481746i −0.277979 + 0.00449231i
\(116\) 4.41216 + 2.93593i 0.409659 + 0.272594i
\(117\) 0 0
\(118\) 7.07165 + 13.1998i 0.650998 + 1.21514i
\(119\) 8.51754 + 14.7528i 0.780802 + 1.35239i
\(120\) 0 0
\(121\) 5.18745 8.98492i 0.471586 0.816811i
\(122\) 2.45878 + 0.0781398i 0.222608 + 0.00707445i
\(123\) 0 0
\(124\) −0.332709 + 5.22929i −0.0298781 + 0.469604i
\(125\) −0.541784 11.1672i −0.0484587 0.998825i
\(126\) 0 0
\(127\) −9.77239 −0.867159 −0.433580 0.901115i \(-0.642750\pi\)
−0.433580 + 0.901115i \(0.642750\pi\)
\(128\) −7.67855 + 8.30902i −0.678694 + 0.734421i
\(129\) 0 0
\(130\) 7.57853 12.6656i 0.664681 1.11085i
\(131\) −6.61827 + 11.4632i −0.578241 + 1.00154i 0.417440 + 0.908704i \(0.362927\pi\)
−0.995681 + 0.0928382i \(0.970406\pi\)
\(132\) 0 0
\(133\) −11.3983 + 6.58082i −0.988359 + 0.570629i
\(134\) 5.03184 + 9.39231i 0.434685 + 0.811372i
\(135\) 0 0
\(136\) −16.5996 1.58688i −1.42340 0.136073i
\(137\) −1.57622 2.73010i −0.134666 0.233248i 0.790804 0.612069i \(-0.209663\pi\)
−0.925470 + 0.378822i \(0.876329\pi\)
\(138\) 0 0
\(139\) −2.22556 1.28493i −0.188770 0.108986i 0.402637 0.915360i \(-0.368094\pi\)
−0.591407 + 0.806374i \(0.701427\pi\)
\(140\) −0.612008 + 12.9075i −0.0517241 + 1.09089i
\(141\) 0 0
\(142\) 2.15170 3.46761i 0.180567 0.290995i
\(143\) 3.69027i 0.308596i
\(144\) 0 0
\(145\) −2.87932 + 5.17861i −0.239114 + 0.430060i
\(146\) −7.82101 4.85306i −0.647272 0.401642i
\(147\) 0 0
\(148\) −13.3329 + 6.60675i −1.09595 + 0.543072i
\(149\) −8.52719 4.92318i −0.698575 0.403322i 0.108242 0.994125i \(-0.465478\pi\)
−0.806816 + 0.590802i \(0.798811\pi\)
\(150\) 0 0
\(151\) 9.24153 5.33560i 0.752065 0.434205i −0.0743744 0.997230i \(-0.523696\pi\)
0.826440 + 0.563025i \(0.190363\pi\)
\(152\) 1.22605 12.8252i 0.0994458 1.04026i
\(153\) 0 0
\(154\) 1.52571 + 2.84784i 0.122945 + 0.229486i
\(155\) −5.85758 + 0.0946622i −0.470493 + 0.00760345i
\(156\) 0 0
\(157\) 12.9992 + 7.50509i 1.03745 + 0.598972i 0.919110 0.394001i \(-0.128909\pi\)
0.118340 + 0.992973i \(0.462243\pi\)
\(158\) −0.171614 + 5.40009i −0.0136529 + 0.429608i
\(159\) 0 0
\(160\) −9.94375 7.81804i −0.786123 0.618070i
\(161\) 3.85255i 0.303624i
\(162\) 0 0
\(163\) −4.15873 −0.325737 −0.162869 0.986648i \(-0.552075\pi\)
−0.162869 + 0.986648i \(0.552075\pi\)
\(164\) 0.867455 13.6341i 0.0677368 1.06464i
\(165\) 0 0
\(166\) −0.432431 + 13.6070i −0.0335631 + 1.05611i
\(167\) −0.0288855 0.0166770i −0.00223522 0.00129051i 0.498882 0.866670i \(-0.333744\pi\)
−0.501117 + 0.865379i \(0.667077\pi\)
\(168\) 0 0
\(169\) 4.39261 + 7.60822i 0.337893 + 0.585248i
\(170\) 0.291014 18.6412i 0.0223197 1.42972i
\(171\) 0 0
\(172\) 13.1902 19.8225i 1.00575 1.51145i
\(173\) 11.9161 + 20.6392i 0.905962 + 1.56917i 0.819621 + 0.572906i \(0.194184\pi\)
0.0863411 + 0.996266i \(0.472483\pi\)
\(174\) 0 0
\(175\) −14.4397 + 0.466832i −1.09154 + 0.0352892i
\(176\) −3.13705 0.400806i −0.236464 0.0302119i
\(177\) 0 0
\(178\) 0.00891541 + 0.00553215i 0.000668238 + 0.000414652i
\(179\) −25.5288 −1.90811 −0.954055 0.299631i \(-0.903136\pi\)
−0.954055 + 0.299631i \(0.903136\pi\)
\(180\) 0 0
\(181\) 25.6109 1.90364 0.951821 0.306653i \(-0.0992092\pi\)
0.951821 + 0.306653i \(0.0992092\pi\)
\(182\) −16.2062 10.0562i −1.20128 0.745415i
\(183\) 0 0
\(184\) −3.07168 2.18783i −0.226447 0.161289i
\(185\) −8.54989 14.2712i −0.628601 1.04924i
\(186\) 0 0
\(187\) −2.33064 4.03678i −0.170433 0.295199i
\(188\) −5.01709 3.33846i −0.365909 0.243482i
\(189\) 0 0
\(190\) 14.4026 + 0.224843i 1.04487 + 0.0163118i
\(191\) 3.85863 + 6.68334i 0.279200 + 0.483589i 0.971186 0.238322i \(-0.0765973\pi\)
−0.691986 + 0.721911i \(0.743264\pi\)
\(192\) 0 0
\(193\) 4.47373 + 2.58291i 0.322026 + 0.185922i 0.652295 0.757965i \(-0.273806\pi\)
−0.330269 + 0.943887i \(0.607139\pi\)
\(194\) −0.298215 + 9.38374i −0.0214106 + 0.673714i
\(195\) 0 0
\(196\) 2.69249 + 0.171307i 0.192321 + 0.0122362i
\(197\) 8.47116 0.603545 0.301773 0.953380i \(-0.402422\pi\)
0.301773 + 0.953380i \(0.402422\pi\)
\(198\) 0 0
\(199\) 0.555967i 0.0394115i −0.999806 0.0197057i \(-0.993727\pi\)
0.999806 0.0197057i \(-0.00627293\pi\)
\(200\) 7.82799 11.7781i 0.553523 0.832834i
\(201\) 0 0
\(202\) −0.114128 + 3.59121i −0.00803004 + 0.252677i
\(203\) 6.63083 + 3.82831i 0.465393 + 0.268695i
\(204\) 0 0
\(205\) 15.2722 0.246808i 1.06665 0.0172378i
\(206\) 5.11336 + 9.54447i 0.356265 + 0.664995i
\(207\) 0 0
\(208\) 17.2213 7.21053i 1.19408 0.499960i
\(209\) 3.11890 1.80070i 0.215739 0.124557i
\(210\) 0 0
\(211\) 21.0649 + 12.1618i 1.45016 + 0.837253i 0.998490 0.0549298i \(-0.0174935\pi\)
0.451675 + 0.892183i \(0.350827\pi\)
\(212\) 1.51638 + 3.06016i 0.104146 + 0.210173i
\(213\) 0 0
\(214\) −16.4771 10.2243i −1.12635 0.698917i
\(215\) 23.2659 + 12.9359i 1.58672 + 0.882222i
\(216\) 0 0
\(217\) 7.57019i 0.513898i
\(218\) 9.89215 15.9418i 0.669981 1.07972i
\(219\) 0 0
\(220\) 0.167462 3.53187i 0.0112903 0.238118i
\(221\) 23.8308 + 13.7587i 1.60304 + 0.925513i
\(222\) 0 0
\(223\) −0.169636 0.293817i −0.0113596 0.0196755i 0.860290 0.509805i \(-0.170283\pi\)
−0.871649 + 0.490130i \(0.836949\pi\)
\(224\) −10.3088 + 12.6844i −0.688787 + 0.847515i
\(225\) 0 0
\(226\) −6.17741 11.5306i −0.410915 0.767005i
\(227\) −7.45137 + 4.30205i −0.494565 + 0.285537i −0.726466 0.687202i \(-0.758839\pi\)
0.231902 + 0.972739i \(0.425505\pi\)
\(228\) 0 0
\(229\) 0.358866 0.621574i 0.0237145 0.0410748i −0.853925 0.520397i \(-0.825784\pi\)
0.877639 + 0.479322i \(0.159117\pi\)
\(230\) 2.16489 3.61808i 0.142749 0.238569i
\(231\) 0 0
\(232\) −6.81794 + 3.11276i −0.447620 + 0.204363i
\(233\) 13.8379 0.906553 0.453276 0.891370i \(-0.350255\pi\)
0.453276 + 0.891370i \(0.350255\pi\)
\(234\) 0 0
\(235\) 3.27409 5.88864i 0.213578 0.384132i
\(236\) −21.1347 1.34468i −1.37575 0.0875310i
\(237\) 0 0
\(238\) −24.0791 0.765231i −1.56082 0.0496026i
\(239\) 13.8553 23.9980i 0.896223 1.55230i 0.0639388 0.997954i \(-0.479634\pi\)
0.832284 0.554350i \(-0.187033\pi\)
\(240\) 0 0
\(241\) −5.71303 9.89526i −0.368009 0.637410i 0.621245 0.783616i \(-0.286627\pi\)
−0.989254 + 0.146206i \(0.953294\pi\)
\(242\) 6.92884 + 12.9332i 0.445403 + 0.831378i
\(243\) 0 0
\(244\) −1.92729 + 2.89637i −0.123382 + 0.185421i
\(245\) 0.0487403 + 3.01599i 0.00311390 + 0.192685i
\(246\) 0 0
\(247\) −10.6303 + 18.4122i −0.676388 + 1.17154i
\(248\) −6.03578 4.29904i −0.383272 0.272989i
\(249\) 0 0
\(250\) 13.8232 + 7.67581i 0.874258 + 0.485461i
\(251\) −5.05161 −0.318855 −0.159427 0.987210i \(-0.550965\pi\)
−0.159427 + 0.987210i \(0.550965\pi\)
\(252\) 0 0
\(253\) 1.05417i 0.0662749i
\(254\) 7.28681 11.7432i 0.457215 0.736831i
\(255\) 0 0
\(256\) −4.25914 15.4227i −0.266197 0.963919i
\(257\) 1.32366 2.29265i 0.0825679 0.143012i −0.821784 0.569799i \(-0.807021\pi\)
0.904352 + 0.426787i \(0.140355\pi\)
\(258\) 0 0
\(259\) −18.6174 + 10.7488i −1.15683 + 0.667897i
\(260\) 9.56890 + 18.5510i 0.593438 + 1.15049i
\(261\) 0 0
\(262\) −8.83999 16.5005i −0.546136 1.01940i
\(263\) 2.19210 1.26561i 0.135171 0.0780408i −0.430890 0.902405i \(-0.641800\pi\)
0.566060 + 0.824364i \(0.308467\pi\)
\(264\) 0 0
\(265\) −3.27553 + 1.96237i −0.201214 + 0.120548i
\(266\) 0.591232 18.6040i 0.0362508 1.14068i
\(267\) 0 0
\(268\) −15.0384 0.956806i −0.918618 0.0584462i
\(269\) 5.26469i 0.320994i −0.987036 0.160497i \(-0.948690\pi\)
0.987036 0.160497i \(-0.0513097\pi\)
\(270\) 0 0
\(271\) 16.6468i 1.01122i −0.862761 0.505612i \(-0.831267\pi\)
0.862761 0.505612i \(-0.168733\pi\)
\(272\) 14.2844 18.7639i 0.866120 1.13773i
\(273\) 0 0
\(274\) 4.45598 + 0.141611i 0.269196 + 0.00855501i
\(275\) 3.95112 0.127738i 0.238261 0.00770292i
\(276\) 0 0
\(277\) −22.8566 + 13.1963i −1.37332 + 0.792888i −0.991345 0.131283i \(-0.958090\pi\)
−0.381978 + 0.924171i \(0.624757\pi\)
\(278\) 3.20355 1.71627i 0.192136 0.102935i
\(279\) 0 0
\(280\) −15.0542 10.3600i −0.899662 0.619127i
\(281\) 19.8511 11.4611i 1.18422 0.683710i 0.227233 0.973840i \(-0.427032\pi\)
0.956987 + 0.290131i \(0.0936987\pi\)
\(282\) 0 0
\(283\) −3.25733 + 5.64186i −0.193628 + 0.335374i −0.946450 0.322851i \(-0.895359\pi\)
0.752822 + 0.658224i \(0.228692\pi\)
\(284\) 2.56248 + 5.17126i 0.152055 + 0.306858i
\(285\) 0 0
\(286\) 4.43447 + 2.75166i 0.262216 + 0.162709i
\(287\) 19.7374i 1.16506i
\(288\) 0 0
\(289\) 17.7581 1.04459
\(290\) −4.07599 7.32143i −0.239351 0.429929i
\(291\) 0 0
\(292\) 11.6635 5.77955i 0.682556 0.338223i
\(293\) 8.37272 14.5020i 0.489140 0.847215i −0.510782 0.859710i \(-0.670644\pi\)
0.999922 + 0.0124952i \(0.00397745\pi\)
\(294\) 0 0
\(295\) −0.382587 23.6740i −0.0222751 1.37835i
\(296\) 2.00257 20.9480i 0.116397 1.21758i
\(297\) 0 0
\(298\) 12.2743 6.57586i 0.711033 0.380929i
\(299\) 3.11159 + 5.38944i 0.179948 + 0.311679i
\(300\) 0 0
\(301\) 17.1995 29.7903i 0.991360 1.71709i
\(302\) −0.479360 + 15.0837i −0.0275841 + 0.867972i
\(303\) 0 0
\(304\) 14.4974 + 11.0364i 0.831481 + 0.632982i
\(305\) −3.39951 1.89013i −0.194655 0.108229i
\(306\) 0 0
\(307\) 24.2759 1.38550 0.692749 0.721179i \(-0.256400\pi\)
0.692749 + 0.721179i \(0.256400\pi\)
\(308\) −4.55980 0.290113i −0.259819 0.0165307i
\(309\) 0 0
\(310\) 4.25397 7.10945i 0.241609 0.403790i
\(311\) 3.81664 6.61061i 0.216422 0.374853i −0.737290 0.675577i \(-0.763895\pi\)
0.953711 + 0.300723i \(0.0972281\pi\)
\(312\) 0 0
\(313\) −3.85836 + 2.22762i −0.218087 + 0.125913i −0.605064 0.796177i \(-0.706853\pi\)
0.386977 + 0.922089i \(0.373519\pi\)
\(314\) −18.7115 + 10.0245i −1.05595 + 0.565716i
\(315\) 0 0
\(316\) −6.36115 4.23282i −0.357842 0.238115i
\(317\) 2.47795 + 4.29194i 0.139176 + 0.241059i 0.927185 0.374604i \(-0.122221\pi\)
−0.788009 + 0.615663i \(0.788888\pi\)
\(318\) 0 0
\(319\) −1.81438 1.04753i −0.101586 0.0586506i
\(320\) 16.8093 6.11953i 0.939666 0.342092i
\(321\) 0 0
\(322\) −4.62948 2.87267i −0.257991 0.160087i
\(323\) 26.8548i 1.49424i
\(324\) 0 0
\(325\) −19.8231 + 12.3156i −1.09959 + 0.683148i
\(326\) 3.10097 4.99741i 0.171747 0.276781i
\(327\) 0 0
\(328\) 15.7368 + 11.2087i 0.868918 + 0.618895i
\(329\) −7.53997 4.35320i −0.415692 0.240000i
\(330\) 0 0
\(331\) −23.0250 + 13.2935i −1.26557 + 0.730676i −0.974146 0.225918i \(-0.927462\pi\)
−0.291422 + 0.956594i \(0.594129\pi\)
\(332\) −16.0287 10.6658i −0.879689 0.585360i
\(333\) 0 0
\(334\) 0.0415787 0.0222754i 0.00227509 0.00121886i
\(335\) −0.272230 16.8453i −0.0148735 0.920356i
\(336\) 0 0
\(337\) −10.7769 6.22205i −0.587056 0.338937i 0.176877 0.984233i \(-0.443401\pi\)
−0.763933 + 0.645296i \(0.776734\pi\)
\(338\) −12.4179 0.394640i −0.675445 0.0214656i
\(339\) 0 0
\(340\) 22.1836 + 14.2496i 1.20307 + 0.772793i
\(341\) 2.07142i 0.112173i
\(342\) 0 0
\(343\) −16.3284 −0.881652
\(344\) 13.9847 + 30.6309i 0.754004 + 1.65151i
\(345\) 0 0
\(346\) −33.6867 1.07056i −1.81101 0.0575537i
\(347\) −14.6546 8.46084i −0.786701 0.454202i 0.0520991 0.998642i \(-0.483409\pi\)
−0.838800 + 0.544440i \(0.816742\pi\)
\(348\) 0 0
\(349\) −0.955553 1.65507i −0.0511496 0.0885937i 0.839317 0.543642i \(-0.182955\pi\)
−0.890467 + 0.455049i \(0.849622\pi\)
\(350\) 10.2061 17.6999i 0.545537 0.946097i
\(351\) 0 0
\(352\) 2.82078 3.47082i 0.150348 0.184995i
\(353\) −11.0561 19.1497i −0.588457 1.01924i −0.994435 0.105355i \(-0.966402\pi\)
0.405978 0.913883i \(-0.366931\pi\)
\(354\) 0 0
\(355\) −5.53520 + 3.31614i −0.293778 + 0.176003i
\(356\) −0.0132956 + 0.00658829i −0.000704665 + 0.000349178i
\(357\) 0 0
\(358\) 19.0356 30.6771i 1.00606 1.62133i
\(359\) −1.48034 −0.0781296 −0.0390648 0.999237i \(-0.512438\pi\)
−0.0390648 + 0.999237i \(0.512438\pi\)
\(360\) 0 0
\(361\) −1.74850 −0.0920262
\(362\) −19.0968 + 30.7757i −1.00371 + 1.61754i
\(363\) 0 0
\(364\) 24.1684 11.9760i 1.26677 0.627714i
\(365\) 7.47940 + 12.4844i 0.391490 + 0.653462i
\(366\) 0 0
\(367\) −0.0631149 0.109318i −0.00329457 0.00570636i 0.864373 0.502850i \(-0.167715\pi\)
−0.867668 + 0.497144i \(0.834382\pi\)
\(368\) 4.91944 2.05977i 0.256444 0.107373i
\(369\) 0 0
\(370\) 23.5245 + 0.367247i 1.22298 + 0.0190923i
\(371\) 2.46707 + 4.27308i 0.128084 + 0.221847i
\(372\) 0 0
\(373\) 19.8527 + 11.4620i 1.02794 + 0.593479i 0.916393 0.400280i \(-0.131087\pi\)
0.111543 + 0.993760i \(0.464421\pi\)
\(374\) 6.58871 + 0.209389i 0.340694 + 0.0108272i
\(375\) 0 0
\(376\) 7.75273 3.53954i 0.399816 0.182538i
\(377\) 12.3681 0.636988
\(378\) 0 0
\(379\) 27.5123i 1.41321i 0.707608 + 0.706605i \(0.249774\pi\)
−0.707608 + 0.706605i \(0.750226\pi\)
\(380\) −11.0095 + 17.1394i −0.564776 + 0.879235i
\(381\) 0 0
\(382\) −10.9083 0.346666i −0.558119 0.0177370i
\(383\) −20.5507 11.8649i −1.05009 0.606270i −0.127416 0.991849i \(-0.540668\pi\)
−0.922675 + 0.385579i \(0.874002\pi\)
\(384\) 0 0
\(385\) −0.0825429 5.10766i −0.00420678 0.260310i
\(386\) −6.43965 + 3.44998i −0.327770 + 0.175599i
\(387\) 0 0
\(388\) −11.0538 7.35537i −0.561170 0.373412i
\(389\) 1.58128 0.912954i 0.0801742 0.0462886i −0.459377 0.888241i \(-0.651927\pi\)
0.539551 + 0.841953i \(0.318594\pi\)
\(390\) 0 0
\(391\) 6.80755 + 3.93034i 0.344272 + 0.198766i
\(392\) −2.21352 + 3.10774i −0.111800 + 0.156965i
\(393\) 0 0
\(394\) −6.31654 + 10.1795i −0.318223 + 0.512836i
\(395\) 4.15120 7.46617i 0.208870 0.375664i
\(396\) 0 0
\(397\) 19.0828i 0.957737i −0.877887 0.478868i \(-0.841047\pi\)
0.877887 0.478868i \(-0.158953\pi\)
\(398\) 0.668087 + 0.414558i 0.0334882 + 0.0207799i
\(399\) 0 0
\(400\) 8.31633 + 18.1890i 0.415816 + 0.909449i
\(401\) 15.1375 + 8.73963i 0.755930 + 0.436436i 0.827833 0.560975i \(-0.189574\pi\)
−0.0719025 + 0.997412i \(0.522907\pi\)
\(402\) 0 0
\(403\) 6.11422 + 10.5901i 0.304571 + 0.527533i
\(404\) −4.23034 2.81494i −0.210467 0.140048i
\(405\) 0 0
\(406\) −9.54466 + 5.11346i −0.473693 + 0.253777i
\(407\) 5.09425 2.94117i 0.252513 0.145788i
\(408\) 0 0
\(409\) −8.17716 + 14.1633i −0.404335 + 0.700328i −0.994244 0.107142i \(-0.965830\pi\)
0.589909 + 0.807470i \(0.299164\pi\)
\(410\) −11.0912 + 18.5361i −0.547753 + 0.915432i
\(411\) 0 0
\(412\) −15.2821 0.972307i −0.752893 0.0479021i
\(413\) −30.5957 −1.50551
\(414\) 0 0
\(415\) 10.4601 18.8131i 0.513467 0.923499i
\(416\) −4.17642 + 26.0708i −0.204766 + 1.27822i
\(417\) 0 0
\(418\) −0.161778 + 5.09057i −0.00791281 + 0.248988i
\(419\) −12.3846 + 21.4508i −0.605029 + 1.04794i 0.387018 + 0.922072i \(0.373505\pi\)
−0.992047 + 0.125869i \(0.959828\pi\)
\(420\) 0 0
\(421\) 8.38623 + 14.5254i 0.408720 + 0.707923i 0.994747 0.102368i \(-0.0326420\pi\)
−0.586027 + 0.810292i \(0.699309\pi\)
\(422\) −30.3215 + 16.2445i −1.47603 + 0.790768i
\(423\) 0 0
\(424\) −4.80799 0.459631i −0.233497 0.0223217i
\(425\) −13.9064 + 25.9916i −0.674559 + 1.26078i
\(426\) 0 0
\(427\) −2.51310 + 4.35282i −0.121618 + 0.210648i
\(428\) 24.5723 12.1762i 1.18775 0.588558i
\(429\) 0 0
\(430\) −32.8930 + 18.3122i −1.58624 + 0.883093i
\(431\) 15.2488 0.734510 0.367255 0.930120i \(-0.380298\pi\)
0.367255 + 0.930120i \(0.380298\pi\)
\(432\) 0 0
\(433\) 23.5695i 1.13268i −0.824172 0.566340i \(-0.808359\pi\)
0.824172 0.566340i \(-0.191641\pi\)
\(434\) −9.09684 5.64473i −0.436662 0.270956i
\(435\) 0 0
\(436\) 11.7806 + 23.7741i 0.564191 + 1.13857i
\(437\) −3.03665 + 5.25964i −0.145263 + 0.251603i
\(438\) 0 0
\(439\) 12.8688 7.42979i 0.614193 0.354605i −0.160412 0.987050i \(-0.551282\pi\)
0.774605 + 0.632446i \(0.217949\pi\)
\(440\) 4.11926 + 2.83478i 0.196378 + 0.135143i
\(441\) 0 0
\(442\) −34.3030 + 18.3775i −1.63163 + 0.874128i
\(443\) −23.5062 + 13.5713i −1.11681 + 0.644791i −0.940585 0.339558i \(-0.889722\pi\)
−0.176226 + 0.984350i \(0.556389\pi\)
\(444\) 0 0
\(445\) −0.00852599 0.0142313i −0.000404171 0.000674629i
\(446\) 0.479560 + 0.0152404i 0.0227078 + 0.000721652i
\(447\) 0 0
\(448\) −7.55568 21.8460i −0.356972 1.03212i
\(449\) 17.4879i 0.825304i 0.910889 + 0.412652i \(0.135398\pi\)
−0.910889 + 0.412652i \(0.864602\pi\)
\(450\) 0 0
\(451\) 5.40069i 0.254309i
\(452\) 18.4622 + 1.17464i 0.868386 + 0.0552503i
\(453\) 0 0
\(454\) 0.386504 12.1619i 0.0181395 0.570786i
\(455\) 15.4983 + 25.8693i 0.726573 + 1.21277i
\(456\) 0 0
\(457\) 5.10627 2.94811i 0.238861 0.137907i −0.375792 0.926704i \(-0.622629\pi\)
0.614653 + 0.788797i \(0.289296\pi\)
\(458\) 0.479335 + 0.894715i 0.0223979 + 0.0418073i
\(459\) 0 0
\(460\) 2.73346 + 5.29931i 0.127448 + 0.247081i
\(461\) −30.5948 + 17.6639i −1.42494 + 0.822691i −0.996716 0.0809799i \(-0.974195\pi\)
−0.428227 + 0.903671i \(0.640862\pi\)
\(462\) 0 0
\(463\) 18.6175 32.2464i 0.865227 1.49862i −0.00159457 0.999999i \(-0.500508\pi\)
0.866822 0.498618i \(-0.166159\pi\)
\(464\) 1.34332 10.5139i 0.0623619 0.488097i
\(465\) 0 0
\(466\) −10.3183 + 16.6286i −0.477985 + 0.770304i
\(467\) 6.98334i 0.323151i −0.986860 0.161575i \(-0.948343\pi\)
0.986860 0.161575i \(-0.0516575\pi\)
\(468\) 0 0
\(469\) −21.7704 −1.00526
\(470\) 4.63484 + 8.32524i 0.213789 + 0.384015i
\(471\) 0 0
\(472\) 17.3750 24.3942i 0.799749 1.12283i
\(473\) −4.70625 + 8.15147i −0.216394 + 0.374805i
\(474\) 0 0
\(475\) −20.0816 10.7443i −0.921408 0.492984i
\(476\) 18.8742 28.3644i 0.865097 1.30008i
\(477\) 0 0
\(478\) 18.5064 + 34.5436i 0.846463 + 1.57999i
\(479\) −10.2090 17.6825i −0.466460 0.807932i 0.532806 0.846237i \(-0.321137\pi\)
−0.999266 + 0.0383050i \(0.987804\pi\)
\(480\) 0 0
\(481\) −17.3630 + 30.0735i −0.791683 + 1.37124i
\(482\) 16.1507 + 0.513269i 0.735646 + 0.0233788i
\(483\) 0 0
\(484\) −20.7079 1.31752i −0.941269 0.0598874i
\(485\) 7.21355 12.9740i 0.327550 0.589117i
\(486\) 0 0
\(487\) 20.8264 0.943735 0.471868 0.881669i \(-0.343580\pi\)
0.471868 + 0.881669i \(0.343580\pi\)
\(488\) −2.04338 4.47565i −0.0924993 0.202603i
\(489\) 0 0
\(490\) −3.66056 2.19031i −0.165367 0.0989482i
\(491\) −9.31608 + 16.1359i −0.420429 + 0.728204i −0.995981 0.0895606i \(-0.971454\pi\)
0.575552 + 0.817765i \(0.304787\pi\)
\(492\) 0 0
\(493\) 13.5294 7.81122i 0.609335 0.351800i
\(494\) −14.1988 26.5031i −0.638834 1.19243i
\(495\) 0 0
\(496\) 9.66661 4.04740i 0.434044 0.181734i
\(497\) 4.16900 + 7.22093i 0.187005 + 0.323903i
\(498\) 0 0
\(499\) 4.48667 + 2.59038i 0.200851 + 0.115961i 0.597052 0.802202i \(-0.296338\pi\)
−0.396201 + 0.918164i \(0.629672\pi\)
\(500\) −19.5311 + 10.8874i −0.873457 + 0.486901i
\(501\) 0 0
\(502\) 3.76675 6.07035i 0.168118 0.270933i
\(503\) 27.8846i 1.24331i −0.783290 0.621657i \(-0.786460\pi\)
0.783290 0.621657i \(-0.213540\pi\)
\(504\) 0 0
\(505\) 2.76066 4.96521i 0.122848 0.220949i
\(506\) 1.26676 + 0.786042i 0.0563142 + 0.0349438i
\(507\) 0 0
\(508\) 8.67792 + 17.5126i 0.385021 + 0.776997i
\(509\) −18.6724 10.7805i −0.827640 0.477838i 0.0254039 0.999677i \(-0.491913\pi\)
−0.853044 + 0.521839i \(0.825246\pi\)
\(510\) 0 0
\(511\) 16.2864 9.40298i 0.720470 0.415963i
\(512\) 21.7088 + 6.38191i 0.959402 + 0.282043i
\(513\) 0 0
\(514\) 1.76801 + 3.30013i 0.0779837 + 0.145562i
\(515\) −0.276640 17.1182i −0.0121902 0.754317i
\(516\) 0 0
\(517\) 2.06315 + 1.19116i 0.0907371 + 0.0523871i
\(518\) 0.965690 30.3868i 0.0424300 1.33512i
\(519\) 0 0
\(520\) −29.4272 2.33399i −1.29047 0.102352i
\(521\) 19.9411i 0.873633i −0.899551 0.436817i \(-0.856106\pi\)
0.899551 0.436817i \(-0.143894\pi\)
\(522\) 0 0
\(523\) −18.9360 −0.828013 −0.414006 0.910274i \(-0.635871\pi\)
−0.414006 + 0.910274i \(0.635871\pi\)
\(524\) 26.4197 + 1.68093i 1.15415 + 0.0734316i
\(525\) 0 0
\(526\) −0.113705 + 3.57788i −0.00495776 + 0.156003i
\(527\) 13.3767 + 7.72304i 0.582698 + 0.336421i
\(528\) 0 0
\(529\) −10.6111 18.3790i −0.461354 0.799088i
\(530\) 0.0842907 5.39935i 0.00366135 0.234533i
\(531\) 0 0
\(532\) 21.9149 + 14.5826i 0.950132 + 0.632234i
\(533\) −15.9413 27.6111i −0.690494 1.19597i
\(534\) 0 0
\(535\) 15.7574 + 26.3017i 0.681250 + 1.13712i
\(536\) 12.3632 17.3577i 0.534009 0.749740i
\(537\) 0 0
\(538\) 6.32640 + 3.92563i 0.272751 + 0.169246i
\(539\) −1.06654 −0.0459393
\(540\) 0 0
\(541\) −13.2697 −0.570511 −0.285255 0.958452i \(-0.592078\pi\)
−0.285255 + 0.958452i \(0.592078\pi\)
\(542\) 20.0039 + 12.4128i 0.859243 + 0.533174i
\(543\) 0 0
\(544\) 11.8967 + 31.1565i 0.510069 + 1.33582i
\(545\) −25.4473 + 15.2455i −1.09004 + 0.653046i
\(546\) 0 0
\(547\) 4.51377 + 7.81809i 0.192995 + 0.334277i 0.946241 0.323461i \(-0.104847\pi\)
−0.753246 + 0.657738i \(0.771513\pi\)
\(548\) −3.49278 + 5.24901i −0.149204 + 0.224227i
\(549\) 0 0
\(550\) −2.79266 + 4.84318i −0.119080 + 0.206514i
\(551\) 6.03510 + 10.4531i 0.257104 + 0.445317i
\(552\) 0 0
\(553\) −9.55988 5.51940i −0.406527 0.234709i
\(554\) 1.18558 37.3059i 0.0503704 1.58498i
\(555\) 0 0
\(556\) −0.326350 + 5.12935i −0.0138403 + 0.217533i
\(557\) −30.4174 −1.28883 −0.644414 0.764677i \(-0.722899\pi\)
−0.644414 + 0.764677i \(0.722899\pi\)
\(558\) 0 0
\(559\) 55.5660i 2.35019i
\(560\) 23.6745 10.3652i 1.00043 0.438010i
\(561\) 0 0
\(562\) −1.02968 + 32.4004i −0.0434345 + 1.36673i
\(563\) 39.1934 + 22.6283i 1.65180 + 0.953669i 0.976330 + 0.216284i \(0.0693938\pi\)
0.675473 + 0.737385i \(0.263940\pi\)
\(564\) 0 0
\(565\) 0.334207 + 20.6803i 0.0140602 + 0.870029i
\(566\) −4.35080 8.12109i −0.182878 0.341355i
\(567\) 0 0
\(568\) −8.12485 0.776714i −0.340911 0.0325902i
\(569\) 4.42750 2.55622i 0.185610 0.107162i −0.404316 0.914620i \(-0.632490\pi\)
0.589926 + 0.807457i \(0.299157\pi\)
\(570\) 0 0
\(571\) −30.6553 17.6989i −1.28289 0.740675i −0.305511 0.952189i \(-0.598827\pi\)
−0.977375 + 0.211514i \(0.932161\pi\)
\(572\) −6.61315 + 3.27697i −0.276510 + 0.137017i
\(573\) 0 0
\(574\) 23.7177 + 14.7172i 0.989958 + 0.614284i
\(575\) −5.66269 + 3.51810i −0.236151 + 0.146715i
\(576\) 0 0
\(577\) 30.4257i 1.26664i 0.773890 + 0.633320i \(0.218308\pi\)
−0.773890 + 0.633320i \(0.781692\pi\)
\(578\) −13.2414 + 21.3393i −0.550768 + 0.887597i
\(579\) 0 0
\(580\) 11.8372 + 0.561257i 0.491512 + 0.0233049i
\(581\) −24.0888 13.9077i −0.999372 0.576987i
\(582\) 0 0
\(583\) −0.675058 1.16924i −0.0279581 0.0484248i
\(584\) −1.75184 + 18.3252i −0.0724916 + 0.758302i
\(585\) 0 0
\(586\) 11.1834 + 20.8747i 0.461982 + 0.862324i
\(587\) 25.3201 14.6186i 1.04507 0.603372i 0.123806 0.992306i \(-0.460490\pi\)
0.921265 + 0.388934i \(0.127157\pi\)
\(588\) 0 0
\(589\) −5.96697 + 10.3351i −0.245865 + 0.425850i
\(590\) 28.7335 + 17.1928i 1.18294 + 0.707818i
\(591\) 0 0
\(592\) 23.6793 + 18.0264i 0.973213 + 0.740879i
\(593\) 1.73460 0.0712314 0.0356157 0.999366i \(-0.488661\pi\)
0.0356157 + 0.999366i \(0.488661\pi\)
\(594\) 0 0
\(595\) 33.2917 + 18.5103i 1.36483 + 0.758847i
\(596\) −1.25040 + 19.6530i −0.0512185 + 0.805017i
\(597\) 0 0
\(598\) −8.79648 0.279551i −0.359715 0.0114317i
\(599\) −1.94974 + 3.37704i −0.0796641 + 0.137982i −0.903105 0.429420i \(-0.858718\pi\)
0.823441 + 0.567402i \(0.192051\pi\)
\(600\) 0 0
\(601\) 2.16133 + 3.74354i 0.0881625 + 0.152702i 0.906734 0.421702i \(-0.138567\pi\)
−0.818572 + 0.574404i \(0.805234\pi\)
\(602\) 22.9732 + 42.8812i 0.936319 + 1.74771i
\(603\) 0 0
\(604\) −17.7682 11.8233i −0.722978 0.481082i
\(605\) −0.374861 23.1959i −0.0152403 0.943049i
\(606\) 0 0
\(607\) −6.33497 + 10.9725i −0.257128 + 0.445360i −0.965471 0.260509i \(-0.916110\pi\)
0.708343 + 0.705868i \(0.249443\pi\)
\(608\) −24.0721 + 9.19165i −0.976252 + 0.372771i
\(609\) 0 0
\(610\) 4.80616 2.67569i 0.194596 0.108336i
\(611\) −14.0638 −0.568961
\(612\) 0 0
\(613\) 47.3059i 1.91067i −0.295527 0.955334i \(-0.595495\pi\)
0.295527 0.955334i \(-0.404505\pi\)
\(614\) −18.1014 + 29.1715i −0.730512 + 1.17727i
\(615\) 0 0
\(616\) 3.74865 5.26304i 0.151037 0.212054i
\(617\) 3.48880 6.04277i 0.140454 0.243273i −0.787214 0.616680i \(-0.788477\pi\)
0.927668 + 0.373407i \(0.121811\pi\)
\(618\) 0 0
\(619\) 24.9827 14.4238i 1.00414 0.579741i 0.0946695 0.995509i \(-0.469821\pi\)
0.909471 + 0.415768i \(0.136487\pi\)
\(620\) 5.37120 + 10.4130i 0.215713 + 0.418197i
\(621\) 0 0
\(622\) 5.09786 + 9.51554i 0.204406 + 0.381538i
\(623\) −0.0185654 + 0.0107187i −0.000743807 + 0.000429437i
\(624\) 0 0
\(625\) −13.8724 20.7980i −0.554894 0.831921i
\(626\) 0.200134 6.29750i 0.00799896 0.251699i
\(627\) 0 0
\(628\) 1.90616 29.9598i 0.0760643 1.19553i
\(629\) 43.8633i 1.74894i
\(630\) 0 0
\(631\) 31.3427i 1.24774i 0.781530 + 0.623868i \(0.214440\pi\)
−0.781530 + 0.623868i \(0.785560\pi\)
\(632\) 9.82964 4.48776i 0.391002 0.178514i
\(633\) 0 0
\(634\) −7.00517 0.222624i −0.278211 0.00884151i
\(635\) −18.7451 + 11.2302i −0.743878 + 0.445658i
\(636\) 0 0
\(637\) 5.45272 3.14813i 0.216045 0.124733i
\(638\) 2.61169 1.39919i 0.103398 0.0553943i
\(639\) 0 0
\(640\) −5.18023 + 24.7622i −0.204767 + 0.978811i
\(641\) 17.6686 10.2010i 0.697869 0.402915i −0.108684 0.994076i \(-0.534664\pi\)
0.806553 + 0.591162i \(0.201330\pi\)
\(642\) 0 0
\(643\) 14.8702 25.7560i 0.586424 1.01572i −0.408272 0.912860i \(-0.633869\pi\)
0.994696 0.102856i \(-0.0327981\pi\)
\(644\) 6.90397 3.42108i 0.272055 0.134810i
\(645\) 0 0
\(646\) −32.2705 20.0243i −1.26966 0.787846i
\(647\) 7.37854i 0.290081i −0.989426 0.145040i \(-0.953669\pi\)
0.989426 0.145040i \(-0.0463312\pi\)
\(648\) 0 0
\(649\) 8.37183 0.328623
\(650\) −0.0181262 33.0039i −0.000710968 1.29452i
\(651\) 0 0
\(652\) 3.69297 + 7.45266i 0.144628 + 0.291869i
\(653\) 7.32692 12.6906i 0.286724 0.496621i −0.686301 0.727317i \(-0.740767\pi\)
0.973026 + 0.230696i \(0.0741003\pi\)
\(654\) 0 0
\(655\) 0.478256 + 29.5939i 0.0186870 + 1.15633i
\(656\) −25.2032 + 10.5526i −0.984021 + 0.412009i
\(657\) 0 0
\(658\) 10.8533 5.81455i 0.423105 0.226675i
\(659\) 3.26655 + 5.65782i 0.127247 + 0.220398i 0.922609 0.385737i \(-0.126053\pi\)
−0.795362 + 0.606134i \(0.792719\pi\)
\(660\) 0 0
\(661\) 13.4007 23.2106i 0.521225 0.902788i −0.478470 0.878104i \(-0.658809\pi\)
0.999695 0.0246846i \(-0.00785816\pi\)
\(662\) 1.19431 37.5807i 0.0464182 1.46062i
\(663\) 0 0
\(664\) 24.7685 11.3082i 0.961205 0.438842i
\(665\) −14.3014 + 25.7218i −0.554584 + 0.997450i
\(666\) 0 0
\(667\) 3.53308 0.136801
\(668\) −0.00423568 + 0.0665735i −0.000163883 + 0.00257581i
\(669\) 0 0
\(670\) 20.4454 + 12.2336i 0.789874 + 0.472625i
\(671\) 0.687656 1.19105i 0.0265466 0.0459801i
\(672\) 0 0
\(673\) 16.3504 9.43992i 0.630262 0.363882i −0.150591 0.988596i \(-0.548118\pi\)
0.780854 + 0.624714i \(0.214784\pi\)
\(674\) 15.5127 8.31076i 0.597526 0.320119i
\(675\) 0 0
\(676\) 9.73367 14.6279i 0.374372 0.562612i
\(677\) −10.1163 17.5219i −0.388800 0.673421i 0.603488 0.797372i \(-0.293777\pi\)
−0.992288 + 0.123950i \(0.960444\pi\)
\(678\) 0 0
\(679\) −16.6122 9.59106i −0.637518 0.368071i
\(680\) −33.6645 + 16.0320i −1.29097 + 0.614799i
\(681\) 0 0
\(682\) 2.48915 + 1.54456i 0.0953145 + 0.0591441i
\(683\) 15.3795i 0.588481i −0.955731 0.294241i \(-0.904933\pi\)
0.955731 0.294241i \(-0.0950667\pi\)
\(684\) 0 0
\(685\) −6.16084 3.42544i −0.235393 0.130879i
\(686\) 12.1753 19.6213i 0.464856 0.749145i
\(687\) 0 0
\(688\) −47.2359 6.03511i −1.80085 0.230086i
\(689\) 6.90249 + 3.98516i 0.262964 + 0.151822i
\(690\) 0 0
\(691\) 13.7773 7.95434i 0.524114 0.302598i −0.214502 0.976724i \(-0.568813\pi\)
0.738616 + 0.674126i \(0.235480\pi\)
\(692\) 26.4051 39.6819i 1.00377 1.50848i
\(693\) 0 0
\(694\) 21.0944 11.3011i 0.800731 0.428984i
\(695\) −5.74563 + 0.0928530i −0.217944 + 0.00352211i
\(696\) 0 0
\(697\) −34.8763 20.1359i −1.32104 0.762700i
\(698\) 2.70135 + 0.0858486i 0.102248 + 0.00324942i
\(699\) 0 0
\(700\) 13.6591 + 25.4622i 0.516267 + 0.962381i
\(701\) 38.9767i 1.47213i 0.676912 + 0.736064i \(0.263318\pi\)
−0.676912 + 0.736064i \(0.736682\pi\)
\(702\) 0 0
\(703\) −33.8896 −1.27817
\(704\) 2.06745 + 5.97767i 0.0779198 + 0.225292i
\(705\) 0 0
\(706\) 31.2556 + 0.993301i 1.17632 + 0.0373834i
\(707\) −6.35758 3.67055i −0.239102 0.138045i
\(708\) 0 0
\(709\) −6.59388 11.4209i −0.247638 0.428922i 0.715232 0.698887i \(-0.246321\pi\)
−0.962870 + 0.269965i \(0.912988\pi\)
\(710\) 0.142440 9.12416i 0.00534567 0.342424i
\(711\) 0 0
\(712\) 0.00199697 0.0208894i 7.48398e−5 0.000782865i
\(713\) 1.74660 + 3.02519i 0.0654105 + 0.113294i
\(714\) 0 0
\(715\) −4.24078 7.07857i −0.158596 0.264724i
\(716\) 22.6697 + 45.7489i 0.847205 + 1.70972i
\(717\) 0 0
\(718\) 1.10382 1.77888i 0.0411943 0.0663872i
\(719\) 43.7650 1.63216 0.816079 0.577940i \(-0.196143\pi\)
0.816079 + 0.577940i \(0.196143\pi\)
\(720\) 0 0
\(721\) −22.1231 −0.823907
\(722\) 1.30377 2.10111i 0.0485214 0.0781953i
\(723\) 0 0
\(724\) −22.7426 45.8960i −0.845221 1.70571i
\(725\) 0.428120 + 13.2423i 0.0159000 + 0.491808i
\(726\) 0 0
\(727\) −4.95811 8.58770i −0.183886 0.318500i 0.759314 0.650724i \(-0.225534\pi\)
−0.943201 + 0.332224i \(0.892201\pi\)
\(728\) −3.63005 + 37.9723i −0.134539 + 1.40735i
\(729\) 0 0
\(730\) −20.5791 0.321266i −0.761666 0.0118906i
\(731\) −35.0935 60.7837i −1.29798 2.24816i
\(732\) 0 0
\(733\) 24.2247 + 13.9862i 0.894761 + 0.516591i 0.875497 0.483224i \(-0.160534\pi\)
0.0192642 + 0.999814i \(0.493868\pi\)
\(734\) 0.178426 + 0.00567035i 0.00658581 + 0.000209297i
\(735\) 0 0
\(736\) −1.19304 + 7.44740i −0.0439761 + 0.274515i
\(737\) 5.95699 0.219428
\(738\) 0 0
\(739\) 24.2237i 0.891082i 0.895262 + 0.445541i \(0.146989\pi\)
−0.895262 + 0.445541i \(0.853011\pi\)
\(740\) −17.9824 + 27.9947i −0.661046 + 1.02911i
\(741\) 0 0
\(742\) −6.97439 0.221646i −0.256038 0.00813687i
\(743\) −43.9304 25.3632i −1.61165 0.930486i −0.988988 0.147993i \(-0.952719\pi\)
−0.622660 0.782492i \(-0.713948\pi\)
\(744\) 0 0
\(745\) −22.0142 + 0.355764i −0.806539 + 0.0130342i
\(746\) −28.5767 + 15.3097i −1.04627 + 0.560528i
\(747\) 0 0
\(748\) −5.16451 + 7.76131i −0.188833 + 0.283781i
\(749\) 34.3117 19.8099i 1.25372 0.723838i
\(750\) 0 0
\(751\) 0.581286 + 0.335605i 0.0212114 + 0.0122464i 0.510568 0.859837i \(-0.329435\pi\)
−0.489357 + 0.872084i \(0.662768\pi\)
\(752\) −1.52749 + 11.9555i −0.0557020 + 0.435971i
\(753\) 0 0
\(754\) −9.22229 + 14.8623i −0.335856 + 0.541253i
\(755\) 11.5953 20.8548i 0.421996 0.758983i
\(756\) 0 0
\(757\) 17.0611i 0.620095i 0.950721 + 0.310048i \(0.100345\pi\)
−0.950721 + 0.310048i \(0.899655\pi\)
\(758\) −33.0606 20.5146i −1.20081 0.745123i
\(759\) 0 0
\(760\) −12.3866 26.0098i −0.449310 0.943476i
\(761\) −6.74677 3.89525i −0.244570 0.141203i 0.372705 0.927950i \(-0.378430\pi\)
−0.617275 + 0.786747i \(0.711764\pi\)
\(762\) 0 0
\(763\) 19.1664 + 33.1972i 0.693870 + 1.20182i
\(764\) 8.55041 12.8497i 0.309343 0.464886i
\(765\) 0 0
\(766\) 29.5814 15.8479i 1.06882 0.572609i
\(767\) −42.8011 + 24.7112i −1.54546 + 0.892271i
\(768\) 0 0
\(769\) 4.58773 7.94618i 0.165438 0.286546i −0.771373 0.636383i \(-0.780430\pi\)
0.936811 + 0.349837i \(0.113763\pi\)
\(770\) 6.19925 + 3.70935i 0.223405 + 0.133676i
\(771\) 0 0
\(772\) 0.656015 10.3108i 0.0236105 0.371094i
\(773\) 32.0512 1.15280 0.576401 0.817167i \(-0.304457\pi\)
0.576401 + 0.817167i \(0.304457\pi\)
\(774\) 0 0
\(775\) −11.1271 + 6.91299i −0.399696 + 0.248322i
\(776\) 17.0810 7.79839i 0.613171 0.279946i
\(777\) 0 0
\(778\) −0.0820214 + 2.58092i −0.00294061 + 0.0925305i
\(779\) 15.5574 26.9461i 0.557400 0.965445i
\(780\) 0 0
\(781\) −1.14076 1.97585i −0.0408195 0.0707014i
\(782\) −9.79902 + 5.24973i −0.350412 + 0.187730i
\(783\) 0 0
\(784\) −2.08395 4.97720i −0.0744269 0.177757i
\(785\) 33.5594 0.542341i 1.19779 0.0193570i
\(786\) 0 0
\(787\) 1.97855 3.42695i 0.0705276 0.122157i −0.828605 0.559834i \(-0.810865\pi\)
0.899133 + 0.437676i \(0.144198\pi\)
\(788\) −7.52243 15.1808i −0.267975 0.540792i
\(789\) 0 0
\(790\) 5.87649 + 10.5555i 0.209076 + 0.375549i
\(791\) 26.7267 0.950293
\(792\) 0 0
\(793\) 8.11904i 0.288316i
\(794\) 22.9311 + 14.2291i 0.813795 + 0.504972i
\(795\) 0 0
\(796\) −0.996321 + 0.493701i −0.0353137 + 0.0174988i
\(797\) −4.99178 + 8.64602i −0.176818 + 0.306258i −0.940789 0.338993i \(-0.889914\pi\)
0.763971 + 0.645251i \(0.223247\pi\)
\(798\) 0 0
\(799\) −15.3844 + 8.88219i −0.544261 + 0.314229i
\(800\) −28.0582 3.56920i −0.992006 0.126190i
\(801\) 0 0
\(802\) −21.7894 + 11.6735i −0.769412 + 0.412205i
\(803\) −4.45643 + 2.57292i −0.157264 + 0.0907963i
\(804\) 0 0
\(805\) 4.42727 + 7.38986i 0.156041 + 0.260458i
\(806\) −17.2849 0.549313i −0.608835 0.0193487i
\(807\) 0 0
\(808\) 6.53698 2.98449i 0.229970 0.104994i
\(809\) 37.9989i 1.33597i −0.744174 0.667986i \(-0.767157\pi\)
0.744174 0.667986i \(-0.232843\pi\)
\(810\) 0 0
\(811\) 21.3193i 0.748622i −0.927303 0.374311i \(-0.877879\pi\)
0.927303 0.374311i \(-0.122121\pi\)
\(812\) 0.972326 15.2824i 0.0341219 0.536306i
\(813\) 0 0
\(814\) −0.264240 + 8.31469i −0.00926161 + 0.291430i
\(815\) −7.97717 + 4.77913i −0.279428 + 0.167406i
\(816\) 0 0
\(817\) 46.9626 27.1139i 1.64301 0.948595i
\(818\) −10.9222 20.3871i −0.381885 0.712818i
\(819\) 0 0
\(820\) −14.0040 27.1494i −0.489043 0.948096i
\(821\) 4.11744 2.37721i 0.143700 0.0829651i −0.426426 0.904522i \(-0.640228\pi\)
0.570126 + 0.821557i \(0.306894\pi\)
\(822\) 0 0
\(823\) 20.4702 35.4554i 0.713546 1.23590i −0.249972 0.968253i \(-0.580422\pi\)
0.963518 0.267644i \(-0.0862452\pi\)
\(824\) 12.5635 17.6389i 0.437670 0.614482i
\(825\) 0 0
\(826\) 22.8137 36.7658i 0.793792 1.27925i
\(827\) 26.4974i 0.921406i 0.887554 + 0.460703i \(0.152403\pi\)
−0.887554 + 0.460703i \(0.847597\pi\)
\(828\) 0 0
\(829\) 38.1524 1.32509 0.662544 0.749023i \(-0.269477\pi\)
0.662544 + 0.749023i \(0.269477\pi\)
\(830\) 14.8075 + 26.5976i 0.513974 + 0.923217i
\(831\) 0 0
\(832\) −28.2142 24.4584i −0.978151 0.847942i
\(833\) 3.97649 6.88748i 0.137777 0.238637i
\(834\) 0 0
\(835\) −0.0745722 + 0.00120513i −0.00258068 + 4.17054e-5i
\(836\) −5.99653 3.99020i −0.207394 0.138004i
\(837\) 0 0
\(838\) −16.5421 30.8771i −0.571437 1.06663i
\(839\) 8.60385 + 14.9023i 0.297038 + 0.514485i 0.975457 0.220190i \(-0.0706679\pi\)
−0.678419 + 0.734675i \(0.737335\pi\)
\(840\) 0 0
\(841\) −10.9891 + 19.0338i −0.378936 + 0.656337i
\(842\) −23.7079 0.753434i −0.817027 0.0259650i
\(843\) 0 0
\(844\) 3.08889 48.5490i 0.106324 1.67113i
\(845\) 17.1690 + 9.54600i 0.590631 + 0.328392i
\(846\) 0 0
\(847\) −29.9778 −1.03005
\(848\) 4.13742 5.43488i 0.142079 0.186634i
\(849\) 0 0
\(850\) −20.8639 36.0916i −0.715626 1.23793i
\(851\) −4.95992 + 8.59084i −0.170024 + 0.294490i
\(852\) 0 0
\(853\) −37.6416 + 21.7324i −1.28882 + 0.744102i −0.978444 0.206511i \(-0.933789\pi\)
−0.310378 + 0.950613i \(0.600456\pi\)
\(854\) −3.35674 6.26561i −0.114865 0.214405i
\(855\) 0 0
\(856\) −3.69072 + 38.6069i −0.126146 + 1.31956i
\(857\) 6.72648 + 11.6506i 0.229772 + 0.397977i 0.957741 0.287634i \(-0.0928685\pi\)
−0.727968 + 0.685611i \(0.759535\pi\)
\(858\) 0 0
\(859\) −1.00899 0.582541i −0.0344263 0.0198760i 0.482688 0.875792i \(-0.339660\pi\)
−0.517114 + 0.855916i \(0.672994\pi\)
\(860\) 2.52156 53.1809i 0.0859844 1.81345i
\(861\) 0 0
\(862\) −11.3703 + 18.3240i −0.387275 + 0.624118i
\(863\) 0.0600669i 0.00204470i 0.999999 + 0.00102235i \(0.000325424\pi\)
−0.999999 + 0.00102235i \(0.999675\pi\)
\(864\) 0 0
\(865\) 46.5753 + 25.8959i 1.58361 + 0.880488i
\(866\) 28.3227 + 17.5747i 0.962446 + 0.597212i
\(867\) 0 0
\(868\) 13.5662 6.72236i 0.460466 0.228172i
\(869\) 2.61585 + 1.51026i 0.0887367 + 0.0512321i
\(870\) 0 0
\(871\) −30.4552 + 17.5833i −1.03193 + 0.595788i
\(872\) −37.3528 3.57083i −1.26493 0.120924i
\(873\) 0 0
\(874\) −4.05604 7.57091i −0.137198 0.256090i
\(875\) −27.1615 + 17.4893i −0.918225 + 0.591247i
\(876\) 0 0
\(877\) −5.64252 3.25771i −0.190534 0.110005i 0.401698 0.915772i \(-0.368420\pi\)
−0.592233 + 0.805767i \(0.701753\pi\)
\(878\) −0.667506 + 21.0040i −0.0225272 + 0.708851i
\(879\) 0 0
\(880\) −6.47799 + 2.83621i −0.218373 + 0.0956087i
\(881\) 12.1468i 0.409237i 0.978842 + 0.204619i \(0.0655954\pi\)
−0.978842 + 0.204619i \(0.934405\pi\)
\(882\) 0 0
\(883\) −30.7337 −1.03427 −0.517135 0.855904i \(-0.673002\pi\)
−0.517135 + 0.855904i \(0.673002\pi\)
\(884\) 3.49448 54.9239i 0.117532 1.84729i
\(885\) 0 0
\(886\) 1.21927 38.3660i 0.0409621 1.28893i
\(887\) 48.2108 + 27.8345i 1.61876 + 0.934592i 0.987241 + 0.159231i \(0.0509014\pi\)
0.631519 + 0.775361i \(0.282432\pi\)
\(888\) 0 0
\(889\) 14.1185 + 24.4539i 0.473518 + 0.820157i
\(890\) 0.0234587 0.000366221i 0.000786338 1.22757e-5i
\(891\) 0 0
\(892\) −0.375899 + 0.564907i −0.0125860 + 0.0189145i
\(893\) −6.86255 11.8863i −0.229647 0.397760i
\(894\) 0 0
\(895\) −48.9686 + 29.3371i −1.63684 + 0.980632i
\(896\) 31.8855 + 7.21008i 1.06522 + 0.240872i
\(897\) 0 0
\(898\) −21.0146 13.0399i −0.701267 0.435147i
\(899\) 6.94243 0.231543
\(900\) 0 0
\(901\) 10.0675 0.335397
\(902\) −6.48983 4.02704i −0.216088 0.134086i
\(903\) 0 0
\(904\) −15.1779 + 21.3095i −0.504809 + 0.708743i
\(905\) 49.1261 29.4315i 1.63301 0.978336i
\(906\) 0 0
\(907\) −8.31258 14.3978i −0.276015 0.478072i 0.694376 0.719612i \(-0.255681\pi\)
−0.970391 + 0.241541i \(0.922347\pi\)
\(908\) 14.3263 + 9.53299i 0.475436 + 0.316363i
\(909\) 0 0
\(910\) −42.6427 0.665706i −1.41359 0.0220680i
\(911\) −9.29200 16.0942i −0.307858 0.533225i 0.670036 0.742329i \(-0.266279\pi\)
−0.977893 + 0.209104i \(0.932945\pi\)
\(912\) 0 0
\(913\) 6.59137 + 3.80553i 0.218143 + 0.125945i
\(914\) −0.264863 + 8.33430i −0.00876090 + 0.275674i
\(915\) 0 0
\(916\) −1.43257 0.0911458i −0.0473334 0.00301154i
\(917\) 38.2464 1.26301
\(918\) 0 0
\(919\) 31.1617i 1.02793i 0.857811 + 0.513965i \(0.171824\pi\)
−0.857811 + 0.513965i \(0.828176\pi\)
\(920\) −8.40621 0.666731i −0.277145 0.0219815i
\(921\) 0 0
\(922\) 1.58696 49.9359i 0.0522637 1.64455i
\(923\) 11.6643 + 6.73437i 0.383934 + 0.221664i
\(924\) 0 0
\(925\) −32.8003 17.5493i −1.07847 0.577017i
\(926\) 24.8672 + 46.4166i 0.817189 + 1.52534i
\(927\) 0 0
\(928\) 11.6326 + 9.45396i 0.381858 + 0.310341i
\(929\) −24.5849 + 14.1941i −0.806604 + 0.465693i −0.845775 0.533540i \(-0.820861\pi\)
0.0391715 + 0.999233i \(0.487528\pi\)
\(930\) 0 0
\(931\) 5.32140 + 3.07231i 0.174402 + 0.100691i
\(932\) −12.2881 24.7983i −0.402511 0.812295i
\(933\) 0 0
\(934\) 8.39165 + 5.20715i 0.274583 + 0.170383i
\(935\) −9.10955 5.06493i −0.297914 0.165641i
\(936\) 0 0
\(937\) 25.1998i 0.823241i 0.911355 + 0.411620i \(0.135037\pi\)
−0.911355 + 0.411620i \(0.864963\pi\)
\(938\) 16.2331 26.1607i 0.530031 0.854179i
\(939\) 0 0
\(940\) −13.4601 0.638209i −0.439022 0.0208161i
\(941\) −35.0946 20.2619i −1.14405 0.660519i −0.196622 0.980479i \(-0.562997\pi\)
−0.947431 + 0.319960i \(0.896330\pi\)
\(942\) 0 0
\(943\) −4.55381 7.88742i −0.148292 0.256850i
\(944\) 16.3580 + 39.0686i 0.532407 + 1.27157i
\(945\) 0 0
\(946\) −6.28612 11.7335i −0.204379 0.381489i
\(947\) 0.518242 0.299207i 0.0168406 0.00972293i −0.491556 0.870846i \(-0.663572\pi\)
0.508397 + 0.861123i \(0.330238\pi\)
\(948\) 0 0
\(949\) 15.1890 26.3082i 0.493057 0.853999i
\(950\) 27.8850 16.1199i 0.904710 0.522997i
\(951\) 0 0
\(952\) 20.0110 + 43.8305i 0.648560 + 1.42055i
\(953\) 2.50405 0.0811142 0.0405571 0.999177i \(-0.487087\pi\)
0.0405571 + 0.999177i \(0.487087\pi\)
\(954\) 0 0
\(955\) 15.0819 + 8.38555i 0.488038 + 0.271350i
\(956\) −55.3092 3.51900i −1.78883 0.113813i
\(957\) 0 0
\(958\) 28.8608 + 0.917193i 0.932449 + 0.0296332i
\(959\) −4.55443 + 7.88850i −0.147070 + 0.254733i
\(960\) 0 0
\(961\) −12.0680 20.9023i −0.389289 0.674269i
\(962\) −23.1916 43.2889i −0.747728 1.39569i
\(963\) 0 0
\(964\) −12.6596 + 19.0251i −0.407739 + 0.612756i
\(965\) 11.5496 0.186649i 0.371796 0.00600845i
\(966\) 0 0
\(967\) 18.5754 32.1736i 0.597346 1.03463i −0.395866 0.918308i \(-0.629555\pi\)
0.993211 0.116325i \(-0.0371113\pi\)
\(968\) 17.0241 23.9016i 0.547176 0.768226i
\(969\) 0 0
\(970\) 10.2116 + 18.3423i 0.327874 + 0.588937i
\(971\) 14.7960 0.474826 0.237413 0.971409i \(-0.423701\pi\)
0.237413 + 0.971409i \(0.423701\pi\)
\(972\) 0 0
\(973\) 7.42550i 0.238051i
\(974\) −15.5293 + 25.0264i −0.497590 + 0.801898i
\(975\) 0 0
\(976\) 6.90189 + 0.881822i 0.220924 + 0.0282264i
\(977\) −16.1759 + 28.0175i −0.517514 + 0.896360i 0.482279 + 0.876018i \(0.339809\pi\)
−0.999793 + 0.0203428i \(0.993524\pi\)
\(978\) 0 0
\(979\) 0.00508002 0.00293295i 0.000162358 9.37374e-5i
\(980\) 5.36153 2.76556i 0.171268 0.0883425i
\(981\) 0 0
\(982\) −12.4434 23.2266i −0.397086 0.741191i
\(983\) 2.93257 1.69312i 0.0935346 0.0540022i −0.452503 0.891763i \(-0.649469\pi\)
0.546038 + 0.837761i \(0.316136\pi\)
\(984\) 0 0
\(985\) 16.2492 9.73488i 0.517741 0.310179i
\(986\) −0.701774 + 22.0823i −0.0223490 + 0.703245i
\(987\) 0 0
\(988\) 42.4353 + 2.69991i 1.35005 + 0.0858954i
\(989\) 15.8731i 0.504734i
\(990\) 0 0
\(991\) 39.7022i 1.26118i −0.776116 0.630591i \(-0.782813\pi\)
0.776116 0.630591i \(-0.217187\pi\)
\(992\) −2.34430 + 14.6340i −0.0744317 + 0.464630i
\(993\) 0 0
\(994\) −11.7858 0.374551i −0.373822 0.0118800i
\(995\) −0.638906 1.06644i −0.0202547 0.0338085i
\(996\) 0 0
\(997\) 17.8325 10.2956i 0.564760 0.326064i −0.190294 0.981727i \(-0.560944\pi\)
0.755054 + 0.655663i \(0.227611\pi\)
\(998\) −6.45827 + 3.45995i −0.204433 + 0.109523i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.179.8 48
3.2 odd 2 180.2.n.d.59.17 yes 48
4.3 odd 2 inner 540.2.n.d.179.24 48
5.4 even 2 inner 540.2.n.d.179.17 48
9.2 odd 6 inner 540.2.n.d.359.1 48
9.7 even 3 180.2.n.d.119.24 yes 48
12.11 even 2 180.2.n.d.59.1 48
15.2 even 4 900.2.r.g.851.20 48
15.8 even 4 900.2.r.g.851.5 48
15.14 odd 2 180.2.n.d.59.8 yes 48
20.19 odd 2 inner 540.2.n.d.179.1 48
36.7 odd 6 180.2.n.d.119.8 yes 48
36.11 even 6 inner 540.2.n.d.359.17 48
45.7 odd 12 900.2.r.g.551.12 48
45.29 odd 6 inner 540.2.n.d.359.24 48
45.34 even 6 180.2.n.d.119.1 yes 48
45.43 odd 12 900.2.r.g.551.13 48
60.23 odd 4 900.2.r.g.851.13 48
60.47 odd 4 900.2.r.g.851.12 48
60.59 even 2 180.2.n.d.59.24 yes 48
180.7 even 12 900.2.r.g.551.20 48
180.43 even 12 900.2.r.g.551.5 48
180.79 odd 6 180.2.n.d.119.17 yes 48
180.119 even 6 inner 540.2.n.d.359.8 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.1 48 12.11 even 2
180.2.n.d.59.8 yes 48 15.14 odd 2
180.2.n.d.59.17 yes 48 3.2 odd 2
180.2.n.d.59.24 yes 48 60.59 even 2
180.2.n.d.119.1 yes 48 45.34 even 6
180.2.n.d.119.8 yes 48 36.7 odd 6
180.2.n.d.119.17 yes 48 180.79 odd 6
180.2.n.d.119.24 yes 48 9.7 even 3
540.2.n.d.179.1 48 20.19 odd 2 inner
540.2.n.d.179.8 48 1.1 even 1 trivial
540.2.n.d.179.17 48 5.4 even 2 inner
540.2.n.d.179.24 48 4.3 odd 2 inner
540.2.n.d.359.1 48 9.2 odd 6 inner
540.2.n.d.359.8 48 180.119 even 6 inner
540.2.n.d.359.17 48 36.11 even 6 inner
540.2.n.d.359.24 48 45.29 odd 6 inner
900.2.r.g.551.5 48 180.43 even 12
900.2.r.g.551.12 48 45.7 odd 12
900.2.r.g.551.13 48 45.43 odd 12
900.2.r.g.551.20 48 180.7 even 12
900.2.r.g.851.5 48 15.8 even 4
900.2.r.g.851.12 48 60.47 odd 4
900.2.r.g.851.13 48 60.23 odd 4
900.2.r.g.851.20 48 15.2 even 4