Properties

Label 540.2.n.d.359.18
Level $540$
Weight $2$
Character 540.359
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 359.18
Character \(\chi\) \(=\) 540.359
Dual form 540.2.n.d.179.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.937387 + 1.05892i) q^{2} +(-0.242609 + 1.98523i) q^{4} +(1.62334 + 1.53778i) q^{5} +(0.550457 - 0.953419i) q^{7} +(-2.32961 + 1.60403i) q^{8} +(-0.106691 + 3.16048i) q^{10} +(-2.84126 + 4.92120i) q^{11} +(2.07548 - 1.19828i) q^{13} +(1.52558 - 0.310835i) q^{14} +(-3.88228 - 0.963271i) q^{16} +1.29175 q^{17} -2.78362i q^{19} +(-3.44669 + 2.84961i) q^{20} +(-7.87450 + 1.60442i) q^{22} +(1.82546 - 1.05393i) q^{23} +(0.270437 + 4.99268i) q^{25} +(3.21441 + 1.07451i) q^{26} +(1.75921 + 1.32409i) q^{28} +(5.51723 + 3.18537i) q^{29} +(-2.78385 + 1.60725i) q^{31} +(-2.61918 - 5.01397i) q^{32} +(1.21087 + 1.36785i) q^{34} +(2.35973 - 0.701235i) q^{35} -6.51687i q^{37} +(2.94763 - 2.60933i) q^{38} +(-6.24839 - 0.978569i) q^{40} +(-6.35642 + 3.66988i) q^{41} +(2.25473 - 3.90530i) q^{43} +(-9.08040 - 6.83448i) q^{44} +(2.82719 + 0.945071i) q^{46} +(-8.09628 - 4.67439i) q^{47} +(2.89400 + 5.01255i) q^{49} +(-5.03333 + 4.96645i) q^{50} +(1.87533 + 4.41103i) q^{52} +11.5954 q^{53} +(-12.1801 + 3.61952i) q^{55} +(0.246959 + 3.10404i) q^{56} +(1.79874 + 8.82821i) q^{58} +(-3.66237 - 6.34341i) q^{59} +(2.48990 - 4.31263i) q^{61} +(-4.31149 - 1.44124i) q^{62} +(2.85419 - 7.47353i) q^{64} +(5.21191 + 1.24643i) q^{65} +(1.85016 + 3.20457i) q^{67} +(-0.313389 + 2.56441i) q^{68} +(2.95453 + 1.84143i) q^{70} +12.6950 q^{71} -9.86891i q^{73} +(6.90082 - 6.10883i) q^{74} +(5.52614 + 0.675333i) q^{76} +(3.12798 + 5.41781i) q^{77} +(0.975531 + 0.563223i) q^{79} +(-4.82094 - 7.53382i) q^{80} +(-9.84453 - 3.29082i) q^{82} +(9.98138 + 5.76275i) q^{83} +(2.09694 + 1.98643i) q^{85} +(6.24894 - 1.27321i) q^{86} +(-1.27471 - 16.0219i) q^{88} -9.16815i q^{89} -2.63841i q^{91} +(1.64942 + 3.87966i) q^{92} +(-2.63956 - 12.9550i) q^{94} +(4.28061 - 4.51876i) q^{95} +(11.1257 + 6.42344i) q^{97} +(-2.59507 + 7.76320i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.937387 + 1.05892i 0.662833 + 0.748767i
\(3\) 0 0
\(4\) −0.242609 + 1.98523i −0.121305 + 0.992615i
\(5\) 1.62334 + 1.53778i 0.725978 + 0.687718i
\(6\) 0 0
\(7\) 0.550457 0.953419i 0.208053 0.360358i −0.743048 0.669238i \(-0.766621\pi\)
0.951101 + 0.308880i \(0.0999540\pi\)
\(8\) −2.32961 + 1.60403i −0.823643 + 0.567109i
\(9\) 0 0
\(10\) −0.106691 + 3.16048i −0.0337388 + 0.999431i
\(11\) −2.84126 + 4.92120i −0.856671 + 1.48380i 0.0184153 + 0.999830i \(0.494138\pi\)
−0.875086 + 0.483967i \(0.839195\pi\)
\(12\) 0 0
\(13\) 2.07548 1.19828i 0.575636 0.332343i −0.183761 0.982971i \(-0.558827\pi\)
0.759397 + 0.650627i \(0.225494\pi\)
\(14\) 1.52558 0.310835i 0.407729 0.0830742i
\(15\) 0 0
\(16\) −3.88228 0.963271i −0.970570 0.240818i
\(17\) 1.29175 0.313294 0.156647 0.987655i \(-0.449931\pi\)
0.156647 + 0.987655i \(0.449931\pi\)
\(18\) 0 0
\(19\) 2.78362i 0.638607i −0.947652 0.319304i \(-0.896551\pi\)
0.947652 0.319304i \(-0.103449\pi\)
\(20\) −3.44669 + 2.84961i −0.770704 + 0.637193i
\(21\) 0 0
\(22\) −7.87450 + 1.60442i −1.67885 + 0.342063i
\(23\) 1.82546 1.05393i 0.380635 0.219760i −0.297459 0.954735i \(-0.596139\pi\)
0.678095 + 0.734975i \(0.262806\pi\)
\(24\) 0 0
\(25\) 0.270437 + 4.99268i 0.0540873 + 0.998536i
\(26\) 3.21441 + 1.07451i 0.630398 + 0.210729i
\(27\) 0 0
\(28\) 1.75921 + 1.32409i 0.332459 + 0.250230i
\(29\) 5.51723 + 3.18537i 1.02452 + 0.591509i 0.915411 0.402521i \(-0.131866\pi\)
0.109112 + 0.994029i \(0.465199\pi\)
\(30\) 0 0
\(31\) −2.78385 + 1.60725i −0.499994 + 0.288671i −0.728711 0.684821i \(-0.759880\pi\)
0.228717 + 0.973493i \(0.426547\pi\)
\(32\) −2.61918 5.01397i −0.463010 0.886353i
\(33\) 0 0
\(34\) 1.21087 + 1.36785i 0.207662 + 0.234584i
\(35\) 2.35973 0.701235i 0.398867 0.118530i
\(36\) 0 0
\(37\) 6.51687i 1.07137i −0.844419 0.535683i \(-0.820054\pi\)
0.844419 0.535683i \(-0.179946\pi\)
\(38\) 2.94763 2.60933i 0.478168 0.423290i
\(39\) 0 0
\(40\) −6.24839 0.978569i −0.987958 0.154725i
\(41\) −6.35642 + 3.66988i −0.992706 + 0.573139i −0.906082 0.423102i \(-0.860941\pi\)
−0.0866240 + 0.996241i \(0.527608\pi\)
\(42\) 0 0
\(43\) 2.25473 3.90530i 0.343843 0.595553i −0.641300 0.767290i \(-0.721605\pi\)
0.985143 + 0.171737i \(0.0549380\pi\)
\(44\) −9.08040 6.83448i −1.36892 1.03034i
\(45\) 0 0
\(46\) 2.82719 + 0.945071i 0.416847 + 0.139343i
\(47\) −8.09628 4.67439i −1.18096 0.681830i −0.224726 0.974422i \(-0.572149\pi\)
−0.956237 + 0.292592i \(0.905482\pi\)
\(48\) 0 0
\(49\) 2.89400 + 5.01255i 0.413428 + 0.716078i
\(50\) −5.03333 + 4.96645i −0.711820 + 0.702362i
\(51\) 0 0
\(52\) 1.87533 + 4.41103i 0.260062 + 0.611700i
\(53\) 11.5954 1.59275 0.796377 0.604800i \(-0.206747\pi\)
0.796377 + 0.604800i \(0.206747\pi\)
\(54\) 0 0
\(55\) −12.1801 + 3.61952i −1.64236 + 0.488056i
\(56\) 0.246959 + 3.10404i 0.0330013 + 0.414795i
\(57\) 0 0
\(58\) 1.79874 + 8.82821i 0.236186 + 1.15920i
\(59\) −3.66237 6.34341i −0.476800 0.825842i 0.522846 0.852427i \(-0.324870\pi\)
−0.999647 + 0.0265849i \(0.991537\pi\)
\(60\) 0 0
\(61\) 2.48990 4.31263i 0.318799 0.552175i −0.661439 0.749999i \(-0.730054\pi\)
0.980238 + 0.197823i \(0.0633873\pi\)
\(62\) −4.31149 1.44124i −0.547560 0.183038i
\(63\) 0 0
\(64\) 2.85419 7.47353i 0.356774 0.934191i
\(65\) 5.21191 + 1.24643i 0.646457 + 0.154601i
\(66\) 0 0
\(67\) 1.85016 + 3.20457i 0.226033 + 0.391500i 0.956629 0.291310i \(-0.0940910\pi\)
−0.730596 + 0.682810i \(0.760758\pi\)
\(68\) −0.313389 + 2.56441i −0.0380041 + 0.310981i
\(69\) 0 0
\(70\) 2.95453 + 1.84143i 0.353134 + 0.220093i
\(71\) 12.6950 1.50662 0.753311 0.657664i \(-0.228455\pi\)
0.753311 + 0.657664i \(0.228455\pi\)
\(72\) 0 0
\(73\) 9.86891i 1.15507i −0.816366 0.577534i \(-0.804015\pi\)
0.816366 0.577534i \(-0.195985\pi\)
\(74\) 6.90082 6.10883i 0.802204 0.710137i
\(75\) 0 0
\(76\) 5.52614 + 0.675333i 0.633891 + 0.0774660i
\(77\) 3.12798 + 5.41781i 0.356466 + 0.617417i
\(78\) 0 0
\(79\) 0.975531 + 0.563223i 0.109756 + 0.0633676i 0.553873 0.832601i \(-0.313149\pi\)
−0.444117 + 0.895969i \(0.646483\pi\)
\(80\) −4.82094 7.53382i −0.538998 0.842307i
\(81\) 0 0
\(82\) −9.84453 3.29082i −1.08715 0.363410i
\(83\) 9.98138 + 5.76275i 1.09560 + 0.632544i 0.935062 0.354485i \(-0.115344\pi\)
0.160537 + 0.987030i \(0.448677\pi\)
\(84\) 0 0
\(85\) 2.09694 + 1.98643i 0.227445 + 0.215458i
\(86\) 6.24894 1.27321i 0.673841 0.137294i
\(87\) 0 0
\(88\) −1.27471 16.0219i −0.135885 1.70794i
\(89\) 9.16815i 0.971822i −0.874008 0.485911i \(-0.838488\pi\)
0.874008 0.485911i \(-0.161512\pi\)
\(90\) 0 0
\(91\) 2.63841i 0.276580i
\(92\) 1.64942 + 3.87966i 0.171964 + 0.404482i
\(93\) 0 0
\(94\) −2.63956 12.9550i −0.272250 1.33621i
\(95\) 4.28061 4.51876i 0.439182 0.463615i
\(96\) 0 0
\(97\) 11.1257 + 6.42344i 1.12965 + 0.652202i 0.943846 0.330386i \(-0.107179\pi\)
0.185801 + 0.982587i \(0.440512\pi\)
\(98\) −2.59507 + 7.76320i −0.262142 + 0.784201i
\(99\) 0 0
\(100\) −9.97723 0.674392i −0.997723 0.0674392i
\(101\) −14.4999 8.37150i −1.44279 0.832995i −0.444755 0.895652i \(-0.646709\pi\)
−0.998035 + 0.0626572i \(0.980043\pi\)
\(102\) 0 0
\(103\) −0.679292 1.17657i −0.0669327 0.115931i 0.830617 0.556844i \(-0.187988\pi\)
−0.897550 + 0.440913i \(0.854655\pi\)
\(104\) −2.91300 + 6.12066i −0.285643 + 0.600181i
\(105\) 0 0
\(106\) 10.8694 + 12.2786i 1.05573 + 1.19260i
\(107\) 2.97211i 0.287324i −0.989627 0.143662i \(-0.954112\pi\)
0.989627 0.143662i \(-0.0458879\pi\)
\(108\) 0 0
\(109\) 5.12076 0.490480 0.245240 0.969462i \(-0.421133\pi\)
0.245240 + 0.969462i \(0.421133\pi\)
\(110\) −15.2502 9.50478i −1.45405 0.906245i
\(111\) 0 0
\(112\) −3.05543 + 3.17120i −0.288711 + 0.299650i
\(113\) −4.18521 7.24900i −0.393711 0.681928i 0.599224 0.800581i \(-0.295476\pi\)
−0.992936 + 0.118653i \(0.962142\pi\)
\(114\) 0 0
\(115\) 4.58406 + 1.09628i 0.427466 + 0.102229i
\(116\) −7.66223 + 10.1802i −0.711420 + 0.945205i
\(117\) 0 0
\(118\) 3.28409 9.82438i 0.302325 0.904408i
\(119\) 0.711050 1.23157i 0.0651818 0.112898i
\(120\) 0 0
\(121\) −10.6455 18.4385i −0.967770 1.67623i
\(122\) 6.90071 1.40601i 0.624761 0.127294i
\(123\) 0 0
\(124\) −2.51538 5.91651i −0.225888 0.531318i
\(125\) −7.23866 + 8.52067i −0.647445 + 0.762112i
\(126\) 0 0
\(127\) 5.14729 0.456748 0.228374 0.973573i \(-0.426659\pi\)
0.228374 + 0.973573i \(0.426659\pi\)
\(128\) 10.5893 3.98324i 0.935973 0.352072i
\(129\) 0 0
\(130\) 3.56570 + 6.68737i 0.312733 + 0.586521i
\(131\) −7.10028 12.2980i −0.620354 1.07449i −0.989420 0.145082i \(-0.953656\pi\)
0.369065 0.929403i \(-0.379678\pi\)
\(132\) 0 0
\(133\) −2.65396 1.53226i −0.230127 0.132864i
\(134\) −1.65906 + 4.96309i −0.143321 + 0.428746i
\(135\) 0 0
\(136\) −3.00927 + 2.07199i −0.258042 + 0.177672i
\(137\) −3.47139 + 6.01263i −0.296581 + 0.513693i −0.975351 0.220657i \(-0.929180\pi\)
0.678770 + 0.734351i \(0.262513\pi\)
\(138\) 0 0
\(139\) 10.3321 5.96523i 0.876356 0.505964i 0.00690070 0.999976i \(-0.497803\pi\)
0.869455 + 0.494012i \(0.164470\pi\)
\(140\) 0.819621 + 4.85473i 0.0692706 + 0.410300i
\(141\) 0 0
\(142\) 11.9002 + 13.4430i 0.998640 + 1.12811i
\(143\) 13.6185i 1.13884i
\(144\) 0 0
\(145\) 4.05789 + 13.6552i 0.336990 + 1.13401i
\(146\) 10.4504 9.25100i 0.864878 0.765618i
\(147\) 0 0
\(148\) 12.9375 + 1.58105i 1.06345 + 0.129962i
\(149\) −4.98019 + 2.87531i −0.407993 + 0.235555i −0.689927 0.723879i \(-0.742357\pi\)
0.281934 + 0.959434i \(0.409024\pi\)
\(150\) 0 0
\(151\) −1.85084 1.06858i −0.150619 0.0869599i 0.422796 0.906225i \(-0.361049\pi\)
−0.573415 + 0.819265i \(0.694382\pi\)
\(152\) 4.46501 + 6.48477i 0.362160 + 0.525984i
\(153\) 0 0
\(154\) −2.80489 + 8.39086i −0.226024 + 0.676155i
\(155\) −6.99073 1.67184i −0.561509 0.134286i
\(156\) 0 0
\(157\) −8.70855 + 5.02788i −0.695018 + 0.401269i −0.805489 0.592611i \(-0.798097\pi\)
0.110471 + 0.993879i \(0.464764\pi\)
\(158\) 0.318044 + 1.56097i 0.0253022 + 0.124184i
\(159\) 0 0
\(160\) 3.45860 12.1671i 0.273427 0.961893i
\(161\) 2.32057i 0.182887i
\(162\) 0 0
\(163\) 18.2146 1.42668 0.713339 0.700819i \(-0.247182\pi\)
0.713339 + 0.700819i \(0.247182\pi\)
\(164\) −5.74343 13.5093i −0.448487 1.05490i
\(165\) 0 0
\(166\) 3.25415 + 15.9714i 0.252571 + 1.23962i
\(167\) −6.44716 + 3.72227i −0.498896 + 0.288038i −0.728258 0.685304i \(-0.759670\pi\)
0.229362 + 0.973341i \(0.426336\pi\)
\(168\) 0 0
\(169\) −3.62824 + 6.28430i −0.279096 + 0.483408i
\(170\) −0.137818 + 4.08253i −0.0105702 + 0.313116i
\(171\) 0 0
\(172\) 7.20591 + 5.42361i 0.549445 + 0.413547i
\(173\) 4.33441 7.50742i 0.329539 0.570778i −0.652881 0.757460i \(-0.726440\pi\)
0.982420 + 0.186682i \(0.0597734\pi\)
\(174\) 0 0
\(175\) 4.90898 + 2.49041i 0.371084 + 0.188258i
\(176\) 15.7710 16.3686i 1.18878 1.23383i
\(177\) 0 0
\(178\) 9.70831 8.59411i 0.727668 0.644156i
\(179\) −1.10988 −0.0829560 −0.0414780 0.999139i \(-0.513207\pi\)
−0.0414780 + 0.999139i \(0.513207\pi\)
\(180\) 0 0
\(181\) −12.6629 −0.941229 −0.470615 0.882339i \(-0.655968\pi\)
−0.470615 + 0.882339i \(0.655968\pi\)
\(182\) 2.79385 2.47321i 0.207094 0.183327i
\(183\) 0 0
\(184\) −2.56209 + 5.38335i −0.188880 + 0.396866i
\(185\) 10.0215 10.5791i 0.736798 0.777788i
\(186\) 0 0
\(187\) −3.67018 + 6.35694i −0.268390 + 0.464865i
\(188\) 11.2440 14.9389i 0.820051 1.08953i
\(189\) 0 0
\(190\) 8.79758 + 0.296989i 0.638244 + 0.0215458i
\(191\) −11.3827 + 19.7154i −0.823625 + 1.42656i 0.0793411 + 0.996848i \(0.474718\pi\)
−0.902966 + 0.429712i \(0.858615\pi\)
\(192\) 0 0
\(193\) −10.0687 + 5.81319i −0.724764 + 0.418443i −0.816504 0.577340i \(-0.804091\pi\)
0.0917396 + 0.995783i \(0.470757\pi\)
\(194\) 3.62723 + 17.8025i 0.260420 + 1.27814i
\(195\) 0 0
\(196\) −10.6532 + 4.52916i −0.760941 + 0.323511i
\(197\) −12.2003 −0.869238 −0.434619 0.900614i \(-0.643117\pi\)
−0.434619 + 0.900614i \(0.643117\pi\)
\(198\) 0 0
\(199\) 7.07921i 0.501832i 0.968009 + 0.250916i \(0.0807318\pi\)
−0.968009 + 0.250916i \(0.919268\pi\)
\(200\) −8.63841 11.1972i −0.610828 0.791763i
\(201\) 0 0
\(202\) −4.72727 23.2015i −0.332609 1.63245i
\(203\) 6.07399 3.50682i 0.426310 0.246130i
\(204\) 0 0
\(205\) −15.9621 3.81736i −1.11484 0.266616i
\(206\) 0.609128 1.82222i 0.0424400 0.126960i
\(207\) 0 0
\(208\) −9.21188 + 2.65281i −0.638729 + 0.183939i
\(209\) 13.6988 + 7.90899i 0.947564 + 0.547076i
\(210\) 0 0
\(211\) −5.61368 + 3.24106i −0.386462 + 0.223124i −0.680626 0.732631i \(-0.738292\pi\)
0.294164 + 0.955755i \(0.404959\pi\)
\(212\) −2.81316 + 23.0196i −0.193209 + 1.58099i
\(213\) 0 0
\(214\) 3.14721 2.78601i 0.215139 0.190448i
\(215\) 9.66569 2.87233i 0.659195 0.195891i
\(216\) 0 0
\(217\) 3.53890i 0.240236i
\(218\) 4.80014 + 5.42246i 0.325106 + 0.367255i
\(219\) 0 0
\(220\) −4.23058 25.0584i −0.285226 1.68943i
\(221\) 2.68100 1.54787i 0.180343 0.104121i
\(222\) 0 0
\(223\) −7.84799 + 13.5931i −0.525540 + 0.910263i 0.474017 + 0.880516i \(0.342803\pi\)
−0.999557 + 0.0297470i \(0.990530\pi\)
\(224\) −6.22216 0.262800i −0.415735 0.0175590i
\(225\) 0 0
\(226\) 3.75292 11.2269i 0.249640 0.746803i
\(227\) −0.169745 0.0980022i −0.0112664 0.00650463i 0.494356 0.869259i \(-0.335404\pi\)
−0.505623 + 0.862755i \(0.668737\pi\)
\(228\) 0 0
\(229\) 0.825139 + 1.42918i 0.0545267 + 0.0944431i 0.892000 0.452035i \(-0.149302\pi\)
−0.837474 + 0.546478i \(0.815968\pi\)
\(230\) 3.13617 + 5.88178i 0.206793 + 0.387833i
\(231\) 0 0
\(232\) −17.9624 + 1.42910i −1.17929 + 0.0938248i
\(233\) −20.2270 −1.32512 −0.662559 0.749010i \(-0.730530\pi\)
−0.662559 + 0.749010i \(0.730530\pi\)
\(234\) 0 0
\(235\) −5.95477 20.0384i −0.388447 1.30716i
\(236\) 13.4817 5.73168i 0.877581 0.373101i
\(237\) 0 0
\(238\) 1.97066 0.401520i 0.127739 0.0260267i
\(239\) 10.1646 + 17.6056i 0.657494 + 1.13881i 0.981262 + 0.192676i \(0.0617168\pi\)
−0.323769 + 0.946136i \(0.604950\pi\)
\(240\) 0 0
\(241\) 8.62268 14.9349i 0.555436 0.962043i −0.442434 0.896801i \(-0.645885\pi\)
0.997869 0.0652417i \(-0.0207818\pi\)
\(242\) 9.54590 28.5567i 0.613634 1.83569i
\(243\) 0 0
\(244\) 7.95749 + 5.98930i 0.509426 + 0.383426i
\(245\) −3.01029 + 12.5874i −0.192320 + 0.804179i
\(246\) 0 0
\(247\) −3.33556 5.77737i −0.212237 0.367605i
\(248\) 3.90720 8.20965i 0.248108 0.521313i
\(249\) 0 0
\(250\) −15.8081 + 0.322033i −0.999793 + 0.0203671i
\(251\) −9.92020 −0.626157 −0.313079 0.949727i \(-0.601360\pi\)
−0.313079 + 0.949727i \(0.601360\pi\)
\(252\) 0 0
\(253\) 11.9780i 0.753048i
\(254\) 4.82501 + 5.45055i 0.302748 + 0.341998i
\(255\) 0 0
\(256\) 14.1442 + 7.47938i 0.884014 + 0.467461i
\(257\) −8.67485 15.0253i −0.541122 0.937252i −0.998840 0.0481539i \(-0.984666\pi\)
0.457717 0.889098i \(-0.348667\pi\)
\(258\) 0 0
\(259\) −6.21330 3.58725i −0.386076 0.222901i
\(260\) −3.73892 + 10.0444i −0.231878 + 0.622930i
\(261\) 0 0
\(262\) 6.36689 19.0466i 0.393348 1.17671i
\(263\) −8.32487 4.80637i −0.513334 0.296373i 0.220869 0.975303i \(-0.429111\pi\)
−0.734203 + 0.678930i \(0.762444\pi\)
\(264\) 0 0
\(265\) 18.8233 + 17.8313i 1.15630 + 1.09537i
\(266\) −0.865248 4.24665i −0.0530518 0.260379i
\(267\) 0 0
\(268\) −6.81068 + 2.89553i −0.416028 + 0.176873i
\(269\) 1.34482i 0.0819953i 0.999159 + 0.0409977i \(0.0130536\pi\)
−0.999159 + 0.0409977i \(0.986946\pi\)
\(270\) 0 0
\(271\) 21.7288i 1.31993i 0.751297 + 0.659964i \(0.229429\pi\)
−0.751297 + 0.659964i \(0.770571\pi\)
\(272\) −5.01492 1.24430i −0.304074 0.0754468i
\(273\) 0 0
\(274\) −9.62091 + 1.96025i −0.581221 + 0.118423i
\(275\) −25.3384 12.8546i −1.52796 0.775162i
\(276\) 0 0
\(277\) −12.0501 6.95713i −0.724021 0.418014i 0.0922100 0.995740i \(-0.470607\pi\)
−0.816231 + 0.577726i \(0.803940\pi\)
\(278\) 16.0018 + 5.34908i 0.959727 + 0.320817i
\(279\) 0 0
\(280\) −4.37245 + 5.41867i −0.261304 + 0.323828i
\(281\) −10.0948 5.82824i −0.602206 0.347684i 0.167703 0.985838i \(-0.446365\pi\)
−0.769909 + 0.638154i \(0.779698\pi\)
\(282\) 0 0
\(283\) −6.21367 10.7624i −0.369365 0.639758i 0.620102 0.784521i \(-0.287091\pi\)
−0.989466 + 0.144763i \(0.953758\pi\)
\(284\) −3.07993 + 25.2026i −0.182760 + 1.49550i
\(285\) 0 0
\(286\) −14.4209 + 12.7658i −0.852723 + 0.754858i
\(287\) 8.08044i 0.476973i
\(288\) 0 0
\(289\) −15.3314 −0.901847
\(290\) −10.6559 + 17.0972i −0.625738 + 1.00398i
\(291\) 0 0
\(292\) 19.5921 + 2.39429i 1.14654 + 0.140115i
\(293\) 4.77472 + 8.27006i 0.278942 + 0.483142i 0.971122 0.238583i \(-0.0766829\pi\)
−0.692180 + 0.721725i \(0.743350\pi\)
\(294\) 0 0
\(295\) 3.80955 15.9294i 0.221800 0.927447i
\(296\) 10.4532 + 15.1818i 0.607582 + 0.882423i
\(297\) 0 0
\(298\) −7.71308 2.57832i −0.446807 0.149358i
\(299\) 2.52581 4.37484i 0.146072 0.253003i
\(300\) 0 0
\(301\) −2.48226 4.29940i −0.143075 0.247813i
\(302\) −0.603413 2.96156i −0.0347225 0.170418i
\(303\) 0 0
\(304\) −2.68138 + 10.8068i −0.153788 + 0.619813i
\(305\) 10.6738 3.17192i 0.611182 0.181623i
\(306\) 0 0
\(307\) −13.4685 −0.768689 −0.384345 0.923190i \(-0.625573\pi\)
−0.384345 + 0.923190i \(0.625573\pi\)
\(308\) −11.5145 + 4.89534i −0.656099 + 0.278938i
\(309\) 0 0
\(310\) −4.78268 8.96976i −0.271638 0.509448i
\(311\) 5.13110 + 8.88732i 0.290958 + 0.503954i 0.974037 0.226391i \(-0.0726927\pi\)
−0.683079 + 0.730345i \(0.739359\pi\)
\(312\) 0 0
\(313\) −1.39067 0.802903i −0.0786052 0.0453827i 0.460182 0.887824i \(-0.347784\pi\)
−0.538787 + 0.842442i \(0.681117\pi\)
\(314\) −13.4874 4.50855i −0.761138 0.254432i
\(315\) 0 0
\(316\) −1.35480 + 1.80001i −0.0762135 + 0.101259i
\(317\) 2.23127 3.86467i 0.125320 0.217061i −0.796538 0.604589i \(-0.793337\pi\)
0.921858 + 0.387528i \(0.126671\pi\)
\(318\) 0 0
\(319\) −31.3517 + 18.1009i −1.75536 + 1.01346i
\(320\) 16.1260 7.74291i 0.901470 0.432842i
\(321\) 0 0
\(322\) 2.45730 2.17528i 0.136940 0.121223i
\(323\) 3.59573i 0.200072i
\(324\) 0 0
\(325\) 6.54392 + 10.0382i 0.362992 + 0.556818i
\(326\) 17.0741 + 19.2878i 0.945649 + 1.06825i
\(327\) 0 0
\(328\) 8.92141 18.7453i 0.492602 1.03503i
\(329\) −8.91330 + 5.14610i −0.491406 + 0.283713i
\(330\) 0 0
\(331\) −10.2107 5.89512i −0.561228 0.324025i 0.192410 0.981315i \(-0.438370\pi\)
−0.753638 + 0.657289i \(0.771703\pi\)
\(332\) −13.8620 + 18.4172i −0.760775 + 1.01078i
\(333\) 0 0
\(334\) −9.98506 3.33780i −0.546358 0.182636i
\(335\) −1.92451 + 8.04724i −0.105147 + 0.439668i
\(336\) 0 0
\(337\) −9.14715 + 5.28111i −0.498277 + 0.287680i −0.728002 0.685575i \(-0.759551\pi\)
0.229725 + 0.973256i \(0.426217\pi\)
\(338\) −10.0556 + 2.04882i −0.546954 + 0.111441i
\(339\) 0 0
\(340\) −4.45225 + 3.68098i −0.241457 + 0.199629i
\(341\) 18.2665i 0.989186i
\(342\) 0 0
\(343\) 14.0785 0.760166
\(344\) 1.01157 + 12.7145i 0.0545401 + 0.685519i
\(345\) 0 0
\(346\) 12.0127 2.44758i 0.645809 0.131583i
\(347\) 20.1864 11.6546i 1.08366 0.625652i 0.151779 0.988414i \(-0.451500\pi\)
0.931882 + 0.362763i \(0.118166\pi\)
\(348\) 0 0
\(349\) 2.84689 4.93095i 0.152390 0.263948i −0.779715 0.626134i \(-0.784636\pi\)
0.932106 + 0.362186i \(0.117970\pi\)
\(350\) 1.96447 + 7.53268i 0.105006 + 0.402639i
\(351\) 0 0
\(352\) 32.1165 + 1.35648i 1.71182 + 0.0723004i
\(353\) −0.761369 + 1.31873i −0.0405236 + 0.0701889i −0.885576 0.464495i \(-0.846236\pi\)
0.845052 + 0.534684i \(0.179569\pi\)
\(354\) 0 0
\(355\) 20.6083 + 19.5222i 1.09377 + 1.03613i
\(356\) 18.2009 + 2.22428i 0.964645 + 0.117887i
\(357\) 0 0
\(358\) −1.04038 1.17527i −0.0549860 0.0621148i
\(359\) 9.46115 0.499341 0.249670 0.968331i \(-0.419678\pi\)
0.249670 + 0.968331i \(0.419678\pi\)
\(360\) 0 0
\(361\) 11.2514 0.592181
\(362\) −11.8701 13.4090i −0.623878 0.704762i
\(363\) 0 0
\(364\) 5.23785 + 0.640102i 0.274538 + 0.0335505i
\(365\) 15.1763 16.0206i 0.794362 0.838554i
\(366\) 0 0
\(367\) 4.06621 7.04288i 0.212254 0.367635i −0.740165 0.672425i \(-0.765253\pi\)
0.952420 + 0.304790i \(0.0985862\pi\)
\(368\) −8.10218 + 2.33324i −0.422356 + 0.121629i
\(369\) 0 0
\(370\) 20.5964 + 0.695294i 1.07076 + 0.0361466i
\(371\) 6.38278 11.0553i 0.331377 0.573963i
\(372\) 0 0
\(373\) 10.0593 5.80775i 0.520851 0.300714i −0.216432 0.976298i \(-0.569442\pi\)
0.737283 + 0.675584i \(0.236108\pi\)
\(374\) −10.1718 + 2.07250i −0.525974 + 0.107166i
\(375\) 0 0
\(376\) 26.3590 2.09713i 1.35936 0.108151i
\(377\) 15.2679 0.786336
\(378\) 0 0
\(379\) 0.194316i 0.00998136i 0.999988 + 0.00499068i \(0.00158859\pi\)
−0.999988 + 0.00499068i \(0.998411\pi\)
\(380\) 7.93226 + 9.59430i 0.406916 + 0.492177i
\(381\) 0 0
\(382\) −31.5470 + 6.42766i −1.61409 + 0.328868i
\(383\) −16.0220 + 9.25031i −0.818686 + 0.472669i −0.849963 0.526842i \(-0.823376\pi\)
0.0312769 + 0.999511i \(0.490043\pi\)
\(384\) 0 0
\(385\) −3.25368 + 13.6051i −0.165823 + 0.693379i
\(386\) −15.5940 5.21275i −0.793714 0.265322i
\(387\) 0 0
\(388\) −15.4512 + 20.5288i −0.784417 + 1.04219i
\(389\) 20.3869 + 11.7704i 1.03366 + 0.596783i 0.918031 0.396509i \(-0.129779\pi\)
0.115628 + 0.993293i \(0.463112\pi\)
\(390\) 0 0
\(391\) 2.35803 1.36141i 0.119251 0.0688495i
\(392\) −14.7821 7.03525i −0.746611 0.355334i
\(393\) 0 0
\(394\) −11.4364 12.9191i −0.576160 0.650857i
\(395\) 0.717499 + 2.41446i 0.0361013 + 0.121485i
\(396\) 0 0
\(397\) 23.4091i 1.17487i 0.809272 + 0.587435i \(0.199862\pi\)
−0.809272 + 0.587435i \(0.800138\pi\)
\(398\) −7.49629 + 6.63596i −0.375755 + 0.332631i
\(399\) 0 0
\(400\) 3.75939 19.6435i 0.187970 0.982175i
\(401\) −25.9256 + 14.9681i −1.29466 + 0.747474i −0.979477 0.201557i \(-0.935400\pi\)
−0.315185 + 0.949030i \(0.602067\pi\)
\(402\) 0 0
\(403\) −3.85189 + 6.67166i −0.191876 + 0.332339i
\(404\) 20.1372 26.7546i 1.00186 1.33109i
\(405\) 0 0
\(406\) 9.40711 + 3.14460i 0.466867 + 0.156064i
\(407\) 32.0708 + 18.5161i 1.58969 + 0.917809i
\(408\) 0 0
\(409\) 1.04012 + 1.80153i 0.0514304 + 0.0890800i 0.890594 0.454798i \(-0.150289\pi\)
−0.839164 + 0.543878i \(0.816955\pi\)
\(410\) −10.9204 20.4809i −0.539320 1.01148i
\(411\) 0 0
\(412\) 2.50056 1.06311i 0.123194 0.0523754i
\(413\) −8.06390 −0.396799
\(414\) 0 0
\(415\) 7.34126 + 24.7041i 0.360368 + 1.21268i
\(416\) −11.4442 7.26791i −0.561099 0.356338i
\(417\) 0 0
\(418\) 4.46610 + 21.9196i 0.218444 + 1.07212i
\(419\) −4.89021 8.47010i −0.238903 0.413791i 0.721497 0.692417i \(-0.243454\pi\)
−0.960400 + 0.278626i \(0.910121\pi\)
\(420\) 0 0
\(421\) 1.05097 1.82034i 0.0512212 0.0887177i −0.839278 0.543703i \(-0.817022\pi\)
0.890499 + 0.454985i \(0.150355\pi\)
\(422\) −8.69420 2.90629i −0.423227 0.141476i
\(423\) 0 0
\(424\) −27.0129 + 18.5994i −1.31186 + 0.903266i
\(425\) 0.349335 + 6.44927i 0.0169453 + 0.312836i
\(426\) 0 0
\(427\) −2.74116 4.74783i −0.132654 0.229764i
\(428\) 5.90031 + 0.721061i 0.285202 + 0.0348538i
\(429\) 0 0
\(430\) 12.1021 + 7.54267i 0.583613 + 0.363740i
\(431\) 3.84204 0.185064 0.0925322 0.995710i \(-0.470504\pi\)
0.0925322 + 0.995710i \(0.470504\pi\)
\(432\) 0 0
\(433\) 6.66853i 0.320469i −0.987079 0.160235i \(-0.948775\pi\)
0.987079 0.160235i \(-0.0512251\pi\)
\(434\) −3.74740 + 3.31732i −0.179881 + 0.159236i
\(435\) 0 0
\(436\) −1.24234 + 10.1659i −0.0594975 + 0.486858i
\(437\) −2.93375 5.08140i −0.140340 0.243077i
\(438\) 0 0
\(439\) 33.5536 + 19.3722i 1.60143 + 0.924585i 0.991202 + 0.132357i \(0.0422544\pi\)
0.610225 + 0.792228i \(0.291079\pi\)
\(440\) 22.5690 27.9692i 1.07594 1.33338i
\(441\) 0 0
\(442\) 4.15220 + 1.38799i 0.197500 + 0.0660202i
\(443\) −20.2821 11.7099i −0.963633 0.556354i −0.0663436 0.997797i \(-0.521133\pi\)
−0.897289 + 0.441443i \(0.854467\pi\)
\(444\) 0 0
\(445\) 14.0986 14.8830i 0.668340 0.705521i
\(446\) −21.7506 + 4.43165i −1.02992 + 0.209845i
\(447\) 0 0
\(448\) −5.55429 6.83509i −0.262416 0.322928i
\(449\) 15.7865i 0.745011i −0.928030 0.372506i \(-0.878499\pi\)
0.928030 0.372506i \(-0.121501\pi\)
\(450\) 0 0
\(451\) 41.7083i 1.96397i
\(452\) 15.4063 6.54993i 0.724651 0.308083i
\(453\) 0 0
\(454\) −0.0553404 0.271612i −0.00259726 0.0127474i
\(455\) 4.05730 4.28302i 0.190209 0.200791i
\(456\) 0 0
\(457\) −7.28867 4.20812i −0.340950 0.196847i 0.319742 0.947505i \(-0.396404\pi\)
−0.660692 + 0.750657i \(0.729737\pi\)
\(458\) −0.739911 + 2.21345i −0.0345738 + 0.103428i
\(459\) 0 0
\(460\) −3.28851 + 8.83445i −0.153328 + 0.411908i
\(461\) −21.4798 12.4014i −1.00042 0.577590i −0.0920445 0.995755i \(-0.529340\pi\)
−0.908371 + 0.418165i \(0.862674\pi\)
\(462\) 0 0
\(463\) −10.3598 17.9437i −0.481460 0.833913i 0.518314 0.855191i \(-0.326560\pi\)
−0.999774 + 0.0212774i \(0.993227\pi\)
\(464\) −18.3511 17.6811i −0.851926 0.820824i
\(465\) 0 0
\(466\) −18.9606 21.4188i −0.878332 0.992205i
\(467\) 1.59588i 0.0738487i 0.999318 + 0.0369243i \(0.0117561\pi\)
−0.999318 + 0.0369243i \(0.988244\pi\)
\(468\) 0 0
\(469\) 4.07373 0.188107
\(470\) 15.6371 25.0894i 0.721286 1.15729i
\(471\) 0 0
\(472\) 18.7069 + 8.90315i 0.861055 + 0.409801i
\(473\) 12.8125 + 22.1919i 0.589120 + 1.02039i
\(474\) 0 0
\(475\) 13.8977 0.752794i 0.637672 0.0345406i
\(476\) 2.27245 + 1.71039i 0.104158 + 0.0783955i
\(477\) 0 0
\(478\) −9.11471 + 27.2668i −0.416897 + 1.24715i
\(479\) 2.98947 5.17791i 0.136592 0.236585i −0.789612 0.613606i \(-0.789718\pi\)
0.926205 + 0.377021i \(0.123052\pi\)
\(480\) 0 0
\(481\) −7.80904 13.5257i −0.356062 0.616717i
\(482\) 23.8976 4.86911i 1.08851 0.221782i
\(483\) 0 0
\(484\) 39.1874 16.6604i 1.78124 0.757289i
\(485\) 8.18292 + 27.5364i 0.371567 + 1.25036i
\(486\) 0 0
\(487\) −16.5971 −0.752086 −0.376043 0.926602i \(-0.622716\pi\)
−0.376043 + 0.926602i \(0.622716\pi\)
\(488\) 1.11708 + 14.0406i 0.0505677 + 0.635589i
\(489\) 0 0
\(490\) −16.1508 + 8.61161i −0.729619 + 0.389033i
\(491\) 6.66941 + 11.5518i 0.300986 + 0.521323i 0.976360 0.216153i \(-0.0693509\pi\)
−0.675373 + 0.737476i \(0.736018\pi\)
\(492\) 0 0
\(493\) 7.12685 + 4.11469i 0.320977 + 0.185316i
\(494\) 2.99103 8.94772i 0.134573 0.402577i
\(495\) 0 0
\(496\) 12.3559 3.55822i 0.554796 0.159769i
\(497\) 6.98806 12.1037i 0.313457 0.542924i
\(498\) 0 0
\(499\) 35.7135 20.6192i 1.59875 0.923041i 0.607026 0.794682i \(-0.292362\pi\)
0.991728 0.128359i \(-0.0409711\pi\)
\(500\) −15.1593 16.4376i −0.677946 0.735112i
\(501\) 0 0
\(502\) −9.29907 10.5047i −0.415038 0.468846i
\(503\) 24.1634i 1.07739i −0.842500 0.538696i \(-0.818917\pi\)
0.842500 0.538696i \(-0.181083\pi\)
\(504\) 0 0
\(505\) −10.6646 35.8874i −0.474567 1.59697i
\(506\) −12.6837 + 11.2280i −0.563858 + 0.499145i
\(507\) 0 0
\(508\) −1.24878 + 10.2186i −0.0554057 + 0.453375i
\(509\) −10.2084 + 5.89380i −0.452478 + 0.261238i −0.708876 0.705333i \(-0.750797\pi\)
0.256398 + 0.966571i \(0.417464\pi\)
\(510\) 0 0
\(511\) −9.40921 5.43241i −0.416239 0.240316i
\(512\) 5.33857 + 21.9886i 0.235934 + 0.971769i
\(513\) 0 0
\(514\) 7.77883 23.2705i 0.343109 1.02642i
\(515\) 0.706590 2.95457i 0.0311361 0.130194i
\(516\) 0 0
\(517\) 46.0072 26.5623i 2.02339 1.16821i
\(518\) −2.02567 9.94202i −0.0890029 0.436827i
\(519\) 0 0
\(520\) −14.1410 + 5.45633i −0.620126 + 0.239276i
\(521\) 32.5010i 1.42389i 0.702234 + 0.711947i \(0.252186\pi\)
−0.702234 + 0.711947i \(0.747814\pi\)
\(522\) 0 0
\(523\) 11.2435 0.491645 0.245822 0.969315i \(-0.420942\pi\)
0.245822 + 0.969315i \(0.420942\pi\)
\(524\) 26.1370 11.1121i 1.14180 0.485433i
\(525\) 0 0
\(526\) −2.71409 13.3208i −0.118340 0.580813i
\(527\) −3.59602 + 2.07616i −0.156645 + 0.0904391i
\(528\) 0 0
\(529\) −9.27846 + 16.0708i −0.403411 + 0.698729i
\(530\) −1.23713 + 36.6471i −0.0537376 + 1.59185i
\(531\) 0 0
\(532\) 3.68577 4.89698i 0.159799 0.212311i
\(533\) −8.79510 + 15.2336i −0.380958 + 0.659839i
\(534\) 0 0
\(535\) 4.57046 4.82472i 0.197598 0.208591i
\(536\) −9.45037 4.49770i −0.408194 0.194271i
\(537\) 0 0
\(538\) −1.42406 + 1.26062i −0.0613954 + 0.0543492i
\(539\) −32.8903 −1.41669
\(540\) 0 0
\(541\) −8.40855 −0.361512 −0.180756 0.983528i \(-0.557854\pi\)
−0.180756 + 0.983528i \(0.557854\pi\)
\(542\) −23.0090 + 20.3683i −0.988319 + 0.874892i
\(543\) 0 0
\(544\) −3.38331 6.47677i −0.145058 0.277689i
\(545\) 8.31271 + 7.87463i 0.356078 + 0.337312i
\(546\) 0 0
\(547\) −2.12301 + 3.67716i −0.0907734 + 0.157224i −0.907837 0.419324i \(-0.862267\pi\)
0.817063 + 0.576548i \(0.195601\pi\)
\(548\) −11.0943 8.35023i −0.473923 0.356704i
\(549\) 0 0
\(550\) −10.1399 38.8810i −0.432367 1.65789i
\(551\) 8.86688 15.3579i 0.377742 0.654268i
\(552\) 0 0
\(553\) 1.07398 0.620060i 0.0456701 0.0263676i
\(554\) −3.92860 19.2816i −0.166910 0.819196i
\(555\) 0 0
\(556\) 9.33570 + 21.9588i 0.395922 + 0.931260i
\(557\) 21.0221 0.890734 0.445367 0.895348i \(-0.353073\pi\)
0.445367 + 0.895348i \(0.353073\pi\)
\(558\) 0 0
\(559\) 10.8072i 0.457095i
\(560\) −9.83661 + 0.449333i −0.415673 + 0.0189878i
\(561\) 0 0
\(562\) −3.29113 16.1529i −0.138828 0.681369i
\(563\) 18.9272 10.9277i 0.797688 0.460546i −0.0449739 0.998988i \(-0.514320\pi\)
0.842662 + 0.538443i \(0.180987\pi\)
\(564\) 0 0
\(565\) 4.35339 18.2035i 0.183149 0.765827i
\(566\) 5.57187 16.6683i 0.234203 0.700621i
\(567\) 0 0
\(568\) −29.5745 + 20.3632i −1.24092 + 0.854420i
\(569\) −12.7253 7.34697i −0.533473 0.308001i 0.208956 0.977925i \(-0.432993\pi\)
−0.742430 + 0.669924i \(0.766327\pi\)
\(570\) 0 0
\(571\) 15.5333 8.96816i 0.650049 0.375306i −0.138426 0.990373i \(-0.544204\pi\)
0.788475 + 0.615067i \(0.210871\pi\)
\(572\) −27.0359 3.30397i −1.13043 0.138146i
\(573\) 0 0
\(574\) −8.55651 + 7.57450i −0.357142 + 0.316154i
\(575\) 5.75562 + 8.82893i 0.240026 + 0.368192i
\(576\) 0 0
\(577\) 38.2696i 1.59318i −0.604517 0.796592i \(-0.706634\pi\)
0.604517 0.796592i \(-0.293366\pi\)
\(578\) −14.3715 16.2347i −0.597774 0.675273i
\(579\) 0 0
\(580\) −28.0933 + 4.74297i −1.16651 + 0.196941i
\(581\) 10.9886 6.34429i 0.455885 0.263206i
\(582\) 0 0
\(583\) −32.9456 + 57.0634i −1.36447 + 2.36333i
\(584\) 15.8300 + 22.9907i 0.655050 + 0.951364i
\(585\) 0 0
\(586\) −4.28154 + 12.8083i −0.176869 + 0.529105i
\(587\) −7.27939 4.20276i −0.300453 0.173466i 0.342194 0.939629i \(-0.388830\pi\)
−0.642646 + 0.766163i \(0.722163\pi\)
\(588\) 0 0
\(589\) 4.47399 + 7.74918i 0.184348 + 0.319299i
\(590\) 20.4390 10.8981i 0.841458 0.448666i
\(591\) 0 0
\(592\) −6.27751 + 25.3003i −0.258004 + 1.03984i
\(593\) 35.1831 1.44480 0.722398 0.691477i \(-0.243040\pi\)
0.722398 + 0.691477i \(0.243040\pi\)
\(594\) 0 0
\(595\) 3.04817 0.905817i 0.124963 0.0371349i
\(596\) −4.49992 10.5844i −0.184324 0.433554i
\(597\) 0 0
\(598\) 7.00025 1.42629i 0.286262 0.0583254i
\(599\) 7.34116 + 12.7153i 0.299952 + 0.519532i 0.976125 0.217211i \(-0.0696961\pi\)
−0.676173 + 0.736743i \(0.736363\pi\)
\(600\) 0 0
\(601\) 13.6252 23.5995i 0.555783 0.962644i −0.442059 0.896986i \(-0.645752\pi\)
0.997842 0.0656584i \(-0.0209148\pi\)
\(602\) 2.22587 6.65871i 0.0907195 0.271389i
\(603\) 0 0
\(604\) 2.57041 3.41509i 0.104589 0.138958i
\(605\) 11.0733 46.3023i 0.450192 1.88246i
\(606\) 0 0
\(607\) 3.91627 + 6.78317i 0.158956 + 0.275320i 0.934493 0.355983i \(-0.115854\pi\)
−0.775536 + 0.631303i \(0.782520\pi\)
\(608\) −13.9570 + 7.29081i −0.566032 + 0.295681i
\(609\) 0 0
\(610\) 13.3643 + 8.32938i 0.541105 + 0.337247i
\(611\) −22.4049 −0.906406
\(612\) 0 0
\(613\) 1.17677i 0.0475293i 0.999718 + 0.0237646i \(0.00756523\pi\)
−0.999718 + 0.0237646i \(0.992435\pi\)
\(614\) −12.6252 14.2620i −0.509513 0.575569i
\(615\) 0 0
\(616\) −15.9773 7.60405i −0.643744 0.306376i
\(617\) 20.4261 + 35.3790i 0.822322 + 1.42430i 0.903949 + 0.427641i \(0.140655\pi\)
−0.0816263 + 0.996663i \(0.526011\pi\)
\(618\) 0 0
\(619\) −42.7230 24.6661i −1.71718 0.991416i −0.923965 0.382478i \(-0.875071\pi\)
−0.793218 0.608938i \(-0.791596\pi\)
\(620\) 5.01501 13.4726i 0.201408 0.541073i
\(621\) 0 0
\(622\) −4.60111 + 13.7643i −0.184488 + 0.551897i
\(623\) −8.74109 5.04667i −0.350204 0.202190i
\(624\) 0 0
\(625\) −24.8537 + 2.70041i −0.994149 + 0.108016i
\(626\) −0.453388 2.22523i −0.0181210 0.0889382i
\(627\) 0 0
\(628\) −7.86873 18.5083i −0.313997 0.738561i
\(629\) 8.41813i 0.335653i
\(630\) 0 0
\(631\) 27.6752i 1.10173i 0.834594 + 0.550866i \(0.185703\pi\)
−0.834594 + 0.550866i \(0.814297\pi\)
\(632\) −3.17604 + 0.252687i −0.126336 + 0.0100513i
\(633\) 0 0
\(634\) 6.18392 1.25996i 0.245595 0.0500396i
\(635\) 8.35578 + 7.91543i 0.331589 + 0.314114i
\(636\) 0 0
\(637\) 12.0129 + 6.93564i 0.475968 + 0.274800i
\(638\) −48.5561 16.2313i −1.92235 0.642602i
\(639\) 0 0
\(640\) 23.3154 + 9.81797i 0.921622 + 0.388089i
\(641\) 13.0424 + 7.53005i 0.515145 + 0.297419i 0.734946 0.678126i \(-0.237207\pi\)
−0.219801 + 0.975545i \(0.570541\pi\)
\(642\) 0 0
\(643\) −23.7098 41.0665i −0.935022 1.61951i −0.774595 0.632458i \(-0.782046\pi\)
−0.160427 0.987048i \(-0.551287\pi\)
\(644\) 4.60688 + 0.562993i 0.181536 + 0.0221850i
\(645\) 0 0
\(646\) 3.80758 3.37060i 0.149807 0.132614i
\(647\) 19.7634i 0.776977i −0.921453 0.388489i \(-0.872997\pi\)
0.921453 0.388489i \(-0.127003\pi\)
\(648\) 0 0
\(649\) 41.6229 1.63384
\(650\) −4.49540 + 16.3391i −0.176324 + 0.640873i
\(651\) 0 0
\(652\) −4.41903 + 36.1602i −0.173063 + 1.41614i
\(653\) −17.4740 30.2658i −0.683809 1.18439i −0.973809 0.227366i \(-0.926989\pi\)
0.290000 0.957027i \(-0.406345\pi\)
\(654\) 0 0
\(655\) 7.38561 30.8826i 0.288580 1.20668i
\(656\) 28.2125 8.12455i 1.10151 0.317211i
\(657\) 0 0
\(658\) −13.8045 4.61456i −0.538155 0.179894i
\(659\) 17.4893 30.2924i 0.681288 1.18003i −0.293300 0.956021i \(-0.594753\pi\)
0.974588 0.224005i \(-0.0719133\pi\)
\(660\) 0 0
\(661\) 17.7487 + 30.7417i 0.690346 + 1.19571i 0.971725 + 0.236117i \(0.0758749\pi\)
−0.281379 + 0.959597i \(0.590792\pi\)
\(662\) −3.32889 16.3382i −0.129381 0.635004i
\(663\) 0 0
\(664\) −32.4964 + 2.58542i −1.26110 + 0.100334i
\(665\) −1.95197 6.56860i −0.0756943 0.254719i
\(666\) 0 0
\(667\) 13.4287 0.519960
\(668\) −5.82542 13.7022i −0.225392 0.530152i
\(669\) 0 0
\(670\) −10.3254 + 5.50549i −0.398904 + 0.212695i
\(671\) 14.1489 + 24.5066i 0.546211 + 0.946065i
\(672\) 0 0
\(673\) 41.4746 + 23.9454i 1.59873 + 0.923027i 0.991733 + 0.128322i \(0.0409591\pi\)
0.606997 + 0.794704i \(0.292374\pi\)
\(674\) −14.1667 4.73563i −0.545680 0.182409i
\(675\) 0 0
\(676\) −11.5955 8.72753i −0.445982 0.335674i
\(677\) 0.0431856 0.0747996i 0.00165976 0.00287478i −0.865194 0.501437i \(-0.832805\pi\)
0.866854 + 0.498562i \(0.166138\pi\)
\(678\) 0 0
\(679\) 12.2485 7.07165i 0.470053 0.271385i
\(680\) −8.07133 1.26406i −0.309521 0.0484745i
\(681\) 0 0
\(682\) 19.3427 17.1228i 0.740670 0.655665i
\(683\) 24.0380i 0.919788i −0.887974 0.459894i \(-0.847887\pi\)
0.887974 0.459894i \(-0.152113\pi\)
\(684\) 0 0
\(685\) −14.8814 + 4.42226i −0.568588 + 0.168966i
\(686\) 13.1970 + 14.9079i 0.503863 + 0.569187i
\(687\) 0 0
\(688\) −12.5153 + 12.9896i −0.477143 + 0.495222i
\(689\) 24.0661 13.8946i 0.916846 0.529342i
\(690\) 0 0
\(691\) 36.1685 + 20.8819i 1.37591 + 0.794384i 0.991665 0.128845i \(-0.0411271\pi\)
0.384249 + 0.923229i \(0.374460\pi\)
\(692\) 13.8524 + 10.4262i 0.526589 + 0.396344i
\(693\) 0 0
\(694\) 31.2637 + 10.4508i 1.18675 + 0.396707i
\(695\) 25.9457 + 6.20495i 0.984176 + 0.235367i
\(696\) 0 0
\(697\) −8.21087 + 4.74055i −0.311009 + 0.179561i
\(698\) 7.89010 1.60760i 0.298645 0.0608484i
\(699\) 0 0
\(700\) −6.13501 + 9.14126i −0.231882 + 0.345507i
\(701\) 2.12514i 0.0802654i 0.999194 + 0.0401327i \(0.0127781\pi\)
−0.999194 + 0.0401327i \(0.987222\pi\)
\(702\) 0 0
\(703\) −18.1405 −0.684182
\(704\) 28.6692 + 35.2803i 1.08051 + 1.32967i
\(705\) 0 0
\(706\) −2.11012 + 0.429934i −0.0794155 + 0.0161808i
\(707\) −15.9631 + 9.21629i −0.600354 + 0.346614i
\(708\) 0 0
\(709\) 2.08824 3.61694i 0.0784256 0.135837i −0.824145 0.566379i \(-0.808344\pi\)
0.902571 + 0.430541i \(0.141677\pi\)
\(710\) −1.35445 + 40.1224i −0.0508317 + 1.50577i
\(711\) 0 0
\(712\) 14.7060 + 21.3582i 0.551129 + 0.800434i
\(713\) −3.38787 + 5.86797i −0.126877 + 0.219757i
\(714\) 0 0
\(715\) −20.9423 + 22.1074i −0.783198 + 0.826769i
\(716\) 0.269266 2.20336i 0.0100630 0.0823434i
\(717\) 0 0
\(718\) 8.86877 + 10.0186i 0.330979 + 0.373890i
\(719\) −24.0884 −0.898346 −0.449173 0.893445i \(-0.648281\pi\)
−0.449173 + 0.893445i \(0.648281\pi\)
\(720\) 0 0
\(721\) −1.49568 −0.0557022
\(722\) 10.5470 + 11.9143i 0.392517 + 0.443406i
\(723\) 0 0
\(724\) 3.07215 25.1389i 0.114176 0.934279i
\(725\) −14.4115 + 28.4072i −0.535229 + 1.05502i
\(726\) 0 0
\(727\) 23.4466 40.6108i 0.869587 1.50617i 0.00716831 0.999974i \(-0.497718\pi\)
0.862419 0.506195i \(-0.168948\pi\)
\(728\) 4.23208 + 6.14647i 0.156851 + 0.227803i
\(729\) 0 0
\(730\) 31.1905 + 1.05293i 1.15441 + 0.0389706i
\(731\) 2.91253 5.04465i 0.107724 0.186583i
\(732\) 0 0
\(733\) −15.3758 + 8.87721i −0.567917 + 0.327887i −0.756317 0.654205i \(-0.773003\pi\)
0.188400 + 0.982092i \(0.439670\pi\)
\(734\) 11.2694 2.29613i 0.415962 0.0847517i
\(735\) 0 0
\(736\) −10.0656 6.39239i −0.371023 0.235626i
\(737\) −21.0271 −0.774543
\(738\) 0 0
\(739\) 8.50437i 0.312838i 0.987691 + 0.156419i \(0.0499951\pi\)
−0.987691 + 0.156419i \(0.950005\pi\)
\(740\) 18.5706 + 22.4616i 0.682667 + 0.825707i
\(741\) 0 0
\(742\) 17.6898 3.60427i 0.649412 0.132317i
\(743\) −43.6052 + 25.1755i −1.59972 + 0.923598i −0.608179 + 0.793800i \(0.708100\pi\)
−0.991540 + 0.129798i \(0.958567\pi\)
\(744\) 0 0
\(745\) −12.5061 2.99086i −0.458189 0.109577i
\(746\) 15.5794 + 5.20786i 0.570402 + 0.190673i
\(747\) 0 0
\(748\) −11.7296 8.82840i −0.428875 0.322798i
\(749\) −2.83366 1.63601i −0.103540 0.0597787i
\(750\) 0 0
\(751\) −44.8169 + 25.8750i −1.63539 + 0.944193i −0.652999 + 0.757359i \(0.726489\pi\)
−0.982391 + 0.186834i \(0.940177\pi\)
\(752\) 26.9293 + 25.9462i 0.982011 + 0.946160i
\(753\) 0 0
\(754\) 14.3119 + 16.1674i 0.521210 + 0.588783i
\(755\) −1.36128 4.58085i −0.0495421 0.166714i
\(756\) 0 0
\(757\) 16.5374i 0.601064i 0.953772 + 0.300532i \(0.0971642\pi\)
−0.953772 + 0.300532i \(0.902836\pi\)
\(758\) −0.205765 + 0.182150i −0.00747372 + 0.00661598i
\(759\) 0 0
\(760\) −2.72397 + 17.3932i −0.0988087 + 0.630917i
\(761\) 30.1188 17.3891i 1.09180 0.630354i 0.157748 0.987479i \(-0.449577\pi\)
0.934056 + 0.357126i \(0.116243\pi\)
\(762\) 0 0
\(763\) 2.81876 4.88223i 0.102046 0.176749i
\(764\) −36.3782 27.3805i −1.31612 0.990591i
\(765\) 0 0
\(766\) −24.8141 8.29485i −0.896571 0.299705i
\(767\) −15.2024 8.77710i −0.548926 0.316923i
\(768\) 0 0
\(769\) −7.71708 13.3664i −0.278285 0.482003i 0.692674 0.721251i \(-0.256433\pi\)
−0.970959 + 0.239248i \(0.923099\pi\)
\(770\) −17.4566 + 9.30786i −0.629092 + 0.335432i
\(771\) 0 0
\(772\) −9.09776 21.3991i −0.327435 0.770171i
\(773\) −29.3290 −1.05489 −0.527446 0.849589i \(-0.676850\pi\)
−0.527446 + 0.849589i \(0.676850\pi\)
\(774\) 0 0
\(775\) −8.77736 13.4642i −0.315292 0.483648i
\(776\) −36.2220 + 2.88184i −1.30029 + 0.103452i
\(777\) 0 0
\(778\) 6.64658 + 32.6215i 0.238292 + 1.16954i
\(779\) 10.2156 + 17.6939i 0.366011 + 0.633949i
\(780\) 0 0
\(781\) −36.0698 + 62.4748i −1.29068 + 2.23552i
\(782\) 3.65201 + 1.22079i 0.130596 + 0.0436554i
\(783\) 0 0
\(784\) −6.40686 22.2478i −0.228817 0.794565i
\(785\) −21.8687 5.22993i −0.780527 0.186664i
\(786\) 0 0
\(787\) 26.3106 + 45.5713i 0.937872 + 1.62444i 0.769431 + 0.638730i \(0.220540\pi\)
0.168442 + 0.985712i \(0.446127\pi\)
\(788\) 2.95992 24.2205i 0.105443 0.862819i
\(789\) 0 0
\(790\) −1.88414 + 3.02305i −0.0670345 + 0.107555i
\(791\) −9.21510 −0.327651
\(792\) 0 0
\(793\) 11.9344i 0.423803i
\(794\) −24.7883 + 21.9434i −0.879704 + 0.778742i
\(795\) 0 0
\(796\) −14.0539 1.71748i −0.498126 0.0608746i
\(797\) −1.24198 2.15117i −0.0439931 0.0761983i 0.843190 0.537615i \(-0.180675\pi\)
−0.887183 + 0.461417i \(0.847341\pi\)
\(798\) 0 0
\(799\) −10.4583 6.03812i −0.369989 0.213613i
\(800\) 24.3248 14.4327i 0.860013 0.510272i
\(801\) 0 0
\(802\) −40.1523 13.4221i −1.41783 0.473950i
\(803\) 48.5669 + 28.0401i 1.71389 + 0.989514i
\(804\) 0 0
\(805\) 3.56854 3.76707i 0.125775 0.132772i
\(806\) −10.6754 + 2.17511i −0.376027 + 0.0766148i
\(807\) 0 0
\(808\) 47.2072 3.75582i 1.66074 0.132129i
\(809\) 25.6629i 0.902261i 0.892458 + 0.451131i \(0.148979\pi\)
−0.892458 + 0.451131i \(0.851021\pi\)
\(810\) 0 0
\(811\) 26.5970i 0.933948i 0.884271 + 0.466974i \(0.154656\pi\)
−0.884271 + 0.466974i \(0.845344\pi\)
\(812\) 5.48824 + 12.9091i 0.192599 + 0.453019i
\(813\) 0 0
\(814\) 10.4558 + 51.3171i 0.366475 + 1.79866i
\(815\) 29.5684 + 28.0101i 1.03574 + 0.981153i
\(816\) 0 0
\(817\) −10.8709 6.27631i −0.380324 0.219580i
\(818\) −0.932682 + 2.79013i −0.0326105 + 0.0975546i
\(819\) 0 0
\(820\) 11.4509 30.7623i 0.399882 1.07427i
\(821\) 26.3429 + 15.2091i 0.919373 + 0.530800i 0.883435 0.468554i \(-0.155225\pi\)
0.0359383 + 0.999354i \(0.488558\pi\)
\(822\) 0 0
\(823\) 4.23623 + 7.33737i 0.147666 + 0.255764i 0.930364 0.366636i \(-0.119491\pi\)
−0.782699 + 0.622401i \(0.786157\pi\)
\(824\) 3.46974 + 1.65135i 0.120874 + 0.0575274i
\(825\) 0 0
\(826\) −7.55900 8.53900i −0.263011 0.297110i
\(827\) 37.2624i 1.29574i 0.761750 + 0.647871i \(0.224340\pi\)
−0.761750 + 0.647871i \(0.775660\pi\)
\(828\) 0 0
\(829\) −18.4167 −0.639639 −0.319820 0.947478i \(-0.603622\pi\)
−0.319820 + 0.947478i \(0.603622\pi\)
\(830\) −19.2780 + 30.9311i −0.669148 + 1.07363i
\(831\) 0 0
\(832\) −3.03155 18.9313i −0.105100 0.656325i
\(833\) 3.73830 + 6.47493i 0.129525 + 0.224343i
\(834\) 0 0
\(835\) −16.1899 3.87185i −0.560276 0.133991i
\(836\) −19.0246 + 25.2764i −0.657980 + 0.874203i
\(837\) 0 0
\(838\) 4.38510 13.1181i 0.151481 0.453157i
\(839\) 7.35228 12.7345i 0.253829 0.439645i −0.710748 0.703447i \(-0.751643\pi\)
0.964577 + 0.263802i \(0.0849766\pi\)
\(840\) 0 0
\(841\) 5.79320 + 10.0341i 0.199765 + 0.346004i
\(842\) 2.91275 0.593469i 0.100380 0.0204523i
\(843\) 0 0
\(844\) −5.07232 11.9308i −0.174596 0.410674i
\(845\) −15.5538 + 4.62207i −0.535066 + 0.159004i
\(846\) 0 0
\(847\) −23.4395 −0.805390
\(848\) −45.0167 11.1695i −1.54588 0.383564i
\(849\) 0 0
\(850\) −6.50178 + 6.41538i −0.223009 + 0.220046i
\(851\) −6.86833 11.8963i −0.235443 0.407800i
\(852\) 0 0
\(853\) −11.2327 6.48519i −0.384600 0.222049i 0.295218 0.955430i \(-0.404608\pi\)
−0.679818 + 0.733381i \(0.737941\pi\)
\(854\) 2.45803 7.35322i 0.0841119 0.251622i
\(855\) 0 0
\(856\) 4.76734 + 6.92385i 0.162944 + 0.236652i
\(857\) −3.36521 + 5.82871i −0.114953 + 0.199105i −0.917761 0.397133i \(-0.870005\pi\)
0.802808 + 0.596238i \(0.203339\pi\)
\(858\) 0 0
\(859\) −33.3860 + 19.2754i −1.13912 + 0.657669i −0.946212 0.323549i \(-0.895124\pi\)
−0.192904 + 0.981218i \(0.561791\pi\)
\(860\) 3.35725 + 19.8855i 0.114481 + 0.678089i
\(861\) 0 0
\(862\) 3.60148 + 4.06840i 0.122667 + 0.138570i
\(863\) 13.4795i 0.458847i 0.973327 + 0.229424i \(0.0736841\pi\)
−0.973327 + 0.229424i \(0.926316\pi\)
\(864\) 0 0
\(865\) 18.5810 5.52167i 0.631773 0.187742i
\(866\) 7.06142 6.25100i 0.239957 0.212418i
\(867\) 0 0
\(868\) −7.02552 0.858569i −0.238462 0.0291417i
\(869\) −5.54347 + 3.20052i −0.188049 + 0.108570i
\(870\) 0 0
\(871\) 7.67995 + 4.43402i 0.260225 + 0.150241i
\(872\) −11.9294 + 8.21384i −0.403980 + 0.278156i
\(873\) 0 0
\(874\) 2.63072 7.86984i 0.0889855 0.266201i
\(875\) 4.13920 + 11.5917i 0.139930 + 0.391872i
\(876\) 0 0
\(877\) −13.5129 + 7.80171i −0.456300 + 0.263445i −0.710487 0.703710i \(-0.751525\pi\)
0.254187 + 0.967155i \(0.418192\pi\)
\(878\) 10.9392 + 53.6898i 0.369180 + 1.81194i
\(879\) 0 0
\(880\) 50.7730 2.31929i 1.71156 0.0781833i
\(881\) 25.0226i 0.843032i 0.906821 + 0.421516i \(0.138502\pi\)
−0.906821 + 0.421516i \(0.861498\pi\)
\(882\) 0 0
\(883\) 13.8202 0.465085 0.232543 0.972586i \(-0.425295\pi\)
0.232543 + 0.972586i \(0.425295\pi\)
\(884\) 2.42245 + 5.69793i 0.0814759 + 0.191642i
\(885\) 0 0
\(886\) −6.61241 32.4538i −0.222148 1.09031i
\(887\) 16.1656 9.33323i 0.542789 0.313379i −0.203420 0.979092i \(-0.565206\pi\)
0.746208 + 0.665712i \(0.231872\pi\)
\(888\) 0 0
\(889\) 2.83336 4.90753i 0.0950279 0.164593i
\(890\) 28.9757 + 0.978163i 0.971269 + 0.0327881i
\(891\) 0 0
\(892\) −25.0815 18.8779i −0.839790 0.632079i
\(893\) −13.0117 + 22.5370i −0.435421 + 0.754172i
\(894\) 0 0
\(895\) −1.80170 1.70675i −0.0602242 0.0570504i
\(896\) 2.03127 12.2887i 0.0678600 0.410535i
\(897\) 0 0
\(898\) 16.7166 14.7981i 0.557840 0.493818i
\(899\) −20.4788 −0.683007
\(900\) 0 0
\(901\) 14.9783 0.499001
\(902\) 44.1656 39.0968i 1.47055 1.30178i
\(903\) 0 0
\(904\) 21.3775 + 10.1742i 0.711005 + 0.338388i
\(905\) −20.5562 19.4729i −0.683312 0.647301i
\(906\) 0 0
\(907\) 20.7283 35.9025i 0.688273 1.19212i −0.284123 0.958788i \(-0.591703\pi\)
0.972396 0.233336i \(-0.0749642\pi\)
\(908\) 0.235739 0.313206i 0.00782326 0.0103941i
\(909\) 0 0
\(910\) 8.33863 + 0.281496i 0.276423 + 0.00933149i
\(911\) 2.80277 4.85454i 0.0928600 0.160838i −0.815853 0.578259i \(-0.803732\pi\)
0.908713 + 0.417420i \(0.137066\pi\)
\(912\) 0 0
\(913\) −56.7193 + 32.7469i −1.87714 + 1.08376i
\(914\) −2.37626 11.6627i −0.0785998 0.385769i
\(915\) 0 0
\(916\) −3.03744 + 1.29136i −0.100360 + 0.0426677i
\(917\) −15.6336 −0.516266
\(918\) 0 0
\(919\) 30.8044i 1.01614i −0.861315 0.508072i \(-0.830358\pi\)
0.861315 0.508072i \(-0.169642\pi\)
\(920\) −12.4376 + 4.79904i −0.410054 + 0.158220i
\(921\) 0 0
\(922\) −7.00289 34.3703i −0.230628 1.13192i
\(923\) 26.3483 15.2122i 0.867266 0.500716i
\(924\) 0 0
\(925\) 32.5366 1.76240i 1.06980 0.0579474i
\(926\) 9.28972 27.7903i 0.305279 0.913247i
\(927\) 0 0
\(928\) 1.52077 36.0063i 0.0499216 1.18196i
\(929\) −23.8104 13.7469i −0.781194 0.451023i 0.0556590 0.998450i \(-0.482274\pi\)
−0.836853 + 0.547427i \(0.815607\pi\)
\(930\) 0 0
\(931\) 13.9530 8.05579i 0.457293 0.264018i
\(932\) 4.90727 40.1554i 0.160743 1.31533i
\(933\) 0 0
\(934\) −1.68991 + 1.49596i −0.0552955 + 0.0489494i
\(935\) −15.7335 + 4.67550i −0.514541 + 0.152905i
\(936\) 0 0
\(937\) 13.6341i 0.445407i 0.974886 + 0.222704i \(0.0714882\pi\)
−0.974886 + 0.222704i \(0.928512\pi\)
\(938\) 3.81866 + 4.31374i 0.124684 + 0.140849i
\(939\) 0 0
\(940\) 41.2256 6.96009i 1.34463 0.227013i
\(941\) 49.7730 28.7364i 1.62255 0.936781i 0.636319 0.771426i \(-0.280456\pi\)
0.986234 0.165355i \(-0.0528771\pi\)
\(942\) 0 0
\(943\) −7.73561 + 13.3985i −0.251906 + 0.436314i
\(944\) 8.10793 + 28.1548i 0.263891 + 0.916360i
\(945\) 0 0
\(946\) −11.4891 + 34.3698i −0.373543 + 1.11746i
\(947\) −16.7732 9.68402i −0.545056 0.314688i 0.202069 0.979371i \(-0.435233\pi\)
−0.747126 + 0.664683i \(0.768567\pi\)
\(948\) 0 0
\(949\) −11.8257 20.4828i −0.383880 0.664899i
\(950\) 13.8247 + 14.0109i 0.448533 + 0.454574i
\(951\) 0 0
\(952\) 0.319008 + 4.00963i 0.0103391 + 0.129953i
\(953\) 4.34158 0.140638 0.0703188 0.997525i \(-0.477598\pi\)
0.0703188 + 0.997525i \(0.477598\pi\)
\(954\) 0 0
\(955\) −48.7961 + 14.5006i −1.57900 + 0.469229i
\(956\) −37.4172 + 15.9078i −1.21016 + 0.514495i
\(957\) 0 0
\(958\) 8.28526 1.68811i 0.267685 0.0545404i
\(959\) 3.82170 + 6.61938i 0.123409 + 0.213751i
\(960\) 0 0
\(961\) −10.3335 + 17.8981i −0.333338 + 0.577358i
\(962\) 7.00245 20.9479i 0.225768 0.675388i
\(963\) 0 0
\(964\) 27.5573 + 20.7414i 0.887561 + 0.668034i
\(965\) −25.2844 6.04680i −0.813933 0.194653i
\(966\) 0 0
\(967\) 16.5665 + 28.6939i 0.532741 + 0.922735i 0.999269 + 0.0382285i \(0.0121715\pi\)
−0.466528 + 0.884507i \(0.654495\pi\)
\(968\) 54.3757 + 25.8789i 1.74770 + 0.831780i
\(969\) 0 0
\(970\) −21.4882 + 34.4773i −0.689943 + 1.10700i
\(971\) 22.0082 0.706277 0.353138 0.935571i \(-0.385114\pi\)
0.353138 + 0.935571i \(0.385114\pi\)
\(972\) 0 0
\(973\) 13.1344i 0.421070i
\(974\) −15.5579 17.5749i −0.498508 0.563137i
\(975\) 0 0
\(976\) −13.8207 + 14.3444i −0.442390 + 0.459153i
\(977\) −14.7558 25.5578i −0.472080 0.817667i 0.527409 0.849611i \(-0.323163\pi\)
−0.999490 + 0.0319442i \(0.989830\pi\)
\(978\) 0 0
\(979\) 45.1183 + 26.0491i 1.44199 + 0.832532i
\(980\) −24.2585 9.02994i −0.774911 0.288451i
\(981\) 0 0
\(982\) −5.98052 + 17.8908i −0.190846 + 0.570919i
\(983\) −39.8190 22.9895i −1.27003 0.733251i −0.295035 0.955486i \(-0.595331\pi\)
−0.974993 + 0.222235i \(0.928665\pi\)
\(984\) 0 0
\(985\) −19.8052 18.7615i −0.631048 0.597791i
\(986\) 2.32351 + 11.4038i 0.0739956 + 0.363171i
\(987\) 0 0
\(988\) 12.2786 5.22022i 0.390636 0.166077i
\(989\) 9.50531i 0.302251i
\(990\) 0 0
\(991\) 52.8232i 1.67798i −0.544144 0.838992i \(-0.683146\pi\)
0.544144 0.838992i \(-0.316854\pi\)
\(992\) 15.3501 + 9.74844i 0.487367 + 0.309513i
\(993\) 0 0
\(994\) 19.3673 3.94606i 0.614294 0.125161i
\(995\) −10.8863 + 11.4919i −0.345119 + 0.364319i
\(996\) 0 0
\(997\) −43.4452 25.0831i −1.37592 0.794389i −0.384257 0.923226i \(-0.625542\pi\)
−0.991666 + 0.128837i \(0.958876\pi\)
\(998\) 55.3113 + 18.4894i 1.75085 + 0.585272i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.359.18 48
3.2 odd 2 180.2.n.d.119.7 yes 48
4.3 odd 2 inner 540.2.n.d.359.2 48
5.4 even 2 inner 540.2.n.d.359.7 48
9.4 even 3 180.2.n.d.59.2 48
9.5 odd 6 inner 540.2.n.d.179.23 48
12.11 even 2 180.2.n.d.119.23 yes 48
15.2 even 4 900.2.r.g.551.19 48
15.8 even 4 900.2.r.g.551.6 48
15.14 odd 2 180.2.n.d.119.18 yes 48
20.19 odd 2 inner 540.2.n.d.359.23 48
36.23 even 6 inner 540.2.n.d.179.7 48
36.31 odd 6 180.2.n.d.59.18 yes 48
45.4 even 6 180.2.n.d.59.23 yes 48
45.13 odd 12 900.2.r.g.851.14 48
45.14 odd 6 inner 540.2.n.d.179.2 48
45.22 odd 12 900.2.r.g.851.11 48
60.23 odd 4 900.2.r.g.551.14 48
60.47 odd 4 900.2.r.g.551.11 48
60.59 even 2 180.2.n.d.119.2 yes 48
180.59 even 6 inner 540.2.n.d.179.18 48
180.67 even 12 900.2.r.g.851.19 48
180.103 even 12 900.2.r.g.851.6 48
180.139 odd 6 180.2.n.d.59.7 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.2 48 9.4 even 3
180.2.n.d.59.7 yes 48 180.139 odd 6
180.2.n.d.59.18 yes 48 36.31 odd 6
180.2.n.d.59.23 yes 48 45.4 even 6
180.2.n.d.119.2 yes 48 60.59 even 2
180.2.n.d.119.7 yes 48 3.2 odd 2
180.2.n.d.119.18 yes 48 15.14 odd 2
180.2.n.d.119.23 yes 48 12.11 even 2
540.2.n.d.179.2 48 45.14 odd 6 inner
540.2.n.d.179.7 48 36.23 even 6 inner
540.2.n.d.179.18 48 180.59 even 6 inner
540.2.n.d.179.23 48 9.5 odd 6 inner
540.2.n.d.359.2 48 4.3 odd 2 inner
540.2.n.d.359.7 48 5.4 even 2 inner
540.2.n.d.359.18 48 1.1 even 1 trivial
540.2.n.d.359.23 48 20.19 odd 2 inner
900.2.r.g.551.6 48 15.8 even 4
900.2.r.g.551.11 48 60.47 odd 4
900.2.r.g.551.14 48 60.23 odd 4
900.2.r.g.551.19 48 15.2 even 4
900.2.r.g.851.6 48 180.103 even 12
900.2.r.g.851.11 48 45.22 odd 12
900.2.r.g.851.14 48 45.13 odd 12
900.2.r.g.851.19 48 180.67 even 12