Properties

Label 540.2.n.d.179.18
Level $540$
Weight $2$
Character 540.179
Analytic conductor $4.312$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(179,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.179"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.n (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-2,18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.18
Character \(\chi\) \(=\) 540.179
Dual form 540.2.n.d.359.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.937387 - 1.05892i) q^{2} +(-0.242609 - 1.98523i) q^{4} +(1.62334 - 1.53778i) q^{5} +(0.550457 + 0.953419i) q^{7} +(-2.32961 - 1.60403i) q^{8} +(-0.106691 - 3.16048i) q^{10} +(-2.84126 - 4.92120i) q^{11} +(2.07548 + 1.19828i) q^{13} +(1.52558 + 0.310835i) q^{14} +(-3.88228 + 0.963271i) q^{16} +1.29175 q^{17} +2.78362i q^{19} +(-3.44669 - 2.84961i) q^{20} +(-7.87450 - 1.60442i) q^{22} +(1.82546 + 1.05393i) q^{23} +(0.270437 - 4.99268i) q^{25} +(3.21441 - 1.07451i) q^{26} +(1.75921 - 1.32409i) q^{28} +(5.51723 - 3.18537i) q^{29} +(-2.78385 - 1.60725i) q^{31} +(-2.61918 + 5.01397i) q^{32} +(1.21087 - 1.36785i) q^{34} +(2.35973 + 0.701235i) q^{35} +6.51687i q^{37} +(2.94763 + 2.60933i) q^{38} +(-6.24839 + 0.978569i) q^{40} +(-6.35642 - 3.66988i) q^{41} +(2.25473 + 3.90530i) q^{43} +(-9.08040 + 6.83448i) q^{44} +(2.82719 - 0.945071i) q^{46} +(-8.09628 + 4.67439i) q^{47} +(2.89400 - 5.01255i) q^{49} +(-5.03333 - 4.96645i) q^{50} +(1.87533 - 4.41103i) q^{52} +11.5954 q^{53} +(-12.1801 - 3.61952i) q^{55} +(0.246959 - 3.10404i) q^{56} +(1.79874 - 8.82821i) q^{58} +(-3.66237 + 6.34341i) q^{59} +(2.48990 + 4.31263i) q^{61} +(-4.31149 + 1.44124i) q^{62} +(2.85419 + 7.47353i) q^{64} +(5.21191 - 1.24643i) q^{65} +(1.85016 - 3.20457i) q^{67} +(-0.313389 - 2.56441i) q^{68} +(2.95453 - 1.84143i) q^{70} +12.6950 q^{71} +9.86891i q^{73} +(6.90082 + 6.10883i) q^{74} +(5.52614 - 0.675333i) q^{76} +(3.12798 - 5.41781i) q^{77} +(0.975531 - 0.563223i) q^{79} +(-4.82094 + 7.53382i) q^{80} +(-9.84453 + 3.29082i) q^{82} +(9.98138 - 5.76275i) q^{83} +(2.09694 - 1.98643i) q^{85} +(6.24894 + 1.27321i) q^{86} +(-1.27471 + 16.0219i) q^{88} +9.16815i q^{89} +2.63841i q^{91} +(1.64942 - 3.87966i) q^{92} +(-2.63956 + 12.9550i) q^{94} +(4.28061 + 4.51876i) q^{95} +(11.1257 - 6.42344i) q^{97} +(-2.59507 - 7.76320i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 2 q^{4} + 18 q^{5} - 16 q^{10} + 42 q^{14} + 30 q^{16} - 26 q^{25} - 4 q^{34} + 10 q^{40} - 96 q^{41} + 4 q^{46} + 32 q^{49} + 90 q^{50} - 6 q^{56} + 8 q^{61} - 20 q^{64} + 6 q^{65} + 4 q^{70} - 72 q^{74}+ \cdots - 62 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.937387 1.05892i 0.662833 0.748767i
\(3\) 0 0
\(4\) −0.242609 1.98523i −0.121305 0.992615i
\(5\) 1.62334 1.53778i 0.725978 0.687718i
\(6\) 0 0
\(7\) 0.550457 + 0.953419i 0.208053 + 0.360358i 0.951101 0.308880i \(-0.0999540\pi\)
−0.743048 + 0.669238i \(0.766621\pi\)
\(8\) −2.32961 1.60403i −0.823643 0.567109i
\(9\) 0 0
\(10\) −0.106691 3.16048i −0.0337388 0.999431i
\(11\) −2.84126 4.92120i −0.856671 1.48380i −0.875086 0.483967i \(-0.839195\pi\)
0.0184153 0.999830i \(-0.494138\pi\)
\(12\) 0 0
\(13\) 2.07548 + 1.19828i 0.575636 + 0.332343i 0.759397 0.650627i \(-0.225494\pi\)
−0.183761 + 0.982971i \(0.558827\pi\)
\(14\) 1.52558 + 0.310835i 0.407729 + 0.0830742i
\(15\) 0 0
\(16\) −3.88228 + 0.963271i −0.970570 + 0.240818i
\(17\) 1.29175 0.313294 0.156647 0.987655i \(-0.449931\pi\)
0.156647 + 0.987655i \(0.449931\pi\)
\(18\) 0 0
\(19\) 2.78362i 0.638607i 0.947652 + 0.319304i \(0.103449\pi\)
−0.947652 + 0.319304i \(0.896551\pi\)
\(20\) −3.44669 2.84961i −0.770704 0.637193i
\(21\) 0 0
\(22\) −7.87450 1.60442i −1.67885 0.342063i
\(23\) 1.82546 + 1.05393i 0.380635 + 0.219760i 0.678095 0.734975i \(-0.262806\pi\)
−0.297459 + 0.954735i \(0.596139\pi\)
\(24\) 0 0
\(25\) 0.270437 4.99268i 0.0540873 0.998536i
\(26\) 3.21441 1.07451i 0.630398 0.210729i
\(27\) 0 0
\(28\) 1.75921 1.32409i 0.332459 0.250230i
\(29\) 5.51723 3.18537i 1.02452 0.591509i 0.109112 0.994029i \(-0.465199\pi\)
0.915411 + 0.402521i \(0.131866\pi\)
\(30\) 0 0
\(31\) −2.78385 1.60725i −0.499994 0.288671i 0.228717 0.973493i \(-0.426547\pi\)
−0.728711 + 0.684821i \(0.759880\pi\)
\(32\) −2.61918 + 5.01397i −0.463010 + 0.886353i
\(33\) 0 0
\(34\) 1.21087 1.36785i 0.207662 0.234584i
\(35\) 2.35973 + 0.701235i 0.398867 + 0.118530i
\(36\) 0 0
\(37\) 6.51687i 1.07137i 0.844419 + 0.535683i \(0.179946\pi\)
−0.844419 + 0.535683i \(0.820054\pi\)
\(38\) 2.94763 + 2.60933i 0.478168 + 0.423290i
\(39\) 0 0
\(40\) −6.24839 + 0.978569i −0.987958 + 0.154725i
\(41\) −6.35642 3.66988i −0.992706 0.573139i −0.0866240 0.996241i \(-0.527608\pi\)
−0.906082 + 0.423102i \(0.860941\pi\)
\(42\) 0 0
\(43\) 2.25473 + 3.90530i 0.343843 + 0.595553i 0.985143 0.171737i \(-0.0549380\pi\)
−0.641300 + 0.767290i \(0.721605\pi\)
\(44\) −9.08040 + 6.83448i −1.36892 + 1.03034i
\(45\) 0 0
\(46\) 2.82719 0.945071i 0.416847 0.139343i
\(47\) −8.09628 + 4.67439i −1.18096 + 0.681830i −0.956237 0.292592i \(-0.905482\pi\)
−0.224726 + 0.974422i \(0.572149\pi\)
\(48\) 0 0
\(49\) 2.89400 5.01255i 0.413428 0.716078i
\(50\) −5.03333 4.96645i −0.711820 0.702362i
\(51\) 0 0
\(52\) 1.87533 4.41103i 0.260062 0.611700i
\(53\) 11.5954 1.59275 0.796377 0.604800i \(-0.206747\pi\)
0.796377 + 0.604800i \(0.206747\pi\)
\(54\) 0 0
\(55\) −12.1801 3.61952i −1.64236 0.488056i
\(56\) 0.246959 3.10404i 0.0330013 0.414795i
\(57\) 0 0
\(58\) 1.79874 8.82821i 0.236186 1.15920i
\(59\) −3.66237 + 6.34341i −0.476800 + 0.825842i −0.999647 0.0265849i \(-0.991537\pi\)
0.522846 + 0.852427i \(0.324870\pi\)
\(60\) 0 0
\(61\) 2.48990 + 4.31263i 0.318799 + 0.552175i 0.980238 0.197823i \(-0.0633873\pi\)
−0.661439 + 0.749999i \(0.730054\pi\)
\(62\) −4.31149 + 1.44124i −0.547560 + 0.183038i
\(63\) 0 0
\(64\) 2.85419 + 7.47353i 0.356774 + 0.934191i
\(65\) 5.21191 1.24643i 0.646457 0.154601i
\(66\) 0 0
\(67\) 1.85016 3.20457i 0.226033 0.391500i −0.730596 0.682810i \(-0.760758\pi\)
0.956629 + 0.291310i \(0.0940910\pi\)
\(68\) −0.313389 2.56441i −0.0380041 0.310981i
\(69\) 0 0
\(70\) 2.95453 1.84143i 0.353134 0.220093i
\(71\) 12.6950 1.50662 0.753311 0.657664i \(-0.228455\pi\)
0.753311 + 0.657664i \(0.228455\pi\)
\(72\) 0 0
\(73\) 9.86891i 1.15507i 0.816366 + 0.577534i \(0.195985\pi\)
−0.816366 + 0.577534i \(0.804015\pi\)
\(74\) 6.90082 + 6.10883i 0.802204 + 0.710137i
\(75\) 0 0
\(76\) 5.52614 0.675333i 0.633891 0.0774660i
\(77\) 3.12798 5.41781i 0.356466 0.617417i
\(78\) 0 0
\(79\) 0.975531 0.563223i 0.109756 0.0633676i −0.444117 0.895969i \(-0.646483\pi\)
0.553873 + 0.832601i \(0.313149\pi\)
\(80\) −4.82094 + 7.53382i −0.538998 + 0.842307i
\(81\) 0 0
\(82\) −9.84453 + 3.29082i −1.08715 + 0.363410i
\(83\) 9.98138 5.76275i 1.09560 0.632544i 0.160537 0.987030i \(-0.448677\pi\)
0.935062 + 0.354485i \(0.115344\pi\)
\(84\) 0 0
\(85\) 2.09694 1.98643i 0.227445 0.215458i
\(86\) 6.24894 + 1.27321i 0.673841 + 0.137294i
\(87\) 0 0
\(88\) −1.27471 + 16.0219i −0.135885 + 1.70794i
\(89\) 9.16815i 0.971822i 0.874008 + 0.485911i \(0.161512\pi\)
−0.874008 + 0.485911i \(0.838488\pi\)
\(90\) 0 0
\(91\) 2.63841i 0.276580i
\(92\) 1.64942 3.87966i 0.171964 0.404482i
\(93\) 0 0
\(94\) −2.63956 + 12.9550i −0.272250 + 1.33621i
\(95\) 4.28061 + 4.51876i 0.439182 + 0.463615i
\(96\) 0 0
\(97\) 11.1257 6.42344i 1.12965 0.652202i 0.185801 0.982587i \(-0.440512\pi\)
0.943846 + 0.330386i \(0.107179\pi\)
\(98\) −2.59507 7.76320i −0.262142 0.784201i
\(99\) 0 0
\(100\) −9.97723 + 0.674392i −0.997723 + 0.0674392i
\(101\) −14.4999 + 8.37150i −1.44279 + 0.832995i −0.998035 0.0626572i \(-0.980043\pi\)
−0.444755 + 0.895652i \(0.646709\pi\)
\(102\) 0 0
\(103\) −0.679292 + 1.17657i −0.0669327 + 0.115931i −0.897550 0.440913i \(-0.854655\pi\)
0.830617 + 0.556844i \(0.187988\pi\)
\(104\) −2.91300 6.12066i −0.285643 0.600181i
\(105\) 0 0
\(106\) 10.8694 12.2786i 1.05573 1.19260i
\(107\) 2.97211i 0.287324i 0.989627 + 0.143662i \(0.0458879\pi\)
−0.989627 + 0.143662i \(0.954112\pi\)
\(108\) 0 0
\(109\) 5.12076 0.490480 0.245240 0.969462i \(-0.421133\pi\)
0.245240 + 0.969462i \(0.421133\pi\)
\(110\) −15.2502 + 9.50478i −1.45405 + 0.906245i
\(111\) 0 0
\(112\) −3.05543 3.17120i −0.288711 0.299650i
\(113\) −4.18521 + 7.24900i −0.393711 + 0.681928i −0.992936 0.118653i \(-0.962142\pi\)
0.599224 + 0.800581i \(0.295476\pi\)
\(114\) 0 0
\(115\) 4.58406 1.09628i 0.427466 0.102229i
\(116\) −7.66223 10.1802i −0.711420 0.945205i
\(117\) 0 0
\(118\) 3.28409 + 9.82438i 0.302325 + 0.904408i
\(119\) 0.711050 + 1.23157i 0.0651818 + 0.112898i
\(120\) 0 0
\(121\) −10.6455 + 18.4385i −0.967770 + 1.67623i
\(122\) 6.90071 + 1.40601i 0.624761 + 0.127294i
\(123\) 0 0
\(124\) −2.51538 + 5.91651i −0.225888 + 0.531318i
\(125\) −7.23866 8.52067i −0.647445 0.762112i
\(126\) 0 0
\(127\) 5.14729 0.456748 0.228374 0.973573i \(-0.426659\pi\)
0.228374 + 0.973573i \(0.426659\pi\)
\(128\) 10.5893 + 3.98324i 0.935973 + 0.352072i
\(129\) 0 0
\(130\) 3.56570 6.68737i 0.312733 0.586521i
\(131\) −7.10028 + 12.2980i −0.620354 + 1.07449i 0.369065 + 0.929403i \(0.379678\pi\)
−0.989420 + 0.145082i \(0.953656\pi\)
\(132\) 0 0
\(133\) −2.65396 + 1.53226i −0.230127 + 0.132864i
\(134\) −1.65906 4.96309i −0.143321 0.428746i
\(135\) 0 0
\(136\) −3.00927 2.07199i −0.258042 0.177672i
\(137\) −3.47139 6.01263i −0.296581 0.513693i 0.678770 0.734351i \(-0.262513\pi\)
−0.975351 + 0.220657i \(0.929180\pi\)
\(138\) 0 0
\(139\) 10.3321 + 5.96523i 0.876356 + 0.505964i 0.869455 0.494012i \(-0.164470\pi\)
0.00690070 + 0.999976i \(0.497803\pi\)
\(140\) 0.819621 4.85473i 0.0692706 0.410300i
\(141\) 0 0
\(142\) 11.9002 13.4430i 0.998640 1.12811i
\(143\) 13.6185i 1.13884i
\(144\) 0 0
\(145\) 4.05789 13.6552i 0.336990 1.13401i
\(146\) 10.4504 + 9.25100i 0.864878 + 0.765618i
\(147\) 0 0
\(148\) 12.9375 1.58105i 1.06345 0.129962i
\(149\) −4.98019 2.87531i −0.407993 0.235555i 0.281934 0.959434i \(-0.409024\pi\)
−0.689927 + 0.723879i \(0.742357\pi\)
\(150\) 0 0
\(151\) −1.85084 + 1.06858i −0.150619 + 0.0869599i −0.573415 0.819265i \(-0.694382\pi\)
0.422796 + 0.906225i \(0.361049\pi\)
\(152\) 4.46501 6.48477i 0.362160 0.525984i
\(153\) 0 0
\(154\) −2.80489 8.39086i −0.226024 0.676155i
\(155\) −6.99073 + 1.67184i −0.561509 + 0.134286i
\(156\) 0 0
\(157\) −8.70855 5.02788i −0.695018 0.401269i 0.110471 0.993879i \(-0.464764\pi\)
−0.805489 + 0.592611i \(0.798097\pi\)
\(158\) 0.318044 1.56097i 0.0253022 0.124184i
\(159\) 0 0
\(160\) 3.45860 + 12.1671i 0.273427 + 0.961893i
\(161\) 2.32057i 0.182887i
\(162\) 0 0
\(163\) 18.2146 1.42668 0.713339 0.700819i \(-0.247182\pi\)
0.713339 + 0.700819i \(0.247182\pi\)
\(164\) −5.74343 + 13.5093i −0.448487 + 1.05490i
\(165\) 0 0
\(166\) 3.25415 15.9714i 0.252571 1.23962i
\(167\) −6.44716 3.72227i −0.498896 0.288038i 0.229362 0.973341i \(-0.426336\pi\)
−0.728258 + 0.685304i \(0.759670\pi\)
\(168\) 0 0
\(169\) −3.62824 6.28430i −0.279096 0.483408i
\(170\) −0.137818 4.08253i −0.0105702 0.313116i
\(171\) 0 0
\(172\) 7.20591 5.42361i 0.549445 0.413547i
\(173\) 4.33441 + 7.50742i 0.329539 + 0.570778i 0.982420 0.186682i \(-0.0597734\pi\)
−0.652881 + 0.757460i \(0.726440\pi\)
\(174\) 0 0
\(175\) 4.90898 2.49041i 0.371084 0.188258i
\(176\) 15.7710 + 16.3686i 1.18878 + 1.23383i
\(177\) 0 0
\(178\) 9.70831 + 8.59411i 0.727668 + 0.644156i
\(179\) −1.10988 −0.0829560 −0.0414780 0.999139i \(-0.513207\pi\)
−0.0414780 + 0.999139i \(0.513207\pi\)
\(180\) 0 0
\(181\) −12.6629 −0.941229 −0.470615 0.882339i \(-0.655968\pi\)
−0.470615 + 0.882339i \(0.655968\pi\)
\(182\) 2.79385 + 2.47321i 0.207094 + 0.183327i
\(183\) 0 0
\(184\) −2.56209 5.38335i −0.188880 0.396866i
\(185\) 10.0215 + 10.5791i 0.736798 + 0.777788i
\(186\) 0 0
\(187\) −3.67018 6.35694i −0.268390 0.464865i
\(188\) 11.2440 + 14.9389i 0.820051 + 1.08953i
\(189\) 0 0
\(190\) 8.79758 0.296989i 0.638244 0.0215458i
\(191\) −11.3827 19.7154i −0.823625 1.42656i −0.902966 0.429712i \(-0.858615\pi\)
0.0793411 0.996848i \(-0.474718\pi\)
\(192\) 0 0
\(193\) −10.0687 5.81319i −0.724764 0.418443i 0.0917396 0.995783i \(-0.470757\pi\)
−0.816504 + 0.577340i \(0.804091\pi\)
\(194\) 3.62723 17.8025i 0.260420 1.27814i
\(195\) 0 0
\(196\) −10.6532 4.52916i −0.760941 0.323511i
\(197\) −12.2003 −0.869238 −0.434619 0.900614i \(-0.643117\pi\)
−0.434619 + 0.900614i \(0.643117\pi\)
\(198\) 0 0
\(199\) 7.07921i 0.501832i −0.968009 0.250916i \(-0.919268\pi\)
0.968009 0.250916i \(-0.0807318\pi\)
\(200\) −8.63841 + 11.1972i −0.610828 + 0.791763i
\(201\) 0 0
\(202\) −4.72727 + 23.2015i −0.332609 + 1.63245i
\(203\) 6.07399 + 3.50682i 0.426310 + 0.246130i
\(204\) 0 0
\(205\) −15.9621 + 3.81736i −1.11484 + 0.266616i
\(206\) 0.609128 + 1.82222i 0.0424400 + 0.126960i
\(207\) 0 0
\(208\) −9.21188 2.65281i −0.638729 0.183939i
\(209\) 13.6988 7.90899i 0.947564 0.547076i
\(210\) 0 0
\(211\) −5.61368 3.24106i −0.386462 0.223124i 0.294164 0.955755i \(-0.404959\pi\)
−0.680626 + 0.732631i \(0.738292\pi\)
\(212\) −2.81316 23.0196i −0.193209 1.58099i
\(213\) 0 0
\(214\) 3.14721 + 2.78601i 0.215139 + 0.190448i
\(215\) 9.66569 + 2.87233i 0.659195 + 0.195891i
\(216\) 0 0
\(217\) 3.53890i 0.240236i
\(218\) 4.80014 5.42246i 0.325106 0.367255i
\(219\) 0 0
\(220\) −4.23058 + 25.0584i −0.285226 + 1.68943i
\(221\) 2.68100 + 1.54787i 0.180343 + 0.104121i
\(222\) 0 0
\(223\) −7.84799 13.5931i −0.525540 0.910263i −0.999557 0.0297470i \(-0.990530\pi\)
0.474017 0.880516i \(-0.342803\pi\)
\(224\) −6.22216 + 0.262800i −0.415735 + 0.0175590i
\(225\) 0 0
\(226\) 3.75292 + 11.2269i 0.249640 + 0.746803i
\(227\) −0.169745 + 0.0980022i −0.0112664 + 0.00650463i −0.505623 0.862755i \(-0.668737\pi\)
0.494356 + 0.869259i \(0.335404\pi\)
\(228\) 0 0
\(229\) 0.825139 1.42918i 0.0545267 0.0944431i −0.837474 0.546478i \(-0.815968\pi\)
0.892000 + 0.452035i \(0.149302\pi\)
\(230\) 3.13617 5.88178i 0.206793 0.387833i
\(231\) 0 0
\(232\) −17.9624 1.42910i −1.17929 0.0938248i
\(233\) −20.2270 −1.32512 −0.662559 0.749010i \(-0.730530\pi\)
−0.662559 + 0.749010i \(0.730530\pi\)
\(234\) 0 0
\(235\) −5.95477 + 20.0384i −0.388447 + 1.30716i
\(236\) 13.4817 + 5.73168i 0.877581 + 0.373101i
\(237\) 0 0
\(238\) 1.97066 + 0.401520i 0.127739 + 0.0260267i
\(239\) 10.1646 17.6056i 0.657494 1.13881i −0.323769 0.946136i \(-0.604950\pi\)
0.981262 0.192676i \(-0.0617168\pi\)
\(240\) 0 0
\(241\) 8.62268 + 14.9349i 0.555436 + 0.962043i 0.997869 + 0.0652417i \(0.0207818\pi\)
−0.442434 + 0.896801i \(0.645885\pi\)
\(242\) 9.54590 + 28.5567i 0.613634 + 1.83569i
\(243\) 0 0
\(244\) 7.95749 5.98930i 0.509426 0.383426i
\(245\) −3.01029 12.5874i −0.192320 0.804179i
\(246\) 0 0
\(247\) −3.33556 + 5.77737i −0.212237 + 0.367605i
\(248\) 3.90720 + 8.20965i 0.248108 + 0.521313i
\(249\) 0 0
\(250\) −15.8081 0.322033i −0.999793 0.0203671i
\(251\) −9.92020 −0.626157 −0.313079 0.949727i \(-0.601360\pi\)
−0.313079 + 0.949727i \(0.601360\pi\)
\(252\) 0 0
\(253\) 11.9780i 0.753048i
\(254\) 4.82501 5.45055i 0.302748 0.341998i
\(255\) 0 0
\(256\) 14.1442 7.47938i 0.884014 0.467461i
\(257\) −8.67485 + 15.0253i −0.541122 + 0.937252i 0.457717 + 0.889098i \(0.348667\pi\)
−0.998840 + 0.0481539i \(0.984666\pi\)
\(258\) 0 0
\(259\) −6.21330 + 3.58725i −0.386076 + 0.222901i
\(260\) −3.73892 10.0444i −0.231878 0.622930i
\(261\) 0 0
\(262\) 6.36689 + 19.0466i 0.393348 + 1.17671i
\(263\) −8.32487 + 4.80637i −0.513334 + 0.296373i −0.734203 0.678930i \(-0.762444\pi\)
0.220869 + 0.975303i \(0.429111\pi\)
\(264\) 0 0
\(265\) 18.8233 17.8313i 1.15630 1.09537i
\(266\) −0.865248 + 4.24665i −0.0530518 + 0.260379i
\(267\) 0 0
\(268\) −6.81068 2.89553i −0.416028 0.176873i
\(269\) 1.34482i 0.0819953i −0.999159 0.0409977i \(-0.986946\pi\)
0.999159 0.0409977i \(-0.0130536\pi\)
\(270\) 0 0
\(271\) 21.7288i 1.31993i −0.751297 0.659964i \(-0.770571\pi\)
0.751297 0.659964i \(-0.229429\pi\)
\(272\) −5.01492 + 1.24430i −0.304074 + 0.0754468i
\(273\) 0 0
\(274\) −9.62091 1.96025i −0.581221 0.118423i
\(275\) −25.3384 + 12.8546i −1.52796 + 0.775162i
\(276\) 0 0
\(277\) −12.0501 + 6.95713i −0.724021 + 0.418014i −0.816231 0.577726i \(-0.803940\pi\)
0.0922100 + 0.995740i \(0.470607\pi\)
\(278\) 16.0018 5.34908i 0.959727 0.320817i
\(279\) 0 0
\(280\) −4.37245 5.41867i −0.261304 0.323828i
\(281\) −10.0948 + 5.82824i −0.602206 + 0.347684i −0.769909 0.638154i \(-0.779698\pi\)
0.167703 + 0.985838i \(0.446365\pi\)
\(282\) 0 0
\(283\) −6.21367 + 10.7624i −0.369365 + 0.639758i −0.989466 0.144763i \(-0.953758\pi\)
0.620102 + 0.784521i \(0.287091\pi\)
\(284\) −3.07993 25.2026i −0.182760 1.49550i
\(285\) 0 0
\(286\) −14.4209 12.7658i −0.852723 0.754858i
\(287\) 8.08044i 0.476973i
\(288\) 0 0
\(289\) −15.3314 −0.901847
\(290\) −10.6559 17.0972i −0.625738 1.00398i
\(291\) 0 0
\(292\) 19.5921 2.39429i 1.14654 0.140115i
\(293\) 4.77472 8.27006i 0.278942 0.483142i −0.692180 0.721725i \(-0.743350\pi\)
0.971122 + 0.238583i \(0.0766829\pi\)
\(294\) 0 0
\(295\) 3.80955 + 15.9294i 0.221800 + 0.927447i
\(296\) 10.4532 15.1818i 0.607582 0.882423i
\(297\) 0 0
\(298\) −7.71308 + 2.57832i −0.446807 + 0.149358i
\(299\) 2.52581 + 4.37484i 0.146072 + 0.253003i
\(300\) 0 0
\(301\) −2.48226 + 4.29940i −0.143075 + 0.247813i
\(302\) −0.603413 + 2.96156i −0.0347225 + 0.170418i
\(303\) 0 0
\(304\) −2.68138 10.8068i −0.153788 0.619813i
\(305\) 10.6738 + 3.17192i 0.611182 + 0.181623i
\(306\) 0 0
\(307\) −13.4685 −0.768689 −0.384345 0.923190i \(-0.625573\pi\)
−0.384345 + 0.923190i \(0.625573\pi\)
\(308\) −11.5145 4.89534i −0.656099 0.278938i
\(309\) 0 0
\(310\) −4.78268 + 8.96976i −0.271638 + 0.509448i
\(311\) 5.13110 8.88732i 0.290958 0.503954i −0.683079 0.730345i \(-0.739359\pi\)
0.974037 + 0.226391i \(0.0726927\pi\)
\(312\) 0 0
\(313\) −1.39067 + 0.802903i −0.0786052 + 0.0453827i −0.538787 0.842442i \(-0.681117\pi\)
0.460182 + 0.887824i \(0.347784\pi\)
\(314\) −13.4874 + 4.50855i −0.761138 + 0.254432i
\(315\) 0 0
\(316\) −1.35480 1.80001i −0.0762135 0.101259i
\(317\) 2.23127 + 3.86467i 0.125320 + 0.217061i 0.921858 0.387528i \(-0.126671\pi\)
−0.796538 + 0.604589i \(0.793337\pi\)
\(318\) 0 0
\(319\) −31.3517 18.1009i −1.75536 1.01346i
\(320\) 16.1260 + 7.74291i 0.901470 + 0.432842i
\(321\) 0 0
\(322\) 2.45730 + 2.17528i 0.136940 + 0.121223i
\(323\) 3.59573i 0.200072i
\(324\) 0 0
\(325\) 6.54392 10.0382i 0.362992 0.556818i
\(326\) 17.0741 19.2878i 0.945649 1.06825i
\(327\) 0 0
\(328\) 8.92141 + 18.7453i 0.492602 + 1.03503i
\(329\) −8.91330 5.14610i −0.491406 0.283713i
\(330\) 0 0
\(331\) −10.2107 + 5.89512i −0.561228 + 0.324025i −0.753638 0.657289i \(-0.771703\pi\)
0.192410 + 0.981315i \(0.438370\pi\)
\(332\) −13.8620 18.4172i −0.760775 1.01078i
\(333\) 0 0
\(334\) −9.98506 + 3.33780i −0.546358 + 0.182636i
\(335\) −1.92451 8.04724i −0.105147 0.439668i
\(336\) 0 0
\(337\) −9.14715 5.28111i −0.498277 0.287680i 0.229725 0.973256i \(-0.426217\pi\)
−0.728002 + 0.685575i \(0.759551\pi\)
\(338\) −10.0556 2.04882i −0.546954 0.111441i
\(339\) 0 0
\(340\) −4.45225 3.68098i −0.241457 0.199629i
\(341\) 18.2665i 0.989186i
\(342\) 0 0
\(343\) 14.0785 0.760166
\(344\) 1.01157 12.7145i 0.0545401 0.685519i
\(345\) 0 0
\(346\) 12.0127 + 2.44758i 0.645809 + 0.131583i
\(347\) 20.1864 + 11.6546i 1.08366 + 0.625652i 0.931882 0.362763i \(-0.118166\pi\)
0.151779 + 0.988414i \(0.451500\pi\)
\(348\) 0 0
\(349\) 2.84689 + 4.93095i 0.152390 + 0.263948i 0.932106 0.362186i \(-0.117970\pi\)
−0.779715 + 0.626134i \(0.784636\pi\)
\(350\) 1.96447 7.53268i 0.105006 0.402639i
\(351\) 0 0
\(352\) 32.1165 1.35648i 1.71182 0.0723004i
\(353\) −0.761369 1.31873i −0.0405236 0.0701889i 0.845052 0.534684i \(-0.179569\pi\)
−0.885576 + 0.464495i \(0.846236\pi\)
\(354\) 0 0
\(355\) 20.6083 19.5222i 1.09377 1.03613i
\(356\) 18.2009 2.22428i 0.964645 0.117887i
\(357\) 0 0
\(358\) −1.04038 + 1.17527i −0.0549860 + 0.0621148i
\(359\) 9.46115 0.499341 0.249670 0.968331i \(-0.419678\pi\)
0.249670 + 0.968331i \(0.419678\pi\)
\(360\) 0 0
\(361\) 11.2514 0.592181
\(362\) −11.8701 + 13.4090i −0.623878 + 0.704762i
\(363\) 0 0
\(364\) 5.23785 0.640102i 0.274538 0.0335505i
\(365\) 15.1763 + 16.0206i 0.794362 + 0.838554i
\(366\) 0 0
\(367\) 4.06621 + 7.04288i 0.212254 + 0.367635i 0.952420 0.304790i \(-0.0985862\pi\)
−0.740165 + 0.672425i \(0.765253\pi\)
\(368\) −8.10218 2.33324i −0.422356 0.121629i
\(369\) 0 0
\(370\) 20.5964 0.695294i 1.07076 0.0361466i
\(371\) 6.38278 + 11.0553i 0.331377 + 0.573963i
\(372\) 0 0
\(373\) 10.0593 + 5.80775i 0.520851 + 0.300714i 0.737283 0.675584i \(-0.236108\pi\)
−0.216432 + 0.976298i \(0.569442\pi\)
\(374\) −10.1718 2.07250i −0.525974 0.107166i
\(375\) 0 0
\(376\) 26.3590 + 2.09713i 1.35936 + 0.108151i
\(377\) 15.2679 0.786336
\(378\) 0 0
\(379\) 0.194316i 0.00998136i −0.999988 0.00499068i \(-0.998411\pi\)
0.999988 0.00499068i \(-0.00158859\pi\)
\(380\) 7.93226 9.59430i 0.406916 0.492177i
\(381\) 0 0
\(382\) −31.5470 6.42766i −1.61409 0.328868i
\(383\) −16.0220 9.25031i −0.818686 0.472669i 0.0312769 0.999511i \(-0.490043\pi\)
−0.849963 + 0.526842i \(0.823376\pi\)
\(384\) 0 0
\(385\) −3.25368 13.6051i −0.165823 0.693379i
\(386\) −15.5940 + 5.21275i −0.793714 + 0.265322i
\(387\) 0 0
\(388\) −15.4512 20.5288i −0.784417 1.04219i
\(389\) 20.3869 11.7704i 1.03366 0.596783i 0.115628 0.993293i \(-0.463112\pi\)
0.918031 + 0.396509i \(0.129779\pi\)
\(390\) 0 0
\(391\) 2.35803 + 1.36141i 0.119251 + 0.0688495i
\(392\) −14.7821 + 7.03525i −0.746611 + 0.355334i
\(393\) 0 0
\(394\) −11.4364 + 12.9191i −0.576160 + 0.650857i
\(395\) 0.717499 2.41446i 0.0361013 0.121485i
\(396\) 0 0
\(397\) 23.4091i 1.17487i −0.809272 0.587435i \(-0.800138\pi\)
0.809272 0.587435i \(-0.199862\pi\)
\(398\) −7.49629 6.63596i −0.375755 0.332631i
\(399\) 0 0
\(400\) 3.75939 + 19.6435i 0.187970 + 0.982175i
\(401\) −25.9256 14.9681i −1.29466 0.747474i −0.315185 0.949030i \(-0.602067\pi\)
−0.979477 + 0.201557i \(0.935400\pi\)
\(402\) 0 0
\(403\) −3.85189 6.67166i −0.191876 0.332339i
\(404\) 20.1372 + 26.7546i 1.00186 + 1.33109i
\(405\) 0 0
\(406\) 9.40711 3.14460i 0.466867 0.156064i
\(407\) 32.0708 18.5161i 1.58969 0.917809i
\(408\) 0 0
\(409\) 1.04012 1.80153i 0.0514304 0.0890800i −0.839164 0.543878i \(-0.816955\pi\)
0.890594 + 0.454798i \(0.150289\pi\)
\(410\) −10.9204 + 20.4809i −0.539320 + 1.01148i
\(411\) 0 0
\(412\) 2.50056 + 1.06311i 0.123194 + 0.0523754i
\(413\) −8.06390 −0.396799
\(414\) 0 0
\(415\) 7.34126 24.7041i 0.360368 1.21268i
\(416\) −11.4442 + 7.26791i −0.561099 + 0.356338i
\(417\) 0 0
\(418\) 4.46610 21.9196i 0.218444 1.07212i
\(419\) −4.89021 + 8.47010i −0.238903 + 0.413791i −0.960400 0.278626i \(-0.910121\pi\)
0.721497 + 0.692417i \(0.243454\pi\)
\(420\) 0 0
\(421\) 1.05097 + 1.82034i 0.0512212 + 0.0887177i 0.890499 0.454985i \(-0.150355\pi\)
−0.839278 + 0.543703i \(0.817022\pi\)
\(422\) −8.69420 + 2.90629i −0.423227 + 0.141476i
\(423\) 0 0
\(424\) −27.0129 18.5994i −1.31186 0.903266i
\(425\) 0.349335 6.44927i 0.0169453 0.312836i
\(426\) 0 0
\(427\) −2.74116 + 4.74783i −0.132654 + 0.229764i
\(428\) 5.90031 0.721061i 0.285202 0.0348538i
\(429\) 0 0
\(430\) 12.1021 7.54267i 0.583613 0.363740i
\(431\) 3.84204 0.185064 0.0925322 0.995710i \(-0.470504\pi\)
0.0925322 + 0.995710i \(0.470504\pi\)
\(432\) 0 0
\(433\) 6.66853i 0.320469i 0.987079 + 0.160235i \(0.0512251\pi\)
−0.987079 + 0.160235i \(0.948775\pi\)
\(434\) −3.74740 3.31732i −0.179881 0.159236i
\(435\) 0 0
\(436\) −1.24234 10.1659i −0.0594975 0.486858i
\(437\) −2.93375 + 5.08140i −0.140340 + 0.243077i
\(438\) 0 0
\(439\) 33.5536 19.3722i 1.60143 0.924585i 0.610225 0.792228i \(-0.291079\pi\)
0.991202 0.132357i \(-0.0422544\pi\)
\(440\) 22.5690 + 27.9692i 1.07594 + 1.33338i
\(441\) 0 0
\(442\) 4.15220 1.38799i 0.197500 0.0660202i
\(443\) −20.2821 + 11.7099i −0.963633 + 0.556354i −0.897289 0.441443i \(-0.854467\pi\)
−0.0663436 + 0.997797i \(0.521133\pi\)
\(444\) 0 0
\(445\) 14.0986 + 14.8830i 0.668340 + 0.705521i
\(446\) −21.7506 4.43165i −1.02992 0.209845i
\(447\) 0 0
\(448\) −5.55429 + 6.83509i −0.262416 + 0.322928i
\(449\) 15.7865i 0.745011i 0.928030 + 0.372506i \(0.121501\pi\)
−0.928030 + 0.372506i \(0.878499\pi\)
\(450\) 0 0
\(451\) 41.7083i 1.96397i
\(452\) 15.4063 + 6.54993i 0.724651 + 0.308083i
\(453\) 0 0
\(454\) −0.0553404 + 0.271612i −0.00259726 + 0.0127474i
\(455\) 4.05730 + 4.28302i 0.190209 + 0.200791i
\(456\) 0 0
\(457\) −7.28867 + 4.20812i −0.340950 + 0.196847i −0.660692 0.750657i \(-0.729737\pi\)
0.319742 + 0.947505i \(0.396404\pi\)
\(458\) −0.739911 2.21345i −0.0345738 0.103428i
\(459\) 0 0
\(460\) −3.28851 8.83445i −0.153328 0.411908i
\(461\) −21.4798 + 12.4014i −1.00042 + 0.577590i −0.908371 0.418165i \(-0.862674\pi\)
−0.0920445 + 0.995755i \(0.529340\pi\)
\(462\) 0 0
\(463\) −10.3598 + 17.9437i −0.481460 + 0.833913i −0.999774 0.0212774i \(-0.993227\pi\)
0.518314 + 0.855191i \(0.326560\pi\)
\(464\) −18.3511 + 17.6811i −0.851926 + 0.820824i
\(465\) 0 0
\(466\) −18.9606 + 21.4188i −0.878332 + 0.992205i
\(467\) 1.59588i 0.0738487i −0.999318 0.0369243i \(-0.988244\pi\)
0.999318 0.0369243i \(-0.0117561\pi\)
\(468\) 0 0
\(469\) 4.07373 0.188107
\(470\) 15.6371 + 25.0894i 0.721286 + 1.15729i
\(471\) 0 0
\(472\) 18.7069 8.90315i 0.861055 0.409801i
\(473\) 12.8125 22.1919i 0.589120 1.02039i
\(474\) 0 0
\(475\) 13.8977 + 0.752794i 0.637672 + 0.0345406i
\(476\) 2.27245 1.71039i 0.104158 0.0783955i
\(477\) 0 0
\(478\) −9.11471 27.2668i −0.416897 1.24715i
\(479\) 2.98947 + 5.17791i 0.136592 + 0.236585i 0.926205 0.377021i \(-0.123052\pi\)
−0.789612 + 0.613606i \(0.789718\pi\)
\(480\) 0 0
\(481\) −7.80904 + 13.5257i −0.356062 + 0.616717i
\(482\) 23.8976 + 4.86911i 1.08851 + 0.221782i
\(483\) 0 0
\(484\) 39.1874 + 16.6604i 1.78124 + 0.757289i
\(485\) 8.18292 27.5364i 0.371567 1.25036i
\(486\) 0 0
\(487\) −16.5971 −0.752086 −0.376043 0.926602i \(-0.622716\pi\)
−0.376043 + 0.926602i \(0.622716\pi\)
\(488\) 1.11708 14.0406i 0.0505677 0.635589i
\(489\) 0 0
\(490\) −16.1508 8.61161i −0.729619 0.389033i
\(491\) 6.66941 11.5518i 0.300986 0.521323i −0.675373 0.737476i \(-0.736018\pi\)
0.976360 + 0.216153i \(0.0693509\pi\)
\(492\) 0 0
\(493\) 7.12685 4.11469i 0.320977 0.185316i
\(494\) 2.99103 + 8.94772i 0.134573 + 0.402577i
\(495\) 0 0
\(496\) 12.3559 + 3.55822i 0.554796 + 0.159769i
\(497\) 6.98806 + 12.1037i 0.313457 + 0.542924i
\(498\) 0 0
\(499\) 35.7135 + 20.6192i 1.59875 + 0.923041i 0.991728 + 0.128359i \(0.0409711\pi\)
0.607026 + 0.794682i \(0.292362\pi\)
\(500\) −15.1593 + 16.4376i −0.677946 + 0.735112i
\(501\) 0 0
\(502\) −9.29907 + 10.5047i −0.415038 + 0.468846i
\(503\) 24.1634i 1.07739i 0.842500 + 0.538696i \(0.181083\pi\)
−0.842500 + 0.538696i \(0.818917\pi\)
\(504\) 0 0
\(505\) −10.6646 + 35.8874i −0.474567 + 1.59697i
\(506\) −12.6837 11.2280i −0.563858 0.499145i
\(507\) 0 0
\(508\) −1.24878 10.2186i −0.0554057 0.453375i
\(509\) −10.2084 5.89380i −0.452478 0.261238i 0.256398 0.966571i \(-0.417464\pi\)
−0.708876 + 0.705333i \(0.750797\pi\)
\(510\) 0 0
\(511\) −9.40921 + 5.43241i −0.416239 + 0.240316i
\(512\) 5.33857 21.9886i 0.235934 0.971769i
\(513\) 0 0
\(514\) 7.77883 + 23.2705i 0.343109 + 1.02642i
\(515\) 0.706590 + 2.95457i 0.0311361 + 0.130194i
\(516\) 0 0
\(517\) 46.0072 + 26.5623i 2.02339 + 1.16821i
\(518\) −2.02567 + 9.94202i −0.0890029 + 0.436827i
\(519\) 0 0
\(520\) −14.1410 5.45633i −0.620126 0.239276i
\(521\) 32.5010i 1.42389i −0.702234 0.711947i \(-0.747814\pi\)
0.702234 0.711947i \(-0.252186\pi\)
\(522\) 0 0
\(523\) 11.2435 0.491645 0.245822 0.969315i \(-0.420942\pi\)
0.245822 + 0.969315i \(0.420942\pi\)
\(524\) 26.1370 + 11.1121i 1.14180 + 0.485433i
\(525\) 0 0
\(526\) −2.71409 + 13.3208i −0.118340 + 0.580813i
\(527\) −3.59602 2.07616i −0.156645 0.0904391i
\(528\) 0 0
\(529\) −9.27846 16.0708i −0.403411 0.698729i
\(530\) −1.23713 36.6471i −0.0537376 1.59185i
\(531\) 0 0
\(532\) 3.68577 + 4.89698i 0.159799 + 0.212311i
\(533\) −8.79510 15.2336i −0.380958 0.659839i
\(534\) 0 0
\(535\) 4.57046 + 4.82472i 0.197598 + 0.208591i
\(536\) −9.45037 + 4.49770i −0.408194 + 0.194271i
\(537\) 0 0
\(538\) −1.42406 1.26062i −0.0613954 0.0543492i
\(539\) −32.8903 −1.41669
\(540\) 0 0
\(541\) −8.40855 −0.361512 −0.180756 0.983528i \(-0.557854\pi\)
−0.180756 + 0.983528i \(0.557854\pi\)
\(542\) −23.0090 20.3683i −0.988319 0.874892i
\(543\) 0 0
\(544\) −3.38331 + 6.47677i −0.145058 + 0.277689i
\(545\) 8.31271 7.87463i 0.356078 0.337312i
\(546\) 0 0
\(547\) −2.12301 3.67716i −0.0907734 0.157224i 0.817063 0.576548i \(-0.195601\pi\)
−0.907837 + 0.419324i \(0.862267\pi\)
\(548\) −11.0943 + 8.35023i −0.473923 + 0.356704i
\(549\) 0 0
\(550\) −10.1399 + 38.8810i −0.432367 + 1.65789i
\(551\) 8.86688 + 15.3579i 0.377742 + 0.654268i
\(552\) 0 0
\(553\) 1.07398 + 0.620060i 0.0456701 + 0.0263676i
\(554\) −3.92860 + 19.2816i −0.166910 + 0.819196i
\(555\) 0 0
\(556\) 9.33570 21.9588i 0.395922 0.931260i
\(557\) 21.0221 0.890734 0.445367 0.895348i \(-0.353073\pi\)
0.445367 + 0.895348i \(0.353073\pi\)
\(558\) 0 0
\(559\) 10.8072i 0.457095i
\(560\) −9.83661 0.449333i −0.415673 0.0189878i
\(561\) 0 0
\(562\) −3.29113 + 16.1529i −0.138828 + 0.681369i
\(563\) 18.9272 + 10.9277i 0.797688 + 0.460546i 0.842662 0.538443i \(-0.180987\pi\)
−0.0449739 + 0.998988i \(0.514320\pi\)
\(564\) 0 0
\(565\) 4.35339 + 18.2035i 0.183149 + 0.765827i
\(566\) 5.57187 + 16.6683i 0.234203 + 0.700621i
\(567\) 0 0
\(568\) −29.5745 20.3632i −1.24092 0.854420i
\(569\) −12.7253 + 7.34697i −0.533473 + 0.308001i −0.742430 0.669924i \(-0.766327\pi\)
0.208956 + 0.977925i \(0.432993\pi\)
\(570\) 0 0
\(571\) 15.5333 + 8.96816i 0.650049 + 0.375306i 0.788475 0.615067i \(-0.210871\pi\)
−0.138426 + 0.990373i \(0.544204\pi\)
\(572\) −27.0359 + 3.30397i −1.13043 + 0.138146i
\(573\) 0 0
\(574\) −8.55651 7.57450i −0.357142 0.316154i
\(575\) 5.75562 8.82893i 0.240026 0.368192i
\(576\) 0 0
\(577\) 38.2696i 1.59318i 0.604517 + 0.796592i \(0.293366\pi\)
−0.604517 + 0.796592i \(0.706634\pi\)
\(578\) −14.3715 + 16.2347i −0.597774 + 0.675273i
\(579\) 0 0
\(580\) −28.0933 4.74297i −1.16651 0.196941i
\(581\) 10.9886 + 6.34429i 0.455885 + 0.263206i
\(582\) 0 0
\(583\) −32.9456 57.0634i −1.36447 2.36333i
\(584\) 15.8300 22.9907i 0.655050 0.951364i
\(585\) 0 0
\(586\) −4.28154 12.8083i −0.176869 0.529105i
\(587\) −7.27939 + 4.20276i −0.300453 + 0.173466i −0.642646 0.766163i \(-0.722163\pi\)
0.342194 + 0.939629i \(0.388830\pi\)
\(588\) 0 0
\(589\) 4.47399 7.74918i 0.184348 0.319299i
\(590\) 20.4390 + 10.8981i 0.841458 + 0.448666i
\(591\) 0 0
\(592\) −6.27751 25.3003i −0.258004 1.03984i
\(593\) 35.1831 1.44480 0.722398 0.691477i \(-0.243040\pi\)
0.722398 + 0.691477i \(0.243040\pi\)
\(594\) 0 0
\(595\) 3.04817 + 0.905817i 0.124963 + 0.0371349i
\(596\) −4.49992 + 10.5844i −0.184324 + 0.433554i
\(597\) 0 0
\(598\) 7.00025 + 1.42629i 0.286262 + 0.0583254i
\(599\) 7.34116 12.7153i 0.299952 0.519532i −0.676173 0.736743i \(-0.736363\pi\)
0.976125 + 0.217211i \(0.0696961\pi\)
\(600\) 0 0
\(601\) 13.6252 + 23.5995i 0.555783 + 0.962644i 0.997842 + 0.0656584i \(0.0209148\pi\)
−0.442059 + 0.896986i \(0.645752\pi\)
\(602\) 2.22587 + 6.65871i 0.0907195 + 0.271389i
\(603\) 0 0
\(604\) 2.57041 + 3.41509i 0.104589 + 0.138958i
\(605\) 11.0733 + 46.3023i 0.450192 + 1.88246i
\(606\) 0 0
\(607\) 3.91627 6.78317i 0.158956 0.275320i −0.775536 0.631303i \(-0.782520\pi\)
0.934493 + 0.355983i \(0.115854\pi\)
\(608\) −13.9570 7.29081i −0.566032 0.295681i
\(609\) 0 0
\(610\) 13.3643 8.32938i 0.541105 0.337247i
\(611\) −22.4049 −0.906406
\(612\) 0 0
\(613\) 1.17677i 0.0475293i −0.999718 0.0237646i \(-0.992435\pi\)
0.999718 0.0237646i \(-0.00756523\pi\)
\(614\) −12.6252 + 14.2620i −0.509513 + 0.575569i
\(615\) 0 0
\(616\) −15.9773 + 7.60405i −0.643744 + 0.306376i
\(617\) 20.4261 35.3790i 0.822322 1.42430i −0.0816263 0.996663i \(-0.526011\pi\)
0.903949 0.427641i \(-0.140655\pi\)
\(618\) 0 0
\(619\) −42.7230 + 24.6661i −1.71718 + 0.991416i −0.793218 + 0.608938i \(0.791596\pi\)
−0.923965 + 0.382478i \(0.875071\pi\)
\(620\) 5.01501 + 13.4726i 0.201408 + 0.541073i
\(621\) 0 0
\(622\) −4.60111 13.7643i −0.184488 0.551897i
\(623\) −8.74109 + 5.04667i −0.350204 + 0.202190i
\(624\) 0 0
\(625\) −24.8537 2.70041i −0.994149 0.108016i
\(626\) −0.453388 + 2.22523i −0.0181210 + 0.0889382i
\(627\) 0 0
\(628\) −7.86873 + 18.5083i −0.313997 + 0.738561i
\(629\) 8.41813i 0.335653i
\(630\) 0 0
\(631\) 27.6752i 1.10173i −0.834594 0.550866i \(-0.814297\pi\)
0.834594 0.550866i \(-0.185703\pi\)
\(632\) −3.17604 0.252687i −0.126336 0.0100513i
\(633\) 0 0
\(634\) 6.18392 + 1.25996i 0.245595 + 0.0500396i
\(635\) 8.35578 7.91543i 0.331589 0.314114i
\(636\) 0 0
\(637\) 12.0129 6.93564i 0.475968 0.274800i
\(638\) −48.5561 + 16.2313i −1.92235 + 0.642602i
\(639\) 0 0
\(640\) 23.3154 9.81797i 0.921622 0.388089i
\(641\) 13.0424 7.53005i 0.515145 0.297419i −0.219801 0.975545i \(-0.570541\pi\)
0.734946 + 0.678126i \(0.237207\pi\)
\(642\) 0 0
\(643\) −23.7098 + 41.0665i −0.935022 + 1.61951i −0.160427 + 0.987048i \(0.551287\pi\)
−0.774595 + 0.632458i \(0.782046\pi\)
\(644\) 4.60688 0.562993i 0.181536 0.0221850i
\(645\) 0 0
\(646\) 3.80758 + 3.37060i 0.149807 + 0.132614i
\(647\) 19.7634i 0.776977i 0.921453 + 0.388489i \(0.127003\pi\)
−0.921453 + 0.388489i \(0.872997\pi\)
\(648\) 0 0
\(649\) 41.6229 1.63384
\(650\) −4.49540 16.3391i −0.176324 0.640873i
\(651\) 0 0
\(652\) −4.41903 36.1602i −0.173063 1.41614i
\(653\) −17.4740 + 30.2658i −0.683809 + 1.18439i 0.290000 + 0.957027i \(0.406345\pi\)
−0.973809 + 0.227366i \(0.926989\pi\)
\(654\) 0 0
\(655\) 7.38561 + 30.8826i 0.288580 + 1.20668i
\(656\) 28.2125 + 8.12455i 1.10151 + 0.317211i
\(657\) 0 0
\(658\) −13.8045 + 4.61456i −0.538155 + 0.179894i
\(659\) 17.4893 + 30.2924i 0.681288 + 1.18003i 0.974588 + 0.224005i \(0.0719133\pi\)
−0.293300 + 0.956021i \(0.594753\pi\)
\(660\) 0 0
\(661\) 17.7487 30.7417i 0.690346 1.19571i −0.281379 0.959597i \(-0.590792\pi\)
0.971725 0.236117i \(-0.0758749\pi\)
\(662\) −3.32889 + 16.3382i −0.129381 + 0.635004i
\(663\) 0 0
\(664\) −32.4964 2.58542i −1.26110 0.100334i
\(665\) −1.95197 + 6.56860i −0.0756943 + 0.254719i
\(666\) 0 0
\(667\) 13.4287 0.519960
\(668\) −5.82542 + 13.7022i −0.225392 + 0.530152i
\(669\) 0 0
\(670\) −10.3254 5.50549i −0.398904 0.212695i
\(671\) 14.1489 24.5066i 0.546211 0.946065i
\(672\) 0 0
\(673\) 41.4746 23.9454i 1.59873 0.923027i 0.606997 0.794704i \(-0.292374\pi\)
0.991733 0.128322i \(-0.0409591\pi\)
\(674\) −14.1667 + 4.73563i −0.545680 + 0.182409i
\(675\) 0 0
\(676\) −11.5955 + 8.72753i −0.445982 + 0.335674i
\(677\) 0.0431856 + 0.0747996i 0.00165976 + 0.00287478i 0.866854 0.498562i \(-0.166138\pi\)
−0.865194 + 0.501437i \(0.832805\pi\)
\(678\) 0 0
\(679\) 12.2485 + 7.07165i 0.470053 + 0.271385i
\(680\) −8.07133 + 1.26406i −0.309521 + 0.0484745i
\(681\) 0 0
\(682\) 19.3427 + 17.1228i 0.740670 + 0.655665i
\(683\) 24.0380i 0.919788i 0.887974 + 0.459894i \(0.152113\pi\)
−0.887974 + 0.459894i \(0.847887\pi\)
\(684\) 0 0
\(685\) −14.8814 4.42226i −0.568588 0.168966i
\(686\) 13.1970 14.9079i 0.503863 0.569187i
\(687\) 0 0
\(688\) −12.5153 12.9896i −0.477143 0.495222i
\(689\) 24.0661 + 13.8946i 0.916846 + 0.529342i
\(690\) 0 0
\(691\) 36.1685 20.8819i 1.37591 0.794384i 0.384249 0.923229i \(-0.374460\pi\)
0.991665 + 0.128845i \(0.0411271\pi\)
\(692\) 13.8524 10.4262i 0.526589 0.396344i
\(693\) 0 0
\(694\) 31.2637 10.4508i 1.18675 0.396707i
\(695\) 25.9457 6.20495i 0.984176 0.235367i
\(696\) 0 0
\(697\) −8.21087 4.74055i −0.311009 0.179561i
\(698\) 7.89010 + 1.60760i 0.298645 + 0.0608484i
\(699\) 0 0
\(700\) −6.13501 9.14126i −0.231882 0.345507i
\(701\) 2.12514i 0.0802654i −0.999194 0.0401327i \(-0.987222\pi\)
0.999194 0.0401327i \(-0.0127781\pi\)
\(702\) 0 0
\(703\) −18.1405 −0.684182
\(704\) 28.6692 35.2803i 1.08051 1.32967i
\(705\) 0 0
\(706\) −2.11012 0.429934i −0.0794155 0.0161808i
\(707\) −15.9631 9.21629i −0.600354 0.346614i
\(708\) 0 0
\(709\) 2.08824 + 3.61694i 0.0784256 + 0.135837i 0.902571 0.430541i \(-0.141677\pi\)
−0.824145 + 0.566379i \(0.808344\pi\)
\(710\) −1.35445 40.1224i −0.0508317 1.50577i
\(711\) 0 0
\(712\) 14.7060 21.3582i 0.551129 0.800434i
\(713\) −3.38787 5.86797i −0.126877 0.219757i
\(714\) 0 0
\(715\) −20.9423 22.1074i −0.783198 0.826769i
\(716\) 0.269266 + 2.20336i 0.0100630 + 0.0823434i
\(717\) 0 0
\(718\) 8.86877 10.0186i 0.330979 0.373890i
\(719\) −24.0884 −0.898346 −0.449173 0.893445i \(-0.648281\pi\)
−0.449173 + 0.893445i \(0.648281\pi\)
\(720\) 0 0
\(721\) −1.49568 −0.0557022
\(722\) 10.5470 11.9143i 0.392517 0.443406i
\(723\) 0 0
\(724\) 3.07215 + 25.1389i 0.114176 + 0.934279i
\(725\) −14.4115 28.4072i −0.535229 1.05502i
\(726\) 0 0
\(727\) 23.4466 + 40.6108i 0.869587 + 1.50617i 0.862419 + 0.506195i \(0.168948\pi\)
0.00716831 + 0.999974i \(0.497718\pi\)
\(728\) 4.23208 6.14647i 0.156851 0.227803i
\(729\) 0 0
\(730\) 31.1905 1.05293i 1.15441 0.0389706i
\(731\) 2.91253 + 5.04465i 0.107724 + 0.186583i
\(732\) 0 0
\(733\) −15.3758 8.87721i −0.567917 0.327887i 0.188400 0.982092i \(-0.439670\pi\)
−0.756317 + 0.654205i \(0.773003\pi\)
\(734\) 11.2694 + 2.29613i 0.415962 + 0.0847517i
\(735\) 0 0
\(736\) −10.0656 + 6.39239i −0.371023 + 0.235626i
\(737\) −21.0271 −0.774543
\(738\) 0 0
\(739\) 8.50437i 0.312838i −0.987691 0.156419i \(-0.950005\pi\)
0.987691 0.156419i \(-0.0499951\pi\)
\(740\) 18.5706 22.4616i 0.682667 0.825707i
\(741\) 0 0
\(742\) 17.6898 + 3.60427i 0.649412 + 0.132317i
\(743\) −43.6052 25.1755i −1.59972 0.923598i −0.991540 0.129798i \(-0.958567\pi\)
−0.608179 0.793800i \(-0.708100\pi\)
\(744\) 0 0
\(745\) −12.5061 + 2.99086i −0.458189 + 0.109577i
\(746\) 15.5794 5.20786i 0.570402 0.190673i
\(747\) 0 0
\(748\) −11.7296 + 8.82840i −0.428875 + 0.322798i
\(749\) −2.83366 + 1.63601i −0.103540 + 0.0597787i
\(750\) 0 0
\(751\) −44.8169 25.8750i −1.63539 0.944193i −0.982391 0.186834i \(-0.940177\pi\)
−0.652999 0.757359i \(-0.726489\pi\)
\(752\) 26.9293 25.9462i 0.982011 0.946160i
\(753\) 0 0
\(754\) 14.3119 16.1674i 0.521210 0.588783i
\(755\) −1.36128 + 4.58085i −0.0495421 + 0.166714i
\(756\) 0 0
\(757\) 16.5374i 0.601064i −0.953772 0.300532i \(-0.902836\pi\)
0.953772 0.300532i \(-0.0971642\pi\)
\(758\) −0.205765 0.182150i −0.00747372 0.00661598i
\(759\) 0 0
\(760\) −2.72397 17.3932i −0.0988087 0.630917i
\(761\) 30.1188 + 17.3891i 1.09180 + 0.630354i 0.934056 0.357126i \(-0.116243\pi\)
0.157748 + 0.987479i \(0.449577\pi\)
\(762\) 0 0
\(763\) 2.81876 + 4.88223i 0.102046 + 0.176749i
\(764\) −36.3782 + 27.3805i −1.31612 + 0.990591i
\(765\) 0 0
\(766\) −24.8141 + 8.29485i −0.896571 + 0.299705i
\(767\) −15.2024 + 8.77710i −0.548926 + 0.316923i
\(768\) 0 0
\(769\) −7.71708 + 13.3664i −0.278285 + 0.482003i −0.970959 0.239248i \(-0.923099\pi\)
0.692674 + 0.721251i \(0.256433\pi\)
\(770\) −17.4566 9.30786i −0.629092 0.335432i
\(771\) 0 0
\(772\) −9.09776 + 21.3991i −0.327435 + 0.770171i
\(773\) −29.3290 −1.05489 −0.527446 0.849589i \(-0.676850\pi\)
−0.527446 + 0.849589i \(0.676850\pi\)
\(774\) 0 0
\(775\) −8.77736 + 13.4642i −0.315292 + 0.483648i
\(776\) −36.2220 2.88184i −1.30029 0.103452i
\(777\) 0 0
\(778\) 6.64658 32.6215i 0.238292 1.16954i
\(779\) 10.2156 17.6939i 0.366011 0.633949i
\(780\) 0 0
\(781\) −36.0698 62.4748i −1.29068 2.23552i
\(782\) 3.65201 1.22079i 0.130596 0.0436554i
\(783\) 0 0
\(784\) −6.40686 + 22.2478i −0.228817 + 0.794565i
\(785\) −21.8687 + 5.22993i −0.780527 + 0.186664i
\(786\) 0 0
\(787\) 26.3106 45.5713i 0.937872 1.62444i 0.168442 0.985712i \(-0.446127\pi\)
0.769431 0.638730i \(-0.220540\pi\)
\(788\) 2.95992 + 24.2205i 0.105443 + 0.862819i
\(789\) 0 0
\(790\) −1.88414 3.02305i −0.0670345 0.107555i
\(791\) −9.21510 −0.327651
\(792\) 0 0
\(793\) 11.9344i 0.423803i
\(794\) −24.7883 21.9434i −0.879704 0.778742i
\(795\) 0 0
\(796\) −14.0539 + 1.71748i −0.498126 + 0.0608746i
\(797\) −1.24198 + 2.15117i −0.0439931 + 0.0761983i −0.887183 0.461417i \(-0.847341\pi\)
0.843190 + 0.537615i \(0.180675\pi\)
\(798\) 0 0
\(799\) −10.4583 + 6.03812i −0.369989 + 0.213613i
\(800\) 24.3248 + 14.4327i 0.860013 + 0.510272i
\(801\) 0 0
\(802\) −40.1523 + 13.4221i −1.41783 + 0.473950i
\(803\) 48.5669 28.0401i 1.71389 0.989514i
\(804\) 0 0
\(805\) 3.56854 + 3.76707i 0.125775 + 0.132772i
\(806\) −10.6754 2.17511i −0.376027 0.0766148i
\(807\) 0 0
\(808\) 47.2072 + 3.75582i 1.66074 + 0.132129i
\(809\) 25.6629i 0.902261i −0.892458 0.451131i \(-0.851021\pi\)
0.892458 0.451131i \(-0.148979\pi\)
\(810\) 0 0
\(811\) 26.5970i 0.933948i −0.884271 0.466974i \(-0.845344\pi\)
0.884271 0.466974i \(-0.154656\pi\)
\(812\) 5.48824 12.9091i 0.192599 0.453019i
\(813\) 0 0
\(814\) 10.4558 51.3171i 0.366475 1.79866i
\(815\) 29.5684 28.0101i 1.03574 0.981153i
\(816\) 0 0
\(817\) −10.8709 + 6.27631i −0.380324 + 0.219580i
\(818\) −0.932682 2.79013i −0.0326105 0.0975546i
\(819\) 0 0
\(820\) 11.4509 + 30.7623i 0.399882 + 1.07427i
\(821\) 26.3429 15.2091i 0.919373 0.530800i 0.0359383 0.999354i \(-0.488558\pi\)
0.883435 + 0.468554i \(0.155225\pi\)
\(822\) 0 0
\(823\) 4.23623 7.33737i 0.147666 0.255764i −0.782699 0.622401i \(-0.786157\pi\)
0.930364 + 0.366636i \(0.119491\pi\)
\(824\) 3.46974 1.65135i 0.120874 0.0575274i
\(825\) 0 0
\(826\) −7.55900 + 8.53900i −0.263011 + 0.297110i
\(827\) 37.2624i 1.29574i −0.761750 0.647871i \(-0.775660\pi\)
0.761750 0.647871i \(-0.224340\pi\)
\(828\) 0 0
\(829\) −18.4167 −0.639639 −0.319820 0.947478i \(-0.603622\pi\)
−0.319820 + 0.947478i \(0.603622\pi\)
\(830\) −19.2780 30.9311i −0.669148 1.07363i
\(831\) 0 0
\(832\) −3.03155 + 18.9313i −0.105100 + 0.656325i
\(833\) 3.73830 6.47493i 0.129525 0.224343i
\(834\) 0 0
\(835\) −16.1899 + 3.87185i −0.560276 + 0.133991i
\(836\) −19.0246 25.2764i −0.657980 0.874203i
\(837\) 0 0
\(838\) 4.38510 + 13.1181i 0.151481 + 0.453157i
\(839\) 7.35228 + 12.7345i 0.253829 + 0.439645i 0.964577 0.263802i \(-0.0849766\pi\)
−0.710748 + 0.703447i \(0.751643\pi\)
\(840\) 0 0
\(841\) 5.79320 10.0341i 0.199765 0.346004i
\(842\) 2.91275 + 0.593469i 0.100380 + 0.0204523i
\(843\) 0 0
\(844\) −5.07232 + 11.9308i −0.174596 + 0.410674i
\(845\) −15.5538 4.62207i −0.535066 0.159004i
\(846\) 0 0
\(847\) −23.4395 −0.805390
\(848\) −45.0167 + 11.1695i −1.54588 + 0.383564i
\(849\) 0 0
\(850\) −6.50178 6.41538i −0.223009 0.220046i
\(851\) −6.86833 + 11.8963i −0.235443 + 0.407800i
\(852\) 0 0
\(853\) −11.2327 + 6.48519i −0.384600 + 0.222049i −0.679818 0.733381i \(-0.737941\pi\)
0.295218 + 0.955430i \(0.404608\pi\)
\(854\) 2.45803 + 7.35322i 0.0841119 + 0.251622i
\(855\) 0 0
\(856\) 4.76734 6.92385i 0.162944 0.236652i
\(857\) −3.36521 5.82871i −0.114953 0.199105i 0.802808 0.596238i \(-0.203339\pi\)
−0.917761 + 0.397133i \(0.870005\pi\)
\(858\) 0 0
\(859\) −33.3860 19.2754i −1.13912 0.657669i −0.192904 0.981218i \(-0.561791\pi\)
−0.946212 + 0.323549i \(0.895124\pi\)
\(860\) 3.35725 19.8855i 0.114481 0.678089i
\(861\) 0 0
\(862\) 3.60148 4.06840i 0.122667 0.138570i
\(863\) 13.4795i 0.458847i −0.973327 0.229424i \(-0.926316\pi\)
0.973327 0.229424i \(-0.0736841\pi\)
\(864\) 0 0
\(865\) 18.5810 + 5.52167i 0.631773 + 0.187742i
\(866\) 7.06142 + 6.25100i 0.239957 + 0.212418i
\(867\) 0 0
\(868\) −7.02552 + 0.858569i −0.238462 + 0.0291417i
\(869\) −5.54347 3.20052i −0.188049 0.108570i
\(870\) 0 0
\(871\) 7.67995 4.43402i 0.260225 0.150241i
\(872\) −11.9294 8.21384i −0.403980 0.278156i
\(873\) 0 0
\(874\) 2.63072 + 7.86984i 0.0889855 + 0.266201i
\(875\) 4.13920 11.5917i 0.139930 0.391872i
\(876\) 0 0
\(877\) −13.5129 7.80171i −0.456300 0.263445i 0.254187 0.967155i \(-0.418192\pi\)
−0.710487 + 0.703710i \(0.751525\pi\)
\(878\) 10.9392 53.6898i 0.369180 1.81194i
\(879\) 0 0
\(880\) 50.7730 + 2.31929i 1.71156 + 0.0781833i
\(881\) 25.0226i 0.843032i −0.906821 0.421516i \(-0.861498\pi\)
0.906821 0.421516i \(-0.138502\pi\)
\(882\) 0 0
\(883\) 13.8202 0.465085 0.232543 0.972586i \(-0.425295\pi\)
0.232543 + 0.972586i \(0.425295\pi\)
\(884\) 2.42245 5.69793i 0.0814759 0.191642i
\(885\) 0 0
\(886\) −6.61241 + 32.4538i −0.222148 + 1.09031i
\(887\) 16.1656 + 9.33323i 0.542789 + 0.313379i 0.746208 0.665712i \(-0.231872\pi\)
−0.203420 + 0.979092i \(0.565206\pi\)
\(888\) 0 0
\(889\) 2.83336 + 4.90753i 0.0950279 + 0.164593i
\(890\) 28.9757 0.978163i 0.971269 0.0327881i
\(891\) 0 0
\(892\) −25.0815 + 18.8779i −0.839790 + 0.632079i
\(893\) −13.0117 22.5370i −0.435421 0.754172i
\(894\) 0 0
\(895\) −1.80170 + 1.70675i −0.0602242 + 0.0570504i
\(896\) 2.03127 + 12.2887i 0.0678600 + 0.410535i
\(897\) 0 0
\(898\) 16.7166 + 14.7981i 0.557840 + 0.493818i
\(899\) −20.4788 −0.683007
\(900\) 0 0
\(901\) 14.9783 0.499001
\(902\) 44.1656 + 39.0968i 1.47055 + 1.30178i
\(903\) 0 0
\(904\) 21.3775 10.1742i 0.711005 0.338388i
\(905\) −20.5562 + 19.4729i −0.683312 + 0.647301i
\(906\) 0 0
\(907\) 20.7283 + 35.9025i 0.688273 + 1.19212i 0.972396 + 0.233336i \(0.0749642\pi\)
−0.284123 + 0.958788i \(0.591703\pi\)
\(908\) 0.235739 + 0.313206i 0.00782326 + 0.0103941i
\(909\) 0 0
\(910\) 8.33863 0.281496i 0.276423 0.00933149i
\(911\) 2.80277 + 4.85454i 0.0928600 + 0.160838i 0.908713 0.417420i \(-0.137066\pi\)
−0.815853 + 0.578259i \(0.803732\pi\)
\(912\) 0 0
\(913\) −56.7193 32.7469i −1.87714 1.08376i
\(914\) −2.37626 + 11.6627i −0.0785998 + 0.385769i
\(915\) 0 0
\(916\) −3.03744 1.29136i −0.100360 0.0426677i
\(917\) −15.6336 −0.516266
\(918\) 0 0
\(919\) 30.8044i 1.01614i 0.861315 + 0.508072i \(0.169642\pi\)
−0.861315 + 0.508072i \(0.830358\pi\)
\(920\) −12.4376 4.79904i −0.410054 0.158220i
\(921\) 0 0
\(922\) −7.00289 + 34.3703i −0.230628 + 1.13192i
\(923\) 26.3483 + 15.2122i 0.867266 + 0.500716i
\(924\) 0 0
\(925\) 32.5366 + 1.76240i 1.06980 + 0.0579474i
\(926\) 9.28972 + 27.7903i 0.305279 + 0.913247i
\(927\) 0 0
\(928\) 1.52077 + 36.0063i 0.0499216 + 1.18196i
\(929\) −23.8104 + 13.7469i −0.781194 + 0.451023i −0.836853 0.547427i \(-0.815607\pi\)
0.0556590 + 0.998450i \(0.482274\pi\)
\(930\) 0 0
\(931\) 13.9530 + 8.05579i 0.457293 + 0.264018i
\(932\) 4.90727 + 40.1554i 0.160743 + 1.31533i
\(933\) 0 0
\(934\) −1.68991 1.49596i −0.0552955 0.0489494i
\(935\) −15.7335 4.67550i −0.514541 0.152905i
\(936\) 0 0
\(937\) 13.6341i 0.445407i −0.974886 0.222704i \(-0.928512\pi\)
0.974886 0.222704i \(-0.0714882\pi\)
\(938\) 3.81866 4.31374i 0.124684 0.140849i
\(939\) 0 0
\(940\) 41.2256 + 6.96009i 1.34463 + 0.227013i
\(941\) 49.7730 + 28.7364i 1.62255 + 0.936781i 0.986234 + 0.165355i \(0.0528771\pi\)
0.636319 + 0.771426i \(0.280456\pi\)
\(942\) 0 0
\(943\) −7.73561 13.3985i −0.251906 0.436314i
\(944\) 8.10793 28.1548i 0.263891 0.916360i
\(945\) 0 0
\(946\) −11.4891 34.3698i −0.373543 1.11746i
\(947\) −16.7732 + 9.68402i −0.545056 + 0.314688i −0.747126 0.664683i \(-0.768567\pi\)
0.202069 + 0.979371i \(0.435233\pi\)
\(948\) 0 0
\(949\) −11.8257 + 20.4828i −0.383880 + 0.664899i
\(950\) 13.8247 14.0109i 0.448533 0.454574i
\(951\) 0 0
\(952\) 0.319008 4.00963i 0.0103391 0.129953i
\(953\) 4.34158 0.140638 0.0703188 0.997525i \(-0.477598\pi\)
0.0703188 + 0.997525i \(0.477598\pi\)
\(954\) 0 0
\(955\) −48.7961 14.5006i −1.57900 0.469229i
\(956\) −37.4172 15.9078i −1.21016 0.514495i
\(957\) 0 0
\(958\) 8.28526 + 1.68811i 0.267685 + 0.0545404i
\(959\) 3.82170 6.61938i 0.123409 0.213751i
\(960\) 0 0
\(961\) −10.3335 17.8981i −0.333338 0.577358i
\(962\) 7.00245 + 20.9479i 0.225768 + 0.675388i
\(963\) 0 0
\(964\) 27.5573 20.7414i 0.887561 0.668034i
\(965\) −25.2844 + 6.04680i −0.813933 + 0.194653i
\(966\) 0 0
\(967\) 16.5665 28.6939i 0.532741 0.922735i −0.466528 0.884507i \(-0.654495\pi\)
0.999269 0.0382285i \(-0.0121715\pi\)
\(968\) 54.3757 25.8789i 1.74770 0.831780i
\(969\) 0 0
\(970\) −21.4882 34.4773i −0.689943 1.10700i
\(971\) 22.0082 0.706277 0.353138 0.935571i \(-0.385114\pi\)
0.353138 + 0.935571i \(0.385114\pi\)
\(972\) 0 0
\(973\) 13.1344i 0.421070i
\(974\) −15.5579 + 17.5749i −0.498508 + 0.563137i
\(975\) 0 0
\(976\) −13.8207 14.3444i −0.442390 0.459153i
\(977\) −14.7558 + 25.5578i −0.472080 + 0.817667i −0.999490 0.0319442i \(-0.989830\pi\)
0.527409 + 0.849611i \(0.323163\pi\)
\(978\) 0 0
\(979\) 45.1183 26.0491i 1.44199 0.832532i
\(980\) −24.2585 + 9.02994i −0.774911 + 0.288451i
\(981\) 0 0
\(982\) −5.98052 17.8908i −0.190846 0.570919i
\(983\) −39.8190 + 22.9895i −1.27003 + 0.733251i −0.974993 0.222235i \(-0.928665\pi\)
−0.295035 + 0.955486i \(0.595331\pi\)
\(984\) 0 0
\(985\) −19.8052 + 18.7615i −0.631048 + 0.597791i
\(986\) 2.32351 11.4038i 0.0739956 0.363171i
\(987\) 0 0
\(988\) 12.2786 + 5.22022i 0.390636 + 0.166077i
\(989\) 9.50531i 0.302251i
\(990\) 0 0
\(991\) 52.8232i 1.67798i 0.544144 + 0.838992i \(0.316854\pi\)
−0.544144 + 0.838992i \(0.683146\pi\)
\(992\) 15.3501 9.74844i 0.487367 0.309513i
\(993\) 0 0
\(994\) 19.3673 + 3.94606i 0.614294 + 0.125161i
\(995\) −10.8863 11.4919i −0.345119 0.364319i
\(996\) 0 0
\(997\) −43.4452 + 25.0831i −1.37592 + 0.794389i −0.991666 0.128837i \(-0.958876\pi\)
−0.384257 + 0.923226i \(0.625542\pi\)
\(998\) 55.3113 18.4894i 1.75085 0.585272i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.n.d.179.18 48
3.2 odd 2 180.2.n.d.59.7 yes 48
4.3 odd 2 inner 540.2.n.d.179.2 48
5.4 even 2 inner 540.2.n.d.179.7 48
9.2 odd 6 inner 540.2.n.d.359.23 48
9.7 even 3 180.2.n.d.119.2 yes 48
12.11 even 2 180.2.n.d.59.23 yes 48
15.2 even 4 900.2.r.g.851.6 48
15.8 even 4 900.2.r.g.851.19 48
15.14 odd 2 180.2.n.d.59.18 yes 48
20.19 odd 2 inner 540.2.n.d.179.23 48
36.7 odd 6 180.2.n.d.119.18 yes 48
36.11 even 6 inner 540.2.n.d.359.7 48
45.7 odd 12 900.2.r.g.551.14 48
45.29 odd 6 inner 540.2.n.d.359.2 48
45.34 even 6 180.2.n.d.119.23 yes 48
45.43 odd 12 900.2.r.g.551.11 48
60.23 odd 4 900.2.r.g.851.11 48
60.47 odd 4 900.2.r.g.851.14 48
60.59 even 2 180.2.n.d.59.2 48
180.7 even 12 900.2.r.g.551.6 48
180.43 even 12 900.2.r.g.551.19 48
180.79 odd 6 180.2.n.d.119.7 yes 48
180.119 even 6 inner 540.2.n.d.359.18 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.2 48 60.59 even 2
180.2.n.d.59.7 yes 48 3.2 odd 2
180.2.n.d.59.18 yes 48 15.14 odd 2
180.2.n.d.59.23 yes 48 12.11 even 2
180.2.n.d.119.2 yes 48 9.7 even 3
180.2.n.d.119.7 yes 48 180.79 odd 6
180.2.n.d.119.18 yes 48 36.7 odd 6
180.2.n.d.119.23 yes 48 45.34 even 6
540.2.n.d.179.2 48 4.3 odd 2 inner
540.2.n.d.179.7 48 5.4 even 2 inner
540.2.n.d.179.18 48 1.1 even 1 trivial
540.2.n.d.179.23 48 20.19 odd 2 inner
540.2.n.d.359.2 48 45.29 odd 6 inner
540.2.n.d.359.7 48 36.11 even 6 inner
540.2.n.d.359.18 48 180.119 even 6 inner
540.2.n.d.359.23 48 9.2 odd 6 inner
900.2.r.g.551.6 48 180.7 even 12
900.2.r.g.551.11 48 45.43 odd 12
900.2.r.g.551.14 48 45.7 odd 12
900.2.r.g.551.19 48 180.43 even 12
900.2.r.g.851.6 48 15.2 even 4
900.2.r.g.851.11 48 60.23 odd 4
900.2.r.g.851.14 48 60.47 odd 4
900.2.r.g.851.19 48 15.8 even 4