Properties

Label 900.2.r.g.851.11
Level $900$
Weight $2$
Character 900.851
Analytic conductor $7.187$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [900,2,Mod(551,900)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(900, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("900.551"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,2,0,0,0,0,12,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 851.11
Character \(\chi\) \(=\) 900.851
Dual form 900.2.r.g.551.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.282343 - 1.38574i) q^{2} +(-1.44177 + 0.959839i) q^{3} +(-1.84056 + 0.782509i) q^{4} +(1.73716 + 1.72692i) q^{6} +(-0.953419 + 0.550457i) q^{7} +(1.60403 + 2.32961i) q^{8} +(1.15742 - 2.76774i) q^{9} +(-2.84126 - 4.92120i) q^{11} +(1.90259 - 2.89485i) q^{12} +(-1.19828 + 2.07548i) q^{13} +(1.03198 + 1.16578i) q^{14} +(2.77536 - 2.88052i) q^{16} +1.29175i q^{17} +(-4.16216 - 0.822430i) q^{18} +2.78362i q^{19} +(0.846263 - 1.70876i) q^{21} +(-6.01731 + 5.32672i) q^{22} +(-1.05393 + 1.82546i) q^{23} +(-4.54870 - 1.81916i) q^{24} +(3.21441 + 1.07451i) q^{26} +(0.987853 + 5.10139i) q^{27} +(1.32409 - 1.75921i) q^{28} +(5.51723 - 3.18537i) q^{29} +(2.78385 + 1.60725i) q^{31} +(-4.77526 - 3.03264i) q^{32} +(8.82001 + 4.36810i) q^{33} +(1.79003 - 0.364715i) q^{34} +(0.0354812 + 5.99990i) q^{36} +6.51687 q^{37} +(3.85739 - 0.785937i) q^{38} +(-0.264482 - 4.14253i) q^{39} +(6.35642 + 3.66988i) q^{41} +(-2.60684 - 0.690246i) q^{42} +(3.90530 - 2.25473i) q^{43} +(9.08040 + 6.83448i) q^{44} +(2.82719 + 0.945071i) q^{46} +(4.67439 + 8.09628i) q^{47} +(-1.23660 + 6.81695i) q^{48} +(-2.89400 + 5.01255i) q^{49} +(-1.23987 - 1.86240i) q^{51} +(0.581429 - 4.75773i) q^{52} -11.5954i q^{53} +(6.79030 - 2.80925i) q^{54} +(-2.81166 - 1.33815i) q^{56} +(-2.67183 - 4.01335i) q^{57} +(-5.97186 - 6.74609i) q^{58} +(3.66237 - 6.34341i) q^{59} +(2.48990 + 4.31263i) q^{61} +(1.44124 - 4.31149i) q^{62} +(0.420017 + 3.27592i) q^{63} +(-2.85419 + 7.47353i) q^{64} +(3.56280 - 13.4556i) q^{66} +(3.20457 + 1.85016i) q^{67} +(-1.01080 - 2.37754i) q^{68} +(-0.232621 - 3.64351i) q^{69} +12.6950 q^{71} +(8.30429 - 1.74320i) q^{72} -9.86891 q^{73} +(-1.83999 - 9.03070i) q^{74} +(-2.17821 - 5.12344i) q^{76} +(5.41781 + 3.12798i) q^{77} +(-5.66581 + 1.53612i) q^{78} +(0.975531 - 0.563223i) q^{79} +(-6.32077 - 6.40686i) q^{81} +(3.29082 - 9.84453i) q^{82} +(5.76275 + 9.98138i) q^{83} +(-0.220480 + 3.80730i) q^{84} +(-4.22710 - 4.77514i) q^{86} +(-4.89714 + 9.88823i) q^{87} +(6.90704 - 14.5128i) q^{88} +9.16815i q^{89} -2.63841i q^{91} +(0.511387 - 4.18460i) q^{92} +(-5.55638 + 0.354749i) q^{93} +(9.89957 - 8.76343i) q^{94} +(9.79568 - 0.211108i) q^{96} +(-6.42344 - 11.1257i) q^{97} +(7.76320 + 2.59507i) q^{98} +(-16.9091 + 2.16798i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2 q^{4} + 12 q^{9} + 42 q^{14} + 30 q^{16} - 12 q^{21} + 6 q^{24} + 4 q^{34} + 96 q^{36} + 96 q^{41} + 4 q^{46} - 32 q^{49} + 30 q^{54} + 6 q^{56} + 8 q^{61} + 20 q^{64} + 36 q^{66} + 96 q^{69} - 72 q^{74}+ \cdots + 54 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.282343 1.38574i −0.199647 0.979868i
\(3\) −1.44177 + 0.959839i −0.832408 + 0.554163i
\(4\) −1.84056 + 0.782509i −0.920282 + 0.391255i
\(5\) 0 0
\(6\) 1.73716 + 1.72692i 0.709194 + 0.705013i
\(7\) −0.953419 + 0.550457i −0.360358 + 0.208053i −0.669238 0.743048i \(-0.733379\pi\)
0.308880 + 0.951101i \(0.400046\pi\)
\(8\) 1.60403 + 2.32961i 0.567109 + 0.823643i
\(9\) 1.15742 2.76774i 0.385806 0.922580i
\(10\) 0 0
\(11\) −2.84126 4.92120i −0.856671 1.48380i −0.875086 0.483967i \(-0.839195\pi\)
0.0184153 0.999830i \(-0.494138\pi\)
\(12\) 1.90259 2.89485i 0.549231 0.835670i
\(13\) −1.19828 + 2.07548i −0.332343 + 0.575636i −0.982971 0.183761i \(-0.941173\pi\)
0.650627 + 0.759397i \(0.274506\pi\)
\(14\) 1.03198 + 1.16578i 0.275809 + 0.311567i
\(15\) 0 0
\(16\) 2.77536 2.88052i 0.693839 0.720130i
\(17\) 1.29175i 0.313294i 0.987655 + 0.156647i \(0.0500685\pi\)
−0.987655 + 0.156647i \(0.949931\pi\)
\(18\) −4.16216 0.822430i −0.981031 0.193849i
\(19\) 2.78362i 0.638607i 0.947652 + 0.319304i \(0.103449\pi\)
−0.947652 + 0.319304i \(0.896551\pi\)
\(20\) 0 0
\(21\) 0.846263 1.70876i 0.184670 0.372882i
\(22\) −6.01731 + 5.32672i −1.28289 + 1.13566i
\(23\) −1.05393 + 1.82546i −0.219760 + 0.380635i −0.954735 0.297459i \(-0.903861\pi\)
0.734975 + 0.678095i \(0.237194\pi\)
\(24\) −4.54870 1.81916i −0.928499 0.371335i
\(25\) 0 0
\(26\) 3.21441 + 1.07451i 0.630398 + 0.210729i
\(27\) 0.987853 + 5.10139i 0.190112 + 0.981762i
\(28\) 1.32409 1.75921i 0.250230 0.332459i
\(29\) 5.51723 3.18537i 1.02452 0.591509i 0.109112 0.994029i \(-0.465199\pi\)
0.915411 + 0.402521i \(0.131866\pi\)
\(30\) 0 0
\(31\) 2.78385 + 1.60725i 0.499994 + 0.288671i 0.728711 0.684821i \(-0.240120\pi\)
−0.228717 + 0.973493i \(0.573453\pi\)
\(32\) −4.77526 3.03264i −0.844155 0.536100i
\(33\) 8.82001 + 4.36810i 1.53537 + 0.760389i
\(34\) 1.79003 0.364715i 0.306987 0.0625481i
\(35\) 0 0
\(36\) 0.0354812 + 5.99990i 0.00591353 + 0.999983i
\(37\) 6.51687 1.07137 0.535683 0.844419i \(-0.320054\pi\)
0.535683 + 0.844419i \(0.320054\pi\)
\(38\) 3.85739 0.785937i 0.625751 0.127496i
\(39\) −0.264482 4.14253i −0.0423510 0.663336i
\(40\) 0 0
\(41\) 6.35642 + 3.66988i 0.992706 + 0.573139i 0.906082 0.423102i \(-0.139059\pi\)
0.0866240 + 0.996241i \(0.472392\pi\)
\(42\) −2.60684 0.690246i −0.402244 0.106507i
\(43\) 3.90530 2.25473i 0.595553 0.343843i −0.171737 0.985143i \(-0.554938\pi\)
0.767290 + 0.641300i \(0.221605\pi\)
\(44\) 9.08040 + 6.83448i 1.36892 + 1.03034i
\(45\) 0 0
\(46\) 2.82719 + 0.945071i 0.416847 + 0.139343i
\(47\) 4.67439 + 8.09628i 0.681830 + 1.18096i 0.974422 + 0.224726i \(0.0721487\pi\)
−0.292592 + 0.956237i \(0.594518\pi\)
\(48\) −1.23660 + 6.81695i −0.178488 + 0.983942i
\(49\) −2.89400 + 5.01255i −0.413428 + 0.716078i
\(50\) 0 0
\(51\) −1.23987 1.86240i −0.173616 0.260789i
\(52\) 0.581429 4.75773i 0.0806296 0.659778i
\(53\) 11.5954i 1.59275i −0.604800 0.796377i \(-0.706747\pi\)
0.604800 0.796377i \(-0.293253\pi\)
\(54\) 6.79030 2.80925i 0.924042 0.382291i
\(55\) 0 0
\(56\) −2.81166 1.33815i −0.375724 0.178818i
\(57\) −2.67183 4.01335i −0.353893 0.531582i
\(58\) −5.97186 6.74609i −0.784143 0.885805i
\(59\) 3.66237 6.34341i 0.476800 0.825842i −0.522846 0.852427i \(-0.675130\pi\)
0.999647 + 0.0265849i \(0.00846323\pi\)
\(60\) 0 0
\(61\) 2.48990 + 4.31263i 0.318799 + 0.552175i 0.980238 0.197823i \(-0.0633873\pi\)
−0.661439 + 0.749999i \(0.730054\pi\)
\(62\) 1.44124 4.31149i 0.183038 0.547560i
\(63\) 0.420017 + 3.27592i 0.0529172 + 0.412728i
\(64\) −2.85419 + 7.47353i −0.356774 + 0.934191i
\(65\) 0 0
\(66\) 3.56280 13.4556i 0.438550 1.65627i
\(67\) 3.20457 + 1.85016i 0.391500 + 0.226033i 0.682810 0.730596i \(-0.260758\pi\)
−0.291310 + 0.956629i \(0.594091\pi\)
\(68\) −1.01080 2.37754i −0.122578 0.288319i
\(69\) −0.232621 3.64351i −0.0280043 0.438627i
\(70\) 0 0
\(71\) 12.6950 1.50662 0.753311 0.657664i \(-0.228455\pi\)
0.753311 + 0.657664i \(0.228455\pi\)
\(72\) 8.30429 1.74320i 0.978670 0.205438i
\(73\) −9.86891 −1.15507 −0.577534 0.816366i \(-0.695985\pi\)
−0.577534 + 0.816366i \(0.695985\pi\)
\(74\) −1.83999 9.03070i −0.213895 1.04980i
\(75\) 0 0
\(76\) −2.17821 5.12344i −0.249858 0.587699i
\(77\) 5.41781 + 3.12798i 0.617417 + 0.356466i
\(78\) −5.66581 + 1.53612i −0.641527 + 0.173931i
\(79\) 0.975531 0.563223i 0.109756 0.0633676i −0.444117 0.895969i \(-0.646483\pi\)
0.553873 + 0.832601i \(0.313149\pi\)
\(80\) 0 0
\(81\) −6.32077 6.40686i −0.702308 0.711873i
\(82\) 3.29082 9.84453i 0.363410 1.08715i
\(83\) 5.76275 + 9.98138i 0.632544 + 1.09560i 0.987030 + 0.160537i \(0.0513227\pi\)
−0.354485 + 0.935062i \(0.615344\pi\)
\(84\) −0.220480 + 3.80730i −0.0240564 + 0.415410i
\(85\) 0 0
\(86\) −4.22710 4.77514i −0.455820 0.514916i
\(87\) −4.89714 + 9.88823i −0.525029 + 1.06013i
\(88\) 6.90704 14.5128i 0.736293 1.54707i
\(89\) 9.16815i 0.971822i 0.874008 + 0.485911i \(0.161512\pi\)
−0.874008 + 0.485911i \(0.838488\pi\)
\(90\) 0 0
\(91\) 2.63841i 0.276580i
\(92\) 0.511387 4.18460i 0.0533158 0.436274i
\(93\) −5.55638 + 0.354749i −0.576170 + 0.0367858i
\(94\) 9.89957 8.76343i 1.02106 0.903878i
\(95\) 0 0
\(96\) 9.79568 0.211108i 0.999768 0.0215462i
\(97\) −6.42344 11.1257i −0.652202 1.12965i −0.982587 0.185801i \(-0.940512\pi\)
0.330386 0.943846i \(-0.392821\pi\)
\(98\) 7.76320 + 2.59507i 0.784201 + 0.262142i
\(99\) −16.9091 + 2.16798i −1.69943 + 0.217890i
\(100\) 0 0
\(101\) 14.4999 8.37150i 1.44279 0.832995i 0.444755 0.895652i \(-0.353291\pi\)
0.998035 + 0.0626572i \(0.0199575\pi\)
\(102\) −2.23074 + 2.24397i −0.220876 + 0.222187i
\(103\) 1.17657 + 0.679292i 0.115931 + 0.0669327i 0.556844 0.830617i \(-0.312012\pi\)
−0.440913 + 0.897550i \(0.645345\pi\)
\(104\) −6.75715 + 0.537601i −0.662593 + 0.0527162i
\(105\) 0 0
\(106\) −16.0683 + 3.27389i −1.56069 + 0.317988i
\(107\) 2.97211 0.287324 0.143662 0.989627i \(-0.454112\pi\)
0.143662 + 0.989627i \(0.454112\pi\)
\(108\) −5.81009 8.61643i −0.559076 0.829116i
\(109\) −5.12076 −0.490480 −0.245240 0.969462i \(-0.578867\pi\)
−0.245240 + 0.969462i \(0.578867\pi\)
\(110\) 0 0
\(111\) −9.39584 + 6.25515i −0.891814 + 0.593712i
\(112\) −1.06048 + 4.27405i −0.100206 + 0.403860i
\(113\) 7.24900 + 4.18521i 0.681928 + 0.393711i 0.800581 0.599224i \(-0.204524\pi\)
−0.118653 + 0.992936i \(0.537858\pi\)
\(114\) −4.80710 + 4.83561i −0.450226 + 0.452897i
\(115\) 0 0
\(116\) −7.66223 + 10.1802i −0.711420 + 0.945205i
\(117\) 4.35749 + 5.71873i 0.402850 + 0.528697i
\(118\) −9.82438 3.28409i −0.904408 0.302325i
\(119\) −0.711050 1.23157i −0.0651818 0.112898i
\(120\) 0 0
\(121\) −10.6455 + 18.4385i −0.967770 + 1.67623i
\(122\) 5.27319 4.66800i 0.477412 0.422621i
\(123\) −12.6870 + 0.810007i −1.14395 + 0.0730359i
\(124\) −6.38154 0.779870i −0.573079 0.0700344i
\(125\) 0 0
\(126\) 4.42100 1.50697i 0.393854 0.134252i
\(127\) 5.14729i 0.456748i 0.973573 + 0.228374i \(0.0733410\pi\)
−0.973573 + 0.228374i \(0.926659\pi\)
\(128\) 11.1622 + 1.84508i 0.986612 + 0.163084i
\(129\) −3.46638 + 6.99926i −0.305198 + 0.616251i
\(130\) 0 0
\(131\) −7.10028 + 12.2980i −0.620354 + 1.07449i 0.369065 + 0.929403i \(0.379678\pi\)
−0.989420 + 0.145082i \(0.953656\pi\)
\(132\) −19.6519 1.13804i −1.71048 0.0990535i
\(133\) −1.53226 2.65396i −0.132864 0.230127i
\(134\) 1.65906 4.96309i 0.143321 0.428746i
\(135\) 0 0
\(136\) −3.00927 + 2.07199i −0.258042 + 0.177672i
\(137\) 6.01263 3.47139i 0.513693 0.296581i −0.220657 0.975351i \(-0.570820\pi\)
0.734351 + 0.678770i \(0.237487\pi\)
\(138\) −4.98329 + 1.35107i −0.424205 + 0.115011i
\(139\) 10.3321 + 5.96523i 0.876356 + 0.505964i 0.869455 0.494012i \(-0.164470\pi\)
0.00690070 + 0.999976i \(0.497803\pi\)
\(140\) 0 0
\(141\) −14.5105 7.18633i −1.22201 0.605198i
\(142\) −3.58435 17.5920i −0.300792 1.47629i
\(143\) 13.6185 1.13884
\(144\) −4.76028 11.0154i −0.396690 0.917953i
\(145\) 0 0
\(146\) 2.78642 + 13.6758i 0.230606 + 1.13182i
\(147\) −0.638756 10.0047i −0.0526837 0.825176i
\(148\) −11.9947 + 5.09951i −0.985960 + 0.419177i
\(149\) −4.98019 2.87531i −0.407993 0.235555i 0.281934 0.959434i \(-0.409024\pi\)
−0.689927 + 0.723879i \(0.742357\pi\)
\(150\) 0 0
\(151\) 1.85084 1.06858i 0.150619 0.0869599i −0.422796 0.906225i \(-0.638951\pi\)
0.573415 + 0.819265i \(0.305618\pi\)
\(152\) −6.48477 + 4.46501i −0.525984 + 0.362160i
\(153\) 3.57521 + 1.49509i 0.289039 + 0.120871i
\(154\) 2.80489 8.39086i 0.226024 0.676155i
\(155\) 0 0
\(156\) 3.72837 + 7.41764i 0.298508 + 0.593887i
\(157\) −5.02788 + 8.70855i −0.401269 + 0.695018i −0.993879 0.110471i \(-0.964764\pi\)
0.592611 + 0.805489i \(0.298097\pi\)
\(158\) −1.05592 1.19281i −0.0840042 0.0948951i
\(159\) 11.1297 + 16.7180i 0.882646 + 1.32582i
\(160\) 0 0
\(161\) 2.32057i 0.182887i
\(162\) −7.09363 + 10.5679i −0.557329 + 0.830292i
\(163\) 18.2146i 1.42668i −0.700819 0.713339i \(-0.747182\pi\)
0.700819 0.713339i \(-0.252818\pi\)
\(164\) −14.5711 1.78069i −1.13781 0.139049i
\(165\) 0 0
\(166\) 12.2046 10.8039i 0.947257 0.838543i
\(167\) −3.72227 + 6.44716i −0.288038 + 0.498896i −0.973341 0.229362i \(-0.926336\pi\)
0.685304 + 0.728258i \(0.259670\pi\)
\(168\) 5.33818 0.769435i 0.411850 0.0593632i
\(169\) 3.62824 + 6.28430i 0.279096 + 0.483408i
\(170\) 0 0
\(171\) 7.70435 + 3.22181i 0.589166 + 0.246378i
\(172\) −5.42361 + 7.20591i −0.413547 + 0.549445i
\(173\) 7.50742 4.33441i 0.570778 0.329539i −0.186682 0.982420i \(-0.559773\pi\)
0.757460 + 0.652881i \(0.226440\pi\)
\(174\) 15.0852 + 3.99430i 1.14361 + 0.302807i
\(175\) 0 0
\(176\) −22.0611 5.47380i −1.66292 0.412603i
\(177\) 0.808350 + 12.6610i 0.0607593 + 0.951663i
\(178\) 12.7047 2.58856i 0.952257 0.194021i
\(179\) 1.10988 0.0829560 0.0414780 0.999139i \(-0.486793\pi\)
0.0414780 + 0.999139i \(0.486793\pi\)
\(180\) 0 0
\(181\) −12.6629 −0.941229 −0.470615 0.882339i \(-0.655968\pi\)
−0.470615 + 0.882339i \(0.655968\pi\)
\(182\) −3.65615 + 0.744936i −0.271012 + 0.0552183i
\(183\) −7.72930 3.82793i −0.571366 0.282969i
\(184\) −5.94316 + 0.472840i −0.438135 + 0.0348582i
\(185\) 0 0
\(186\) 2.06040 + 7.59955i 0.151076 + 0.557226i
\(187\) 6.35694 3.67018i 0.464865 0.268390i
\(188\) −14.9389 11.2440i −1.08953 0.820051i
\(189\) −3.74993 4.31999i −0.272767 0.314233i
\(190\) 0 0
\(191\) −11.3827 19.7154i −0.823625 1.42656i −0.902966 0.429712i \(-0.858615\pi\)
0.0793411 0.996848i \(-0.474718\pi\)
\(192\) −3.05829 13.5147i −0.220713 0.975339i
\(193\) 5.81319 10.0687i 0.418443 0.724764i −0.577340 0.816504i \(-0.695909\pi\)
0.995783 + 0.0917396i \(0.0292427\pi\)
\(194\) −13.6038 + 12.0425i −0.976695 + 0.864602i
\(195\) 0 0
\(196\) 1.40422 11.4905i 0.100301 0.820750i
\(197\) 12.2003i 0.869238i −0.900614 0.434619i \(-0.856883\pi\)
0.900614 0.434619i \(-0.143117\pi\)
\(198\) 7.77843 + 22.8196i 0.552789 + 1.62172i
\(199\) 7.07921i 0.501832i −0.968009 0.250916i \(-0.919268\pi\)
0.968009 0.250916i \(-0.0807318\pi\)
\(200\) 0 0
\(201\) −6.39612 + 0.408363i −0.451147 + 0.0288037i
\(202\) −15.6947 17.7294i −1.10427 1.24744i
\(203\) −3.50682 + 6.07399i −0.246130 + 0.426310i
\(204\) 3.73940 + 2.45767i 0.261811 + 0.172071i
\(205\) 0 0
\(206\) 0.609128 1.82222i 0.0424400 0.126960i
\(207\) 3.83257 + 5.02983i 0.266382 + 0.349597i
\(208\) 2.65281 + 9.21188i 0.183939 + 0.638729i
\(209\) 13.6988 7.90899i 0.947564 0.547076i
\(210\) 0 0
\(211\) 5.61368 + 3.24106i 0.386462 + 0.223124i 0.680626 0.732631i \(-0.261708\pi\)
−0.294164 + 0.955755i \(0.595041\pi\)
\(212\) 9.07353 + 21.3421i 0.623173 + 1.46578i
\(213\) −18.3033 + 12.1852i −1.25412 + 0.834915i
\(214\) −0.839153 4.11857i −0.0573633 0.281540i
\(215\) 0 0
\(216\) −10.2997 + 10.4841i −0.700807 + 0.713351i
\(217\) −3.53890 −0.240236
\(218\) 1.44581 + 7.09606i 0.0979227 + 0.480606i
\(219\) 14.2287 9.47257i 0.961488 0.640097i
\(220\) 0 0
\(221\) −2.68100 1.54787i −0.180343 0.104121i
\(222\) 11.3209 + 11.2541i 0.759807 + 0.755327i
\(223\) −13.5931 + 7.84799i −0.910263 + 0.525540i −0.880516 0.474017i \(-0.842803\pi\)
−0.0297470 + 0.999557i \(0.509470\pi\)
\(224\) 6.22216 + 0.262800i 0.415735 + 0.0175590i
\(225\) 0 0
\(226\) 3.75292 11.2269i 0.249640 0.746803i
\(227\) 0.0980022 + 0.169745i 0.00650463 + 0.0112664i 0.869259 0.494356i \(-0.164596\pi\)
−0.862755 + 0.505623i \(0.831263\pi\)
\(228\) 8.05817 + 5.29610i 0.533665 + 0.350743i
\(229\) −0.825139 + 1.42918i −0.0545267 + 0.0944431i −0.892000 0.452035i \(-0.850698\pi\)
0.837474 + 0.546478i \(0.184032\pi\)
\(230\) 0 0
\(231\) −10.8136 + 0.690399i −0.711483 + 0.0454249i
\(232\) 16.2705 + 7.74358i 1.06821 + 0.508391i
\(233\) 20.2270i 1.32512i 0.749010 + 0.662559i \(0.230530\pi\)
−0.749010 + 0.662559i \(0.769470\pi\)
\(234\) 6.69438 7.65300i 0.437626 0.500292i
\(235\) 0 0
\(236\) −1.77705 + 14.5413i −0.115676 + 0.946558i
\(237\) −0.865891 + 1.74839i −0.0562456 + 0.113570i
\(238\) −1.50588 + 1.33306i −0.0976120 + 0.0864093i
\(239\) −10.1646 + 17.6056i −0.657494 + 1.13881i 0.323769 + 0.946136i \(0.395050\pi\)
−0.981262 + 0.192676i \(0.938283\pi\)
\(240\) 0 0
\(241\) 8.62268 + 14.9349i 0.555436 + 0.962043i 0.997869 + 0.0652417i \(0.0207818\pi\)
−0.442434 + 0.896801i \(0.645885\pi\)
\(242\) 28.5567 + 9.54590i 1.83569 + 0.613634i
\(243\) 15.2627 + 3.17031i 0.979101 + 0.203376i
\(244\) −7.95749 5.98930i −0.509426 0.383426i
\(245\) 0 0
\(246\) 4.70455 + 17.3522i 0.299951 + 1.10634i
\(247\) −5.77737 3.33556i −0.367605 0.212237i
\(248\) 0.721085 + 9.06336i 0.0457889 + 0.575524i
\(249\) −17.8891 8.85957i −1.13368 0.561452i
\(250\) 0 0
\(251\) −9.92020 −0.626157 −0.313079 0.949727i \(-0.601360\pi\)
−0.313079 + 0.949727i \(0.601360\pi\)
\(252\) −3.33651 5.70088i −0.210180 0.359122i
\(253\) 11.9780 0.753048
\(254\) 7.13282 1.45330i 0.447553 0.0911883i
\(255\) 0 0
\(256\) −0.594777 15.9889i −0.0371735 0.999309i
\(257\) −15.0253 8.67485i −0.937252 0.541122i −0.0481539 0.998840i \(-0.515334\pi\)
−0.889098 + 0.457717i \(0.848667\pi\)
\(258\) 10.6779 + 2.82732i 0.664776 + 0.176021i
\(259\) −6.21330 + 3.58725i −0.386076 + 0.222901i
\(260\) 0 0
\(261\) −2.43055 18.9571i −0.150447 1.17341i
\(262\) 19.0466 + 6.36689i 1.17671 + 0.393348i
\(263\) −4.80637 8.32487i −0.296373 0.513334i 0.678930 0.734203i \(-0.262444\pi\)
−0.975303 + 0.220869i \(0.929111\pi\)
\(264\) 3.97154 + 27.5538i 0.244431 + 1.69582i
\(265\) 0 0
\(266\) −3.24508 + 2.87265i −0.198969 + 0.176134i
\(267\) −8.79995 13.2184i −0.538548 0.808952i
\(268\) −7.34599 0.897732i −0.448727 0.0548377i
\(269\) 1.34482i 0.0819953i −0.999159 0.0409977i \(-0.986946\pi\)
0.999159 0.0409977i \(-0.0130536\pi\)
\(270\) 0 0
\(271\) 21.7288i 1.31993i 0.751297 + 0.659964i \(0.229429\pi\)
−0.751297 + 0.659964i \(0.770571\pi\)
\(272\) 3.72090 + 3.58506i 0.225612 + 0.217376i
\(273\) 2.53245 + 3.80398i 0.153271 + 0.230228i
\(274\) −6.50808 7.35183i −0.393167 0.444140i
\(275\) 0 0
\(276\) 3.27923 + 6.52409i 0.197387 + 0.392704i
\(277\) 6.95713 + 12.0501i 0.418014 + 0.724021i 0.995740 0.0922100i \(-0.0293931\pi\)
−0.577726 + 0.816231i \(0.696060\pi\)
\(278\) 5.34908 16.0018i 0.320817 0.959727i
\(279\) 7.67053 5.84470i 0.459223 0.349913i
\(280\) 0 0
\(281\) 10.0948 5.82824i 0.602206 0.347684i −0.167703 0.985838i \(-0.553635\pi\)
0.769909 + 0.638154i \(0.220302\pi\)
\(282\) −5.86146 + 22.1369i −0.349045 + 1.31823i
\(283\) 10.7624 + 6.21367i 0.639758 + 0.369365i 0.784521 0.620102i \(-0.212909\pi\)
−0.144763 + 0.989466i \(0.546242\pi\)
\(284\) −23.3660 + 9.93398i −1.38652 + 0.589473i
\(285\) 0 0
\(286\) −3.84509 18.8717i −0.227365 1.11591i
\(287\) −8.08044 −0.476973
\(288\) −13.9205 + 9.70665i −0.820275 + 0.571970i
\(289\) 15.3314 0.901847
\(290\) 0 0
\(291\) 19.9401 + 9.87530i 1.16891 + 0.578900i
\(292\) 18.1644 7.72252i 1.06299 0.451926i
\(293\) −8.27006 4.77472i −0.483142 0.278942i 0.238583 0.971122i \(-0.423317\pi\)
−0.721725 + 0.692180i \(0.756650\pi\)
\(294\) −13.6836 + 3.70991i −0.798045 + 0.216367i
\(295\) 0 0
\(296\) 10.4532 + 15.1818i 0.607582 + 0.882423i
\(297\) 22.2982 19.3558i 1.29387 1.12314i
\(298\) −2.57832 + 7.71308i −0.149358 + 0.446807i
\(299\) −2.52581 4.37484i −0.146072 0.253003i
\(300\) 0 0
\(301\) −2.48226 + 4.29940i −0.143075 + 0.247813i
\(302\) −2.00335 2.26308i −0.115280 0.130225i
\(303\) −12.8702 + 25.9873i −0.739374 + 1.49293i
\(304\) 8.01828 + 7.72555i 0.459880 + 0.443091i
\(305\) 0 0
\(306\) 1.06237 5.37646i 0.0607317 0.307351i
\(307\) 13.4685i 0.768689i −0.923190 0.384345i \(-0.874427\pi\)
0.923190 0.384345i \(-0.125573\pi\)
\(308\) −12.4195 1.51775i −0.707667 0.0864820i
\(309\) −2.34836 + 0.149932i −0.133593 + 0.00852932i
\(310\) 0 0
\(311\) 5.13110 8.88732i 0.290958 0.503954i −0.683079 0.730345i \(-0.739359\pi\)
0.974037 + 0.226391i \(0.0726927\pi\)
\(312\) 9.22626 7.26088i 0.522334 0.411066i
\(313\) −0.802903 1.39067i −0.0453827 0.0786052i 0.842442 0.538787i \(-0.181117\pi\)
−0.887824 + 0.460182i \(0.847784\pi\)
\(314\) 13.4874 + 4.50855i 0.761138 + 0.254432i
\(315\) 0 0
\(316\) −1.35480 + 1.80001i −0.0762135 + 0.101259i
\(317\) −3.86467 + 2.23127i −0.217061 + 0.125320i −0.604589 0.796538i \(-0.706663\pi\)
0.387528 + 0.921858i \(0.373329\pi\)
\(318\) 20.0244 20.1432i 1.12291 1.12957i
\(319\) −31.3517 18.1009i −1.75536 1.01346i
\(320\) 0 0
\(321\) −4.28510 + 2.85274i −0.239171 + 0.159225i
\(322\) −3.21572 + 0.655198i −0.179205 + 0.0365128i
\(323\) −3.59573 −0.200072
\(324\) 16.6472 + 6.84618i 0.924845 + 0.380343i
\(325\) 0 0
\(326\) −25.2408 + 5.14277i −1.39796 + 0.284832i
\(327\) 7.38297 4.91511i 0.408279 0.271806i
\(328\) 1.64647 + 20.6946i 0.0909110 + 1.14267i
\(329\) −8.91330 5.14610i −0.491406 0.283713i
\(330\) 0 0
\(331\) 10.2107 5.89512i 0.561228 0.324025i −0.192410 0.981315i \(-0.561630\pi\)
0.753638 + 0.657289i \(0.228297\pi\)
\(332\) −18.4172 13.8620i −1.01078 0.760775i
\(333\) 7.54274 18.0370i 0.413339 0.988421i
\(334\) 9.98506 + 3.33780i 0.546358 + 0.182636i
\(335\) 0 0
\(336\) −2.57344 7.18010i −0.140393 0.391707i
\(337\) −5.28111 + 9.14715i −0.287680 + 0.498277i −0.973256 0.229725i \(-0.926217\pi\)
0.685575 + 0.728002i \(0.259551\pi\)
\(338\) 7.68402 6.80214i 0.417955 0.369988i
\(339\) −14.4685 + 0.923749i −0.785823 + 0.0501712i
\(340\) 0 0
\(341\) 18.2665i 0.989186i
\(342\) 2.28934 11.5859i 0.123793 0.626494i
\(343\) 14.0785i 0.760166i
\(344\) 11.5168 + 5.48120i 0.620947 + 0.295526i
\(345\) 0 0
\(346\) −8.12604 9.17956i −0.436859 0.493496i
\(347\) 11.6546 20.1864i 0.625652 1.08366i −0.362763 0.931882i \(-0.618166\pi\)
0.988414 0.151779i \(-0.0485002\pi\)
\(348\) 1.27587 22.0320i 0.0683939 1.18104i
\(349\) −2.84689 4.93095i −0.152390 0.263948i 0.779715 0.626134i \(-0.215364\pi\)
−0.932106 + 0.362186i \(0.882030\pi\)
\(350\) 0 0
\(351\) −11.7716 4.06262i −0.628320 0.216847i
\(352\) −1.35648 + 32.1165i −0.0723004 + 1.71182i
\(353\) −1.31873 + 0.761369i −0.0701889 + 0.0405236i −0.534684 0.845052i \(-0.679569\pi\)
0.464495 + 0.885576i \(0.346236\pi\)
\(354\) 17.3167 4.69492i 0.920373 0.249532i
\(355\) 0 0
\(356\) −7.17416 16.8746i −0.380230 0.894351i
\(357\) 2.20729 + 1.09316i 0.116822 + 0.0578560i
\(358\) −0.313366 1.53800i −0.0165619 0.0812860i
\(359\) −9.46115 −0.499341 −0.249670 0.968331i \(-0.580322\pi\)
−0.249670 + 0.968331i \(0.580322\pi\)
\(360\) 0 0
\(361\) 11.2514 0.592181
\(362\) 3.57529 + 17.5476i 0.187913 + 0.922280i
\(363\) −2.34964 36.8021i −0.123324 1.93161i
\(364\) 2.06458 + 4.85616i 0.108213 + 0.254532i
\(365\) 0 0
\(366\) −3.12221 + 11.7916i −0.163201 + 0.616357i
\(367\) −7.04288 + 4.06621i −0.367635 + 0.212254i −0.672425 0.740165i \(-0.734747\pi\)
0.304790 + 0.952420i \(0.401414\pi\)
\(368\) 2.33324 + 8.10218i 0.121629 + 0.422356i
\(369\) 17.5143 13.3453i 0.911758 0.694730i
\(370\) 0 0
\(371\) 6.38278 + 11.0553i 0.331377 + 0.573963i
\(372\) 9.94928 5.00086i 0.515846 0.259282i
\(373\) −5.80775 + 10.0593i −0.300714 + 0.520851i −0.976298 0.216432i \(-0.930558\pi\)
0.675584 + 0.737283i \(0.263892\pi\)
\(374\) −6.88076 7.77283i −0.355796 0.401923i
\(375\) 0 0
\(376\) −11.3633 + 23.8762i −0.586020 + 1.23132i
\(377\) 15.2679i 0.786336i
\(378\) −4.92762 + 6.41616i −0.253450 + 0.330011i
\(379\) 0.194316i 0.00998136i −0.999988 0.00499068i \(-0.998411\pi\)
0.999988 0.00499068i \(-0.00158859\pi\)
\(380\) 0 0
\(381\) −4.94057 7.42123i −0.253113 0.380201i
\(382\) −24.1067 + 21.3400i −1.23341 + 1.09185i
\(383\) 9.25031 16.0220i 0.472669 0.818686i −0.526842 0.849963i \(-0.676624\pi\)
0.999511 + 0.0312769i \(0.00995738\pi\)
\(384\) −17.8644 + 8.05377i −0.911639 + 0.410992i
\(385\) 0 0
\(386\) −15.5940 5.21275i −0.793714 0.265322i
\(387\) −1.72043 13.4185i −0.0874546 0.682102i
\(388\) 20.5288 + 15.4512i 1.04219 + 0.784417i
\(389\) 20.3869 11.7704i 1.03366 0.596783i 0.115628 0.993293i \(-0.463112\pi\)
0.918031 + 0.396509i \(0.129779\pi\)
\(390\) 0 0
\(391\) −2.35803 1.36141i −0.119251 0.0688495i
\(392\) −16.3193 + 1.29837i −0.824251 + 0.0655777i
\(393\) −1.56716 24.5461i −0.0790526 1.23819i
\(394\) −16.9065 + 3.44468i −0.851739 + 0.173541i
\(395\) 0 0
\(396\) 29.4259 17.2218i 1.47871 0.865430i
\(397\) −23.4091 −1.17487 −0.587435 0.809272i \(-0.699862\pi\)
−0.587435 + 0.809272i \(0.699862\pi\)
\(398\) −9.80996 + 1.99877i −0.491729 + 0.100189i
\(399\) 4.75655 + 2.35568i 0.238125 + 0.117931i
\(400\) 0 0
\(401\) 25.9256 + 14.9681i 1.29466 + 0.747474i 0.979477 0.201557i \(-0.0646000\pi\)
0.315185 + 0.949030i \(0.397933\pi\)
\(402\) 2.37178 + 8.74807i 0.118294 + 0.436314i
\(403\) −6.67166 + 3.85189i −0.332339 + 0.191876i
\(404\) −20.1372 + 26.7546i −1.00186 + 1.33109i
\(405\) 0 0
\(406\) 9.40711 + 3.14460i 0.466867 + 0.156064i
\(407\) −18.5161 32.0708i −0.917809 1.58969i
\(408\) 2.34990 5.87576i 0.116337 0.290893i
\(409\) −1.04012 + 1.80153i −0.0514304 + 0.0890800i −0.890594 0.454798i \(-0.849711\pi\)
0.839164 + 0.543878i \(0.183045\pi\)
\(410\) 0 0
\(411\) −5.33686 + 10.7761i −0.263248 + 0.531547i
\(412\) −2.69710 0.329605i −0.132877 0.0162385i
\(413\) 8.06390i 0.396799i
\(414\) 5.88795 6.73109i 0.289377 0.330815i
\(415\) 0 0
\(416\) 12.0163 6.27702i 0.589147 0.307756i
\(417\) −20.6222 + 1.31663i −1.00987 + 0.0644757i
\(418\) −14.8276 16.7499i −0.725240 0.819265i
\(419\) 4.89021 8.47010i 0.238903 0.413791i −0.721497 0.692417i \(-0.756546\pi\)
0.960400 + 0.278626i \(0.0898790\pi\)
\(420\) 0 0
\(421\) 1.05097 + 1.82034i 0.0512212 + 0.0887177i 0.890499 0.454985i \(-0.150355\pi\)
−0.839278 + 0.543703i \(0.817022\pi\)
\(422\) 2.90629 8.69420i 0.141476 0.423227i
\(423\) 27.8186 3.56672i 1.35259 0.173420i
\(424\) 27.0129 18.5994i 1.31186 0.903266i
\(425\) 0 0
\(426\) 22.0534 + 21.9233i 1.06849 + 1.06219i
\(427\) −4.74783 2.74116i −0.229764 0.132654i
\(428\) −5.47035 + 2.32570i −0.264419 + 0.112417i
\(429\) −19.6348 + 13.0716i −0.947976 + 0.631101i
\(430\) 0 0
\(431\) 3.84204 0.185064 0.0925322 0.995710i \(-0.470504\pi\)
0.0925322 + 0.995710i \(0.470504\pi\)
\(432\) 17.4363 + 11.3126i 0.838904 + 0.544280i
\(433\) −6.66853 −0.320469 −0.160235 0.987079i \(-0.551225\pi\)
−0.160235 + 0.987079i \(0.551225\pi\)
\(434\) 0.999182 + 4.90400i 0.0479623 + 0.235399i
\(435\) 0 0
\(436\) 9.42509 4.00704i 0.451380 0.191903i
\(437\) −5.08140 2.93375i −0.243077 0.140340i
\(438\) −17.1439 17.0428i −0.819168 0.814339i
\(439\) 33.5536 19.3722i 1.60143 0.924585i 0.610225 0.792228i \(-0.291079\pi\)
0.991202 0.132357i \(-0.0422544\pi\)
\(440\) 0 0
\(441\) 10.5239 + 13.8114i 0.501136 + 0.657687i
\(442\) −1.38799 + 4.15220i −0.0660202 + 0.197500i
\(443\) −11.7099 20.2821i −0.556354 0.963633i −0.997797 0.0663436i \(-0.978867\pi\)
0.441443 0.897289i \(-0.354467\pi\)
\(444\) 12.3989 18.8653i 0.588428 0.895309i
\(445\) 0 0
\(446\) 14.7132 + 16.6207i 0.696691 + 0.787015i
\(447\) 9.94014 0.634632i 0.470152 0.0300171i
\(448\) −1.39261 8.69651i −0.0657946 0.410871i
\(449\) 15.7865i 0.745011i 0.928030 + 0.372506i \(0.121501\pi\)
−0.928030 + 0.372506i \(0.878499\pi\)
\(450\) 0 0
\(451\) 41.7083i 1.96397i
\(452\) −16.6172 2.03074i −0.781608 0.0955181i
\(453\) −1.64282 + 3.31716i −0.0771864 + 0.155854i
\(454\) 0.207552 0.183732i 0.00974091 0.00862297i
\(455\) 0 0
\(456\) 5.06387 12.6619i 0.237137 0.592946i
\(457\) 4.20812 + 7.28867i 0.196847 + 0.340950i 0.947505 0.319742i \(-0.103596\pi\)
−0.750657 + 0.660692i \(0.770263\pi\)
\(458\) 2.21345 + 0.739911i 0.103428 + 0.0345738i
\(459\) −6.58969 + 1.27605i −0.307580 + 0.0595611i
\(460\) 0 0
\(461\) 21.4798 12.4014i 1.00042 0.577590i 0.0920445 0.995755i \(-0.470660\pi\)
0.908371 + 0.418165i \(0.137326\pi\)
\(462\) 4.00986 + 14.7900i 0.186556 + 0.688091i
\(463\) 17.9437 + 10.3598i 0.833913 + 0.481460i 0.855191 0.518314i \(-0.173440\pi\)
−0.0212774 + 0.999774i \(0.506773\pi\)
\(464\) 6.13675 24.7330i 0.284892 1.14820i
\(465\) 0 0
\(466\) 28.0295 5.71097i 1.29844 0.264555i
\(467\) −1.59588 −0.0738487 −0.0369243 0.999318i \(-0.511756\pi\)
−0.0369243 + 0.999318i \(0.511756\pi\)
\(468\) −12.4952 7.11592i −0.577591 0.328934i
\(469\) −4.07373 −0.188107
\(470\) 0 0
\(471\) −1.10974 17.3817i −0.0511342 0.800907i
\(472\) 20.6522 1.64310i 0.950596 0.0756298i
\(473\) −22.1919 12.8125i −1.02039 0.589120i
\(474\) 2.66730 + 0.706255i 0.122513 + 0.0324394i
\(475\) 0 0
\(476\) 2.27245 + 1.71039i 0.104158 + 0.0783955i
\(477\) −32.0931 13.4207i −1.46944 0.614494i
\(478\) 27.2668 + 9.11471i 1.24715 + 0.416897i
\(479\) −2.98947 5.17791i −0.136592 0.236585i 0.789612 0.613606i \(-0.210282\pi\)
−0.926205 + 0.377021i \(0.876948\pi\)
\(480\) 0 0
\(481\) −7.80904 + 13.5257i −0.356062 + 0.616717i
\(482\) 18.2614 16.1656i 0.831784 0.736322i
\(483\) 2.22738 + 3.34574i 0.101349 + 0.152237i
\(484\) 5.16538 42.2674i 0.234790 1.92125i
\(485\) 0 0
\(486\) 0.0839300 22.0452i 0.00380714 0.999993i
\(487\) 16.5971i 0.752086i −0.926602 0.376043i \(-0.877284\pi\)
0.926602 0.376043i \(-0.122716\pi\)
\(488\) −6.05289 + 12.7181i −0.274002 + 0.575720i
\(489\) 17.4831 + 26.2613i 0.790613 + 1.18758i
\(490\) 0 0
\(491\) 6.66941 11.5518i 0.300986 0.521323i −0.675373 0.737476i \(-0.736018\pi\)
0.976360 + 0.216153i \(0.0693509\pi\)
\(492\) 22.7174 11.4186i 1.02418 0.514789i
\(493\) 4.11469 + 7.12685i 0.185316 + 0.320977i
\(494\) −2.99103 + 8.94772i −0.134573 + 0.402577i
\(495\) 0 0
\(496\) 12.3559 3.55822i 0.554796 0.159769i
\(497\) −12.1037 + 6.98806i −0.542924 + 0.313457i
\(498\) −7.22622 + 27.2911i −0.323815 + 1.22294i
\(499\) 35.7135 + 20.6192i 1.59875 + 0.923041i 0.991728 + 0.128359i \(0.0409711\pi\)
0.607026 + 0.794682i \(0.292362\pi\)
\(500\) 0 0
\(501\) −0.821570 12.8681i −0.0367050 0.574905i
\(502\) 2.80090 + 13.7468i 0.125010 + 0.613551i
\(503\) −24.1634 −1.07739 −0.538696 0.842500i \(-0.681083\pi\)
−0.538696 + 0.842500i \(0.681083\pi\)
\(504\) −6.95791 + 6.23315i −0.309930 + 0.277646i
\(505\) 0 0
\(506\) −3.38189 16.5984i −0.150343 0.737887i
\(507\) −11.2630 5.57801i −0.500208 0.247728i
\(508\) −4.02781 9.47393i −0.178705 0.420338i
\(509\) −10.2084 5.89380i −0.452478 0.261238i 0.256398 0.966571i \(-0.417464\pi\)
−0.708876 + 0.705333i \(0.750797\pi\)
\(510\) 0 0
\(511\) 9.40921 5.43241i 0.416239 0.240316i
\(512\) −21.9886 + 5.33857i −0.971769 + 0.235934i
\(513\) −14.2003 + 2.74981i −0.626960 + 0.121407i
\(514\) −7.77883 + 23.2705i −0.343109 + 1.02642i
\(515\) 0 0
\(516\) 0.903109 15.5951i 0.0397572 0.686535i
\(517\) 26.5623 46.0072i 1.16821 2.02339i
\(518\) 6.72529 + 7.59721i 0.295492 + 0.333802i
\(519\) −6.66365 + 13.4551i −0.292502 + 0.590615i
\(520\) 0 0
\(521\) 32.5010i 1.42389i 0.702234 + 0.711947i \(0.252186\pi\)
−0.702234 + 0.711947i \(0.747814\pi\)
\(522\) −25.5834 + 8.72051i −1.11975 + 0.381686i
\(523\) 11.2435i 0.491645i −0.969315 0.245822i \(-0.920942\pi\)
0.969315 0.245822i \(-0.0790580\pi\)
\(524\) 3.44519 28.1914i 0.150504 1.23155i
\(525\) 0 0
\(526\) −10.1791 + 9.01086i −0.443829 + 0.392892i
\(527\) −2.07616 + 3.59602i −0.0904391 + 0.156645i
\(528\) 37.0611 13.2831i 1.61288 0.578075i
\(529\) 9.27846 + 16.0708i 0.403411 + 0.698729i
\(530\) 0 0
\(531\) −13.3180 17.4785i −0.577953 0.758501i
\(532\) 4.89698 + 3.68577i 0.212311 + 0.159799i
\(533\) −15.2336 + 8.79510i −0.659839 + 0.380958i
\(534\) −15.8327 + 15.9266i −0.685147 + 0.689211i
\(535\) 0 0
\(536\) 0.830062 + 10.4331i 0.0358532 + 0.450642i
\(537\) −1.60019 + 1.06530i −0.0690533 + 0.0459712i
\(538\) −1.86358 + 0.379701i −0.0803446 + 0.0163701i
\(539\) 32.8903 1.41669
\(540\) 0 0
\(541\) −8.40855 −0.361512 −0.180756 0.983528i \(-0.557854\pi\)
−0.180756 + 0.983528i \(0.557854\pi\)
\(542\) 30.1105 6.13496i 1.29336 0.263519i
\(543\) 18.2571 12.1544i 0.783487 0.521595i
\(544\) 3.91739 6.16842i 0.167957 0.264469i
\(545\) 0 0
\(546\) 4.55632 4.58335i 0.194993 0.196149i
\(547\) 3.67716 2.12301i 0.157224 0.0907734i −0.419324 0.907837i \(-0.637733\pi\)
0.576548 + 0.817063i \(0.304399\pi\)
\(548\) −8.35023 + 11.0943i −0.356704 + 0.473923i
\(549\) 14.8181 1.89988i 0.632420 0.0810848i
\(550\) 0 0
\(551\) 8.86688 + 15.3579i 0.377742 + 0.654268i
\(552\) 8.11483 6.38620i 0.345390 0.271815i
\(553\) −0.620060 + 1.07398i −0.0263676 + 0.0456701i
\(554\) 14.7340 13.0431i 0.625990 0.554146i
\(555\) 0 0
\(556\) −23.6847 2.89444i −1.00446 0.122752i
\(557\) 21.0221i 0.890734i 0.895348 + 0.445367i \(0.146927\pi\)
−0.895348 + 0.445367i \(0.853073\pi\)
\(558\) −10.2650 8.97918i −0.434551 0.380119i
\(559\) 10.8072i 0.457095i
\(560\) 0 0
\(561\) −5.64248 + 11.3932i −0.238225 + 0.481021i
\(562\) −10.9266 12.3433i −0.460913 0.520669i
\(563\) −10.9277 + 18.9272i −0.460546 + 0.797688i −0.998988 0.0449739i \(-0.985680\pi\)
0.538443 + 0.842662i \(0.319013\pi\)
\(564\) 32.3309 + 1.87228i 1.36138 + 0.0788373i
\(565\) 0 0
\(566\) 5.57187 16.6683i 0.234203 0.700621i
\(567\) 9.55304 + 2.62911i 0.401190 + 0.110412i
\(568\) 20.3632 + 29.5745i 0.854420 + 1.24092i
\(569\) −12.7253 + 7.34697i −0.533473 + 0.308001i −0.742430 0.669924i \(-0.766327\pi\)
0.208956 + 0.977925i \(0.432993\pi\)
\(570\) 0 0
\(571\) −15.5333 8.96816i −0.650049 0.375306i 0.138426 0.990373i \(-0.455796\pi\)
−0.788475 + 0.615067i \(0.789129\pi\)
\(572\) −25.0657 + 10.6566i −1.04805 + 0.445575i
\(573\) 35.3350 + 17.4996i 1.47614 + 0.731057i
\(574\) 2.28146 + 11.1974i 0.0952261 + 0.467371i
\(575\) 0 0
\(576\) 17.3813 + 16.5497i 0.724220 + 0.689569i
\(577\) 38.2696 1.59318 0.796592 0.604517i \(-0.206634\pi\)
0.796592 + 0.604517i \(0.206634\pi\)
\(578\) −4.32871 21.2454i −0.180051 0.883691i
\(579\) 1.28307 + 20.0966i 0.0533227 + 0.835185i
\(580\) 0 0
\(581\) −10.9886 6.34429i −0.455885 0.263206i
\(582\) 8.05469 30.4200i 0.333878 1.26095i
\(583\) −57.0634 + 32.9456i −2.36333 + 1.36447i
\(584\) −15.8300 22.9907i −0.655050 0.951364i
\(585\) 0 0
\(586\) −4.28154 + 12.8083i −0.176869 + 0.529105i
\(587\) 4.20276 + 7.27939i 0.173466 + 0.300453i 0.939629 0.342194i \(-0.111170\pi\)
−0.766163 + 0.642646i \(0.777837\pi\)
\(588\) 9.00446 + 17.9145i 0.371338 + 0.738782i
\(589\) −4.47399 + 7.74918i −0.184348 + 0.319299i
\(590\) 0 0
\(591\) 11.7104 + 17.5901i 0.481700 + 0.723561i
\(592\) 18.0866 18.7720i 0.743356 0.771523i
\(593\) 35.1831i 1.44480i −0.691477 0.722398i \(-0.743040\pi\)
0.691477 0.722398i \(-0.256960\pi\)
\(594\) −33.1179 25.4346i −1.35884 1.04359i
\(595\) 0 0
\(596\) 11.4163 + 1.39516i 0.467631 + 0.0571478i
\(597\) 6.79490 + 10.2066i 0.278097 + 0.417729i
\(598\) −5.34925 + 4.73533i −0.218747 + 0.193642i
\(599\) −7.34116 + 12.7153i −0.299952 + 0.519532i −0.976125 0.217211i \(-0.930304\pi\)
0.676173 + 0.736743i \(0.263637\pi\)
\(600\) 0 0
\(601\) 13.6252 + 23.5995i 0.555783 + 0.962644i 0.997842 + 0.0656584i \(0.0209148\pi\)
−0.442059 + 0.896986i \(0.645752\pi\)
\(602\) 6.65871 + 2.22587i 0.271389 + 0.0907195i
\(603\) 8.82978 6.72801i 0.359577 0.273986i
\(604\) −2.57041 + 3.41509i −0.104589 + 0.138958i
\(605\) 0 0
\(606\) 39.6456 + 10.4975i 1.61049 + 0.426430i
\(607\) 6.78317 + 3.91627i 0.275320 + 0.158956i 0.631303 0.775536i \(-0.282520\pi\)
−0.355983 + 0.934493i \(0.615854\pi\)
\(608\) 8.44172 13.2925i 0.342357 0.539083i
\(609\) −0.774017 12.1233i −0.0313647 0.491261i
\(610\) 0 0
\(611\) −22.4049 −0.906406
\(612\) −7.75034 + 0.0458326i −0.313289 + 0.00185267i
\(613\) 1.17677 0.0475293 0.0237646 0.999718i \(-0.492435\pi\)
0.0237646 + 0.999718i \(0.492435\pi\)
\(614\) −18.6639 + 3.80274i −0.753214 + 0.153466i
\(615\) 0 0
\(616\) 1.40335 + 17.6388i 0.0565425 + 0.710686i
\(617\) 35.3790 + 20.4261i 1.42430 + 0.822322i 0.996663 0.0816263i \(-0.0260114\pi\)
0.427641 + 0.903949i \(0.359345\pi\)
\(618\) 0.870809 + 3.21189i 0.0350291 + 0.129201i
\(619\) −42.7230 + 24.6661i −1.71718 + 0.991416i −0.793218 + 0.608938i \(0.791596\pi\)
−0.923965 + 0.382478i \(0.875071\pi\)
\(620\) 0 0
\(621\) −10.3535 3.57322i −0.415473 0.143389i
\(622\) −13.7643 4.60111i −0.551897 0.184488i
\(623\) −5.04667 8.74109i −0.202190 0.350204i
\(624\) −12.6667 10.7352i −0.507073 0.429751i
\(625\) 0 0
\(626\) −1.70041 + 1.50526i −0.0679622 + 0.0601624i
\(627\) −12.1592 + 24.5516i −0.485590 + 0.980496i
\(628\) 2.43962 19.9630i 0.0973515 0.796611i
\(629\) 8.41813i 0.335653i
\(630\) 0 0
\(631\) 27.6752i 1.10173i 0.834594 + 0.550866i \(0.185703\pi\)
−0.834594 + 0.550866i \(0.814297\pi\)
\(632\) 2.87687 + 1.36919i 0.114436 + 0.0544633i
\(633\) −11.2045 + 0.715359i −0.445341 + 0.0284329i
\(634\) 4.18312 + 4.72545i 0.166133 + 0.187672i
\(635\) 0 0
\(636\) −33.5670 22.0614i −1.33102 0.874791i
\(637\) −6.93564 12.0129i −0.274800 0.475968i
\(638\) −16.2313 + 48.5561i −0.642602 + 1.92235i
\(639\) 14.6934 35.1365i 0.581264 1.38998i
\(640\) 0 0
\(641\) −13.0424 + 7.53005i −0.515145 + 0.297419i −0.734946 0.678126i \(-0.762793\pi\)
0.219801 + 0.975545i \(0.429459\pi\)
\(642\) 5.16304 + 5.13259i 0.203769 + 0.202567i
\(643\) 41.0665 + 23.7098i 1.61951 + 0.935022i 0.987048 + 0.160427i \(0.0512872\pi\)
0.632458 + 0.774595i \(0.282046\pi\)
\(644\) 1.81587 + 4.27117i 0.0715554 + 0.168308i
\(645\) 0 0
\(646\) 1.01523 + 4.98276i 0.0399437 + 0.196044i
\(647\) 19.7634 0.776977 0.388489 0.921453i \(-0.372997\pi\)
0.388489 + 0.921453i \(0.372997\pi\)
\(648\) 4.78682 25.0017i 0.188044 0.982161i
\(649\) −41.6229 −1.63384
\(650\) 0 0
\(651\) 5.10228 3.39677i 0.199974 0.133130i
\(652\) 14.2531 + 33.5252i 0.558195 + 1.31295i
\(653\) 30.2658 + 17.4740i 1.18439 + 0.683809i 0.957027 0.290000i \(-0.0936554\pi\)
0.227366 + 0.973809i \(0.426989\pi\)
\(654\) −8.89560 8.84315i −0.347846 0.345795i
\(655\) 0 0
\(656\) 28.2125 8.12455i 1.10151 0.317211i
\(657\) −11.4225 + 27.3146i −0.445632 + 1.06564i
\(658\) −4.61456 + 13.8045i −0.179894 + 0.538155i
\(659\) −17.4893 30.2924i −0.681288 1.18003i −0.974588 0.224005i \(-0.928087\pi\)
0.293300 0.956021i \(-0.405247\pi\)
\(660\) 0 0
\(661\) 17.7487 30.7417i 0.690346 1.19571i −0.281379 0.959597i \(-0.590792\pi\)
0.971725 0.236117i \(-0.0758749\pi\)
\(662\) −11.0520 12.4849i −0.429549 0.485239i
\(663\) 5.35110 0.341643i 0.207819 0.0132683i
\(664\) −14.0091 + 29.4354i −0.543660 + 1.14231i
\(665\) 0 0
\(666\) −27.1243 5.35967i −1.05104 0.207683i
\(667\) 13.4287i 0.519960i
\(668\) 1.80611 14.7791i 0.0698807 0.571821i
\(669\) 12.0654 24.3622i 0.466475 0.941898i
\(670\) 0 0
\(671\) 14.1489 24.5066i 0.546211 0.946065i
\(672\) −9.22318 + 5.59337i −0.355792 + 0.215769i
\(673\) 23.9454 + 41.4746i 0.923027 + 1.59873i 0.794704 + 0.606997i \(0.207626\pi\)
0.128322 + 0.991733i \(0.459041\pi\)
\(674\) 14.1667 + 4.73563i 0.545680 + 0.182409i
\(675\) 0 0
\(676\) −11.5955 8.72753i −0.445982 0.335674i
\(677\) −0.0747996 + 0.0431856i −0.00287478 + 0.00165976i −0.501437 0.865194i \(-0.667195\pi\)
0.498562 + 0.866854i \(0.333862\pi\)
\(678\) 5.36517 + 19.7888i 0.206048 + 0.759986i
\(679\) 12.2485 + 7.07165i 0.470053 + 0.271385i
\(680\) 0 0
\(681\) −0.304224 0.150667i −0.0116579 0.00577357i
\(682\) −25.3126 + 5.15741i −0.969271 + 0.197488i
\(683\) −24.0380 −0.919788 −0.459894 0.887974i \(-0.652113\pi\)
−0.459894 + 0.887974i \(0.652113\pi\)
\(684\) −16.7015 + 0.0987662i −0.638596 + 0.00377642i
\(685\) 0 0
\(686\) −19.5091 + 3.97496i −0.744862 + 0.151765i
\(687\) −0.182123 2.85256i −0.00694841 0.108832i
\(688\) 4.34383 17.5070i 0.165607 0.667447i
\(689\) 24.0661 + 13.8946i 0.916846 + 0.529342i
\(690\) 0 0
\(691\) −36.1685 + 20.8819i −1.37591 + 0.794384i −0.991665 0.128845i \(-0.958873\pi\)
−0.384249 + 0.923229i \(0.625540\pi\)
\(692\) −10.4262 + 13.8524i −0.396344 + 0.526589i
\(693\) 14.9281 11.3747i 0.567071 0.432090i
\(694\) −31.2637 10.4508i −1.18675 0.396707i
\(695\) 0 0
\(696\) −30.8909 + 4.45255i −1.17092 + 0.168774i
\(697\) −4.74055 + 8.21087i −0.179561 + 0.311009i
\(698\) −6.02923 + 5.33727i −0.228210 + 0.202019i
\(699\) −19.4147 29.1628i −0.734332 1.10304i
\(700\) 0 0
\(701\) 2.12514i 0.0802654i 0.999194 + 0.0401327i \(0.0127781\pi\)
−0.999194 + 0.0401327i \(0.987222\pi\)
\(702\) −2.30613 + 17.4594i −0.0870392 + 0.658963i
\(703\) 18.1405i 0.684182i
\(704\) 44.8882 7.18814i 1.69179 0.270913i
\(705\) 0 0
\(706\) 1.42739 + 1.61245i 0.0537207 + 0.0606854i
\(707\) −9.21629 + 15.9631i −0.346614 + 0.600354i
\(708\) −11.3952 22.6709i −0.428258 0.852026i
\(709\) −2.08824 3.61694i −0.0784256 0.135837i 0.824145 0.566379i \(-0.191656\pi\)
−0.902571 + 0.430541i \(0.858323\pi\)
\(710\) 0 0
\(711\) −0.429759 3.35190i −0.0161172 0.125706i
\(712\) −21.3582 + 14.7060i −0.800434 + 0.551129i
\(713\) −5.86797 + 3.38787i −0.219757 + 0.126877i
\(714\) 0.891622 3.36737i 0.0333681 0.126021i
\(715\) 0 0
\(716\) −2.04280 + 0.868489i −0.0763430 + 0.0324569i
\(717\) −2.24351 35.1397i −0.0837853 1.31232i
\(718\) 2.67129 + 13.1107i 0.0996917 + 0.489288i
\(719\) 24.0884 0.898346 0.449173 0.893445i \(-0.351719\pi\)
0.449173 + 0.893445i \(0.351719\pi\)
\(720\) 0 0
\(721\) −1.49568 −0.0557022
\(722\) −3.17676 15.5916i −0.118227 0.580259i
\(723\) −26.7671 13.2564i −0.995478 0.493010i
\(724\) 23.3070 9.90887i 0.866197 0.368260i
\(725\) 0 0
\(726\) −50.3348 + 13.6468i −1.86810 + 0.506480i
\(727\) −40.6108 + 23.4466i −1.50617 + 0.869587i −0.506195 + 0.862419i \(0.668948\pi\)
−0.999974 + 0.00716831i \(0.997718\pi\)
\(728\) 6.14647 4.23208i 0.227803 0.156851i
\(729\) −25.0483 + 10.0788i −0.927715 + 0.373290i
\(730\) 0 0
\(731\) 2.91253 + 5.04465i 0.107724 + 0.186583i
\(732\) 17.2217 + 0.997305i 0.636531 + 0.0368614i
\(733\) 8.87721 15.3758i 0.327887 0.567917i −0.654205 0.756317i \(-0.726997\pi\)
0.982092 + 0.188400i \(0.0603301\pi\)
\(734\) 7.62322 + 8.61155i 0.281378 + 0.317858i
\(735\) 0 0
\(736\) 10.5688 5.52087i 0.389570 0.203502i
\(737\) 21.0271i 0.774543i
\(738\) −23.4382 20.5024i −0.862774 0.754702i
\(739\) 8.50437i 0.312838i −0.987691 0.156419i \(-0.950005\pi\)
0.987691 0.156419i \(-0.0499951\pi\)
\(740\) 0 0
\(741\) 11.5313 0.736218i 0.423611 0.0270456i
\(742\) 13.5177 11.9663i 0.496249 0.439296i
\(743\) 25.1755 43.6052i 0.923598 1.59972i 0.129798 0.991540i \(-0.458567\pi\)
0.793800 0.608179i \(-0.208100\pi\)
\(744\) −9.73901 12.3752i −0.357050 0.453696i
\(745\) 0 0
\(746\) 15.5794 + 5.20786i 0.570402 + 0.190673i
\(747\) 34.2958 4.39718i 1.25482 0.160884i
\(748\) −8.82840 + 11.7296i −0.322798 + 0.428875i
\(749\) −2.83366 + 1.63601i −0.103540 + 0.0597787i
\(750\) 0 0
\(751\) 44.8169 + 25.8750i 1.63539 + 0.944193i 0.982391 + 0.186834i \(0.0598228\pi\)
0.652999 + 0.757359i \(0.273511\pi\)
\(752\) 36.2946 + 9.00541i 1.32353 + 0.328393i
\(753\) 14.3027 9.52179i 0.521218 0.346993i
\(754\) 21.1574 4.31078i 0.770506 0.156989i
\(755\) 0 0
\(756\) 10.2824 + 5.01686i 0.373968 + 0.182462i
\(757\) −16.5374 −0.601064 −0.300532 0.953772i \(-0.597164\pi\)
−0.300532 + 0.953772i \(0.597164\pi\)
\(758\) −0.269272 + 0.0548639i −0.00978042 + 0.00199275i
\(759\) −17.2695 + 11.4969i −0.626843 + 0.417312i
\(760\) 0 0
\(761\) −30.1188 17.3891i −1.09180 0.630354i −0.157748 0.987479i \(-0.550423\pi\)
−0.934056 + 0.357126i \(0.883757\pi\)
\(762\) −8.88897 + 8.94169i −0.322014 + 0.323923i
\(763\) 4.88223 2.81876i 0.176749 0.102046i
\(764\) 36.3782 + 27.3805i 1.31612 + 0.990591i
\(765\) 0 0
\(766\) −24.8141 8.29485i −0.896571 0.299705i
\(767\) 8.77710 + 15.2024i 0.316923 + 0.548926i
\(768\) 16.2043 + 22.4815i 0.584724 + 0.811232i
\(769\) 7.71708 13.3664i 0.278285 0.482003i −0.692674 0.721251i \(-0.743567\pi\)
0.970959 + 0.239248i \(0.0769007\pi\)
\(770\) 0 0
\(771\) 29.9895 1.91469i 1.08005 0.0689560i
\(772\) −2.82067 + 23.0811i −0.101518 + 0.830705i
\(773\) 29.3290i 1.05489i 0.849589 + 0.527446i \(0.176850\pi\)
−0.849589 + 0.527446i \(0.823150\pi\)
\(774\) −18.1089 + 6.17270i −0.650909 + 0.221873i
\(775\) 0 0
\(776\) 15.6153 32.8101i 0.560555 1.17781i
\(777\) 5.51499 11.1358i 0.197849 0.399494i
\(778\) −22.0669 24.9278i −0.791135 0.893703i
\(779\) −10.2156 + 17.6939i −0.366011 + 0.633949i
\(780\) 0 0
\(781\) −36.0698 62.4748i −1.29068 2.23552i
\(782\) −1.22079 + 3.65201i −0.0436554 + 0.130596i
\(783\) 21.7000 + 24.9988i 0.775496 + 0.893385i
\(784\) 6.40686 + 22.2478i 0.228817 + 0.794565i
\(785\) 0 0
\(786\) −33.5721 + 9.10210i −1.19748 + 0.324661i
\(787\) 45.5713 + 26.3106i 1.62444 + 0.937872i 0.985712 + 0.168442i \(0.0538734\pi\)
0.638730 + 0.769431i \(0.279460\pi\)
\(788\) 9.54688 + 22.4555i 0.340094 + 0.799945i
\(789\) 14.9202 + 7.38923i 0.531174 + 0.263064i
\(790\) 0 0
\(791\) −9.21510 −0.327651
\(792\) −32.1732 35.9142i −1.14323 1.27616i
\(793\) −11.9344 −0.423803
\(794\) 6.60940 + 32.4390i 0.234559 + 1.15122i
\(795\) 0 0
\(796\) 5.53955 + 13.0297i 0.196344 + 0.461827i
\(797\) −2.15117 1.24198i −0.0761983 0.0439931i 0.461417 0.887183i \(-0.347341\pi\)
−0.537615 + 0.843190i \(0.680675\pi\)
\(798\) 1.92139 7.25647i 0.0680163 0.256876i
\(799\) −10.4583 + 6.03812i −0.369989 + 0.213613i
\(800\) 0 0
\(801\) 25.3751 + 10.6114i 0.896583 + 0.374934i
\(802\) 13.4221 40.1523i 0.473950 1.41783i
\(803\) 28.0401 + 48.5669i 0.989514 + 1.71389i
\(804\) 11.4529 5.75664i 0.403913 0.203021i
\(805\) 0 0
\(806\) 7.22142 + 8.15765i 0.254364 + 0.287341i
\(807\) 1.29081 + 1.93893i 0.0454388 + 0.0682535i
\(808\) 42.7605 + 20.3510i 1.50431 + 0.715944i
\(809\) 25.6629i 0.902261i −0.892458 0.451131i \(-0.851021\pi\)
0.892458 0.451131i \(-0.148979\pi\)
\(810\) 0 0
\(811\) 26.5970i 0.933948i 0.884271 + 0.466974i \(0.154656\pi\)
−0.884271 + 0.466974i \(0.845344\pi\)
\(812\) 1.70157 13.9237i 0.0597135 0.488626i
\(813\) −20.8561 31.3279i −0.731456 1.09872i
\(814\) −39.2140 + 34.7135i −1.37445 + 1.21671i
\(815\) 0 0
\(816\) −8.80576 1.59737i −0.308263 0.0559192i
\(817\) 6.27631 + 10.8709i 0.219580 + 0.380324i
\(818\) 2.79013 + 0.932682i 0.0975546 + 0.0326105i
\(819\) −7.30243 3.05374i −0.255167 0.106706i
\(820\) 0 0
\(821\) −26.3429 + 15.2091i −0.919373 + 0.530800i −0.883435 0.468554i \(-0.844775\pi\)
−0.0359383 + 0.999354i \(0.511442\pi\)
\(822\) 16.4397 + 4.35296i 0.573402 + 0.151827i
\(823\) −7.33737 4.23623i −0.255764 0.147666i 0.366636 0.930364i \(-0.380509\pi\)
−0.622401 + 0.782699i \(0.713843\pi\)
\(824\) 0.304760 + 3.83055i 0.0106168 + 0.133444i
\(825\) 0 0
\(826\) 11.1745 2.27679i 0.388810 0.0792196i
\(827\) −37.2624 −1.29574 −0.647871 0.761750i \(-0.724340\pi\)
−0.647871 + 0.761750i \(0.724340\pi\)
\(828\) −10.9900 6.25871i −0.381928 0.217505i
\(829\) 18.4167 0.639639 0.319820 0.947478i \(-0.396378\pi\)
0.319820 + 0.947478i \(0.396378\pi\)
\(830\) 0 0
\(831\) −21.5968 10.6958i −0.749184 0.371033i
\(832\) −12.0911 14.8792i −0.419182 0.515844i
\(833\) −6.47493 3.73830i −0.224343 0.129525i
\(834\) 7.64704 + 28.2053i 0.264795 + 0.976669i
\(835\) 0 0
\(836\) −19.0246 + 25.2764i −0.657980 + 0.874203i
\(837\) −5.44920 + 15.7892i −0.188352 + 0.545755i
\(838\) −13.1181 4.38510i −0.453157 0.151481i
\(839\) −7.35228 12.7345i −0.253829 0.439645i 0.710748 0.703447i \(-0.248357\pi\)
−0.964577 + 0.263802i \(0.915023\pi\)
\(840\) 0 0
\(841\) 5.79320 10.0341i 0.199765 0.346004i
\(842\) 2.22578 1.97033i 0.0767055 0.0679022i
\(843\) −8.96025 + 18.0924i −0.308607 + 0.623135i
\(844\) −12.8685 1.57262i −0.442952 0.0541319i
\(845\) 0 0
\(846\) −12.7969 37.5424i −0.439968 1.29073i
\(847\) 23.4395i 0.805390i
\(848\) −33.4008 32.1815i −1.14699 1.10512i
\(849\) −21.4811 + 1.37147i −0.737228 + 0.0470686i
\(850\) 0 0
\(851\) −6.86833 + 11.8963i −0.235443 + 0.407800i
\(852\) 24.1535 36.7502i 0.827484 1.25904i
\(853\) −6.48519 11.2327i −0.222049 0.384600i 0.733381 0.679818i \(-0.237941\pi\)
−0.955430 + 0.295218i \(0.904608\pi\)
\(854\) −2.45803 + 7.35322i −0.0841119 + 0.251622i
\(855\) 0 0
\(856\) 4.76734 + 6.92385i 0.162944 + 0.236652i
\(857\) 5.82871 3.36521i 0.199105 0.114953i −0.397133 0.917761i \(-0.629995\pi\)
0.596238 + 0.802808i \(0.296661\pi\)
\(858\) 23.6576 + 23.5181i 0.807656 + 0.802894i
\(859\) −33.3860 19.2754i −1.13912 0.657669i −0.192904 0.981218i \(-0.561791\pi\)
−0.946212 + 0.323549i \(0.895124\pi\)
\(860\) 0 0
\(861\) 11.6502 7.75592i 0.397036 0.264321i
\(862\) −1.08477 5.32407i −0.0369475 0.181339i
\(863\) 13.4795 0.458847 0.229424 0.973327i \(-0.426316\pi\)
0.229424 + 0.973327i \(0.426316\pi\)
\(864\) 10.7534 27.3562i 0.365838 0.930678i
\(865\) 0 0
\(866\) 1.88281 + 9.24087i 0.0639806 + 0.314018i
\(867\) −22.1044 + 14.7157i −0.750704 + 0.499770i
\(868\) 6.51357 2.76922i 0.221085 0.0939934i
\(869\) −5.54347 3.20052i −0.188049 0.108570i
\(870\) 0 0
\(871\) −7.67995 + 4.43402i −0.260225 + 0.150241i
\(872\) −8.21384 11.9294i −0.278156 0.403980i
\(873\) −38.2277 + 4.90131i −1.29381 + 0.165884i
\(874\) −2.63072 + 7.86984i −0.0889855 + 0.266201i
\(875\) 0 0
\(876\) −18.7765 + 28.5690i −0.634400 + 0.965257i
\(877\) −7.80171 + 13.5129i −0.263445 + 0.456300i −0.967155 0.254187i \(-0.918192\pi\)
0.703710 + 0.710487i \(0.251525\pi\)
\(878\) −36.3185 41.0271i −1.22569 1.38460i
\(879\) 16.5065 1.05387i 0.556751 0.0355460i
\(880\) 0 0
\(881\) 25.0226i 0.843032i 0.906821 + 0.421516i \(0.138502\pi\)
−0.906821 + 0.421516i \(0.861498\pi\)
\(882\) 16.1678 18.4829i 0.544397 0.622353i
\(883\) 13.8202i 0.465085i −0.972586 0.232543i \(-0.925295\pi\)
0.972586 0.232543i \(-0.0747046\pi\)
\(884\) 6.14577 + 0.751058i 0.206705 + 0.0252608i
\(885\) 0 0
\(886\) −24.7996 + 21.9534i −0.833159 + 0.737539i
\(887\) 9.33323 16.1656i 0.313379 0.542789i −0.665712 0.746208i \(-0.731872\pi\)
0.979092 + 0.203420i \(0.0652056\pi\)
\(888\) −29.6433 11.8553i −0.994763 0.397836i
\(889\) −2.83336 4.90753i −0.0950279 0.164593i
\(890\) 0 0
\(891\) −13.5705 + 49.3093i −0.454629 + 1.65192i
\(892\) 18.8779 25.0815i 0.632079 0.839790i
\(893\) −22.5370 + 13.0117i −0.754172 + 0.435421i
\(894\) −3.68596 13.5953i −0.123277 0.454694i
\(895\) 0 0
\(896\) −11.6579 + 4.38520i −0.389464 + 0.146499i
\(897\) 7.84079 + 3.88315i 0.261796 + 0.129654i
\(898\) 21.8760 4.45721i 0.730013 0.148739i
\(899\) 20.4788 0.683007
\(900\) 0 0
\(901\) 14.9783 0.499001
\(902\) −57.7969 + 11.7760i −1.92443 + 0.392099i
\(903\) −0.547878 8.58132i −0.0182322 0.285569i
\(904\) 1.87767 + 23.6005i 0.0624503 + 0.784942i
\(905\) 0 0
\(906\) 5.06056 + 1.33995i 0.168126 + 0.0445168i
\(907\) −35.9025 + 20.7283i −1.19212 + 0.688273i −0.958788 0.284123i \(-0.908297\pi\)
−0.233336 + 0.972396i \(0.574964\pi\)
\(908\) −0.313206 0.235739i −0.0103941 0.00782326i
\(909\) −6.38774 49.8212i −0.211868 1.65246i
\(910\) 0 0
\(911\) 2.80277 + 4.85454i 0.0928600 + 0.160838i 0.908713 0.417420i \(-0.137066\pi\)
−0.815853 + 0.578259i \(0.803732\pi\)
\(912\) −18.9758 3.44223i −0.628352 0.113984i
\(913\) 32.7469 56.7193i 1.08376 1.87714i
\(914\) 8.91209 7.88927i 0.294786 0.260954i
\(915\) 0 0
\(916\) 0.400373 3.27618i 0.0132287 0.108248i
\(917\) 15.6336i 0.516266i
\(918\) 3.62884 + 8.77133i 0.119769 + 0.289497i
\(919\) 30.8044i 1.01614i 0.861315 + 0.508072i \(0.169642\pi\)
−0.861315 + 0.508072i \(0.830358\pi\)
\(920\) 0 0
\(921\) 12.9276 + 19.4186i 0.425980 + 0.639863i
\(922\) −23.2498 26.2641i −0.765692 0.864961i
\(923\) −15.2122 + 26.3483i −0.500716 + 0.867266i
\(924\) 19.3629 9.73248i 0.636993 0.320175i
\(925\) 0 0
\(926\) 9.28972 27.7903i 0.305279 0.913247i
\(927\) 3.24189 2.47021i 0.106478 0.0811324i
\(928\) −36.0063 1.52077i −1.18196 0.0499216i
\(929\) −23.8104 + 13.7469i −0.781194 + 0.451023i −0.836853 0.547427i \(-0.815607\pi\)
0.0556590 + 0.998450i \(0.482274\pi\)
\(930\) 0 0
\(931\) −13.9530 8.05579i −0.457293 0.264018i
\(932\) −15.8279 37.2292i −0.518459 1.21948i
\(933\) 1.13252 + 17.7385i 0.0370772 + 0.580733i
\(934\) 0.450587 + 2.21148i 0.0147436 + 0.0723620i
\(935\) 0 0
\(936\) −6.33290 + 19.3243i −0.206997 + 0.631633i
\(937\) −13.6341 −0.445407 −0.222704 0.974886i \(-0.571488\pi\)
−0.222704 + 0.974886i \(0.571488\pi\)
\(938\) 1.15019 + 5.64514i 0.0375550 + 0.184320i
\(939\) 2.49242 + 1.23437i 0.0813371 + 0.0402822i
\(940\) 0 0
\(941\) −49.7730 28.7364i −1.62255 0.936781i −0.986234 0.165355i \(-0.947123\pi\)
−0.636319 0.771426i \(-0.719544\pi\)
\(942\) −23.7732 + 6.44542i −0.774574 + 0.210003i
\(943\) −13.3985 + 7.73561i −0.436314 + 0.251906i
\(944\) −8.10793 28.1548i −0.263891 0.916360i
\(945\) 0 0
\(946\) −11.4891 + 34.3698i −0.373543 + 1.11746i
\(947\) 9.68402 + 16.7732i 0.314688 + 0.545056i 0.979371 0.202069i \(-0.0647666\pi\)
−0.664683 + 0.747126i \(0.731433\pi\)
\(948\) 0.225594 3.89560i 0.00732695 0.126523i
\(949\) 11.8257 20.4828i 0.383880 0.664899i
\(950\) 0 0
\(951\) 3.43031 6.92644i 0.111236 0.224605i
\(952\) 1.72855 3.63195i 0.0560226 0.117712i
\(953\) 4.34158i 0.140638i −0.997525 0.0703188i \(-0.977598\pi\)
0.997525 0.0703188i \(-0.0224017\pi\)
\(954\) −9.53643 + 48.2621i −0.308753 + 1.56254i
\(955\) 0 0
\(956\) 4.93206 40.3582i 0.159514 1.30528i
\(957\) 62.5760 3.99519i 2.02280 0.129146i
\(958\) −6.33119 + 5.60458i −0.204552 + 0.181076i
\(959\) −3.82170 + 6.61938i −0.123409 + 0.213751i
\(960\) 0 0
\(961\) −10.3335 17.8981i −0.333338 0.577358i
\(962\) 20.9479 + 7.00245i 0.675388 + 0.225768i
\(963\) 3.43997 8.22601i 0.110851 0.265080i
\(964\) −27.5573 20.7414i −0.887561 0.668034i
\(965\) 0 0
\(966\) 4.00745 4.03122i 0.128938 0.129702i
\(967\) 28.6939 + 16.5665i 0.922735 + 0.532741i 0.884507 0.466528i \(-0.154495\pi\)
0.0382285 + 0.999269i \(0.487829\pi\)
\(968\) −60.0302 + 4.77602i −1.92944 + 0.153507i
\(969\) 5.18423 3.45133i 0.166541 0.110873i
\(970\) 0 0
\(971\) 22.0082 0.706277 0.353138 0.935571i \(-0.385114\pi\)
0.353138 + 0.935571i \(0.385114\pi\)
\(972\) −30.5727 + 6.10802i −0.980621 + 0.195915i
\(973\) −13.1344 −0.421070
\(974\) −22.9993 + 4.68607i −0.736945 + 0.150151i
\(975\) 0 0
\(976\) 19.3330 + 4.79689i 0.618833 + 0.153545i
\(977\) −25.5578 14.7558i −0.817667 0.472080i 0.0319442 0.999490i \(-0.489830\pi\)
−0.849611 + 0.527409i \(0.823163\pi\)
\(978\) 31.4552 31.6418i 1.00583 1.01179i
\(979\) 45.1183 26.0491i 1.44199 0.832532i
\(980\) 0 0
\(981\) −5.92686 + 14.1729i −0.189230 + 0.452507i
\(982\) −17.8908 5.98052i −0.570919 0.190846i
\(983\) −22.9895 39.8190i −0.733251 1.27003i −0.955486 0.295035i \(-0.904669\pi\)
0.222235 0.974993i \(-0.428665\pi\)
\(984\) −22.2373 28.2565i −0.708900 0.900786i
\(985\) 0 0
\(986\) 8.71423 7.71412i 0.277518 0.245668i
\(987\) 17.7904 1.13583i 0.566274 0.0361540i
\(988\) 13.2437 + 1.61848i 0.421339 + 0.0514907i
\(989\) 9.50531i 0.302251i
\(990\) 0 0
\(991\) 52.8232i 1.67798i −0.544144 0.838992i \(-0.683146\pi\)
0.544144 0.838992i \(-0.316854\pi\)
\(992\) −8.41937 16.1175i −0.267315 0.511730i
\(993\) −9.06307 + 18.3000i −0.287608 + 0.580733i
\(994\) 13.1010 + 14.7996i 0.415540 + 0.469413i
\(995\) 0 0
\(996\) 39.8587 + 2.30822i 1.26297 + 0.0731386i
\(997\) 25.0831 + 43.4452i 0.794389 + 1.37592i 0.923226 + 0.384257i \(0.125542\pi\)
−0.128837 + 0.991666i \(0.541124\pi\)
\(998\) 18.4894 55.3113i 0.585272 1.75085i
\(999\) 6.43771 + 33.2451i 0.203680 + 1.05183i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.r.g.851.11 48
4.3 odd 2 inner 900.2.r.g.851.19 48
5.2 odd 4 180.2.n.d.59.23 yes 48
5.3 odd 4 180.2.n.d.59.2 48
5.4 even 2 inner 900.2.r.g.851.14 48
9.2 odd 6 inner 900.2.r.g.551.19 48
15.2 even 4 540.2.n.d.179.2 48
15.8 even 4 540.2.n.d.179.23 48
20.3 even 4 180.2.n.d.59.18 yes 48
20.7 even 4 180.2.n.d.59.7 yes 48
20.19 odd 2 inner 900.2.r.g.851.6 48
36.11 even 6 inner 900.2.r.g.551.11 48
45.2 even 12 180.2.n.d.119.18 yes 48
45.7 odd 12 540.2.n.d.359.7 48
45.29 odd 6 inner 900.2.r.g.551.6 48
45.38 even 12 180.2.n.d.119.7 yes 48
45.43 odd 12 540.2.n.d.359.18 48
60.23 odd 4 540.2.n.d.179.7 48
60.47 odd 4 540.2.n.d.179.18 48
180.7 even 12 540.2.n.d.359.23 48
180.43 even 12 540.2.n.d.359.2 48
180.47 odd 12 180.2.n.d.119.2 yes 48
180.83 odd 12 180.2.n.d.119.23 yes 48
180.119 even 6 inner 900.2.r.g.551.14 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.n.d.59.2 48 5.3 odd 4
180.2.n.d.59.7 yes 48 20.7 even 4
180.2.n.d.59.18 yes 48 20.3 even 4
180.2.n.d.59.23 yes 48 5.2 odd 4
180.2.n.d.119.2 yes 48 180.47 odd 12
180.2.n.d.119.7 yes 48 45.38 even 12
180.2.n.d.119.18 yes 48 45.2 even 12
180.2.n.d.119.23 yes 48 180.83 odd 12
540.2.n.d.179.2 48 15.2 even 4
540.2.n.d.179.7 48 60.23 odd 4
540.2.n.d.179.18 48 60.47 odd 4
540.2.n.d.179.23 48 15.8 even 4
540.2.n.d.359.2 48 180.43 even 12
540.2.n.d.359.7 48 45.7 odd 12
540.2.n.d.359.18 48 45.43 odd 12
540.2.n.d.359.23 48 180.7 even 12
900.2.r.g.551.6 48 45.29 odd 6 inner
900.2.r.g.551.11 48 36.11 even 6 inner
900.2.r.g.551.14 48 180.119 even 6 inner
900.2.r.g.551.19 48 9.2 odd 6 inner
900.2.r.g.851.6 48 20.19 odd 2 inner
900.2.r.g.851.11 48 1.1 even 1 trivial
900.2.r.g.851.14 48 5.4 even 2 inner
900.2.r.g.851.19 48 4.3 odd 2 inner